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Abstract

In developing improved protein variants by site-directed mutagenesis or recombination, there are 

often competing objectives that must be considered in designing an experiment (selecting 

mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, 

and so forth. Pareto optimal experimental designs make the best trade-offs between competing 

objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal 

design for one objective without being worse for another objective. Our goal is to produce all the 

Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest 

designs most worth considering, but to avoid explicitly considering the large number of dominated 

designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering 

Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate 

dynamic programming or integer programming methods to optimize designs in different regions. 

This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the 

optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate 

PEPFR with three protein engineering case studies: site-directed recombination for stability and 

diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity 

and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for 

activity and immunogenicity via integer programming. We show that PEPFR is able to effectively 

produce all the Pareto optimal designs, discovering many more designs than previous methods. 

The characterization of the Pareto frontier provides additional insights into the local stability of 

design choices as well as global trends leading to trade-offs between competing criteria.
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 1 Introduction

Protein engineering tasks often have two or more different goals that may be complementary 

or even competing. For example, in developing chimeric libraries, the resulting hybrids 

should be similar enough to the evolutionarily-selected wild-type proteins to be stably 

folded, but different enough to display functional variation [42, 3, 32, 67, 19]. Similarly, in 

designing interacting proteins, the partners must bind not only strongly but also specifically 

[45, 16, 27, 31, 2, 66, 11]. Finally, in deimmunizing therapeutic proteins, the variants must 

maintain bioactivity while being less immunogenic [6, 7, 44, 43]. Since no design can be 

optimal for all competing goals, trade-offs must be made. Pareto optimal (undominated) 

experimental designs are the best representatives for consideration, as each does as well as 

possible with respect to one goal without further sacrificing the other(s). This paper presents 

general methods for performing Pareto optimal protein engineering, and demonstrates how 

to apply them in the scenarios discussed above.

To optimize an experimental design, it is necessary to be able to control some design 
parameters that specify which variants to produce. Site-directed mutation and site-directed 

recombination provide the engineer with the ability to precisely specify an experiment, 

either in terms of specific substitutions for some amino acids (site-directed mutation) or 

specific positions for crossing over between parents (site-directed recombination). Our 

approach thus focuses on these two technologies. We treat them separately here, though 

there is nothing in theory prohibiting optimization of a combined mutation + recombination 

design. While stochastic methods can be partially controlled (e.g., choosing codons to 

promote recombination in gene shuffling [17]), we leave for future work the extension of our 

approach to handle them.

A design (i.e., selected substitutions or breakpoint locations) can be evaluated in silico for its 

quality with respect to different design objectives that represent the goals of the design task. 

For example, a mutant can be evaluated for structural perturbation according to ΔΔG° 

predictors [4, 14, 24] or for structural and functional perturbation according to consistency 

of the mutations with the evolutionary record [49, 46, 53, 58]. Likewise, a site-directed 

recombination library can be evaluated for overall perturbation (averaged over the hybrids) 

according to a sequence-structure potential [60, 42, 48, 47, 65], as well as the sequence 

diversity of its hybrids [68]. Numerous other criteria exist to evaluate variants (or members 

of a library) by task-specific sequence and/or structure-based potentials (solubility, 

crystallizability, level of expression, etc.); one of the examples studied here is 

immunogenicity as assessed by sequence-based MHC-II epitope predictors [8, 61]. Finally, 

in designing interacting proteins, potentials have been developed to predict likelihood or 

strength of interaction (and thereby also specificity) [33, 26, 12, 59, 51, 23].

The design problem can then be summarized as searching over possible sets of values for the 

design parameters (searching over the design space) to find those that are best according to 

the design objectives. However, since the design objectives can be complementary and 

perhaps even competing, we must be more careful in defining best. It is often difficult, and 

always results in some bias, to decide a priori upon weights for combining objectives; 

instead it is better to consider specific designs and their relative merits.
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Pareto optimization characterizes the designs that make the best trade-offs and are most 

worth further evaluation and experimental construction. We seek to determine all the Pareto 

optimal designs—the complete Pareto frontier. Fig. 1 illustrates a design space and its Pareto 

optimal designs. In the figure, the circled points seem particularly good, since near each one, 

there is a relatively sharp drop off in one criterion or the other (or both). The optimality of 

these designs persists over a range of relative weights between the two criteria. If the number 

of experiments to be conducted is limited, the Pareto optimal designs could be subjected to 

additional characterization (e.g., applying more expensive modeling techniques or 

accounting for ease of experimental construction), in order to select the most beneficial. The 

stability of design choices over the Pareto frontier can also help provide confidence that the 

designs do not critically depend on small, unreliable differences in the evaluation criteria.

The design space typically contains a massive number of designs, resulting from the various 

combinations of choices for the parameters. For example, the simple two-breakpoint design 

space illustrated in Fig. 1 contains  designs. We could enumerate the entire 

space for this illustration, but with more breakpoints, it would be undesirable or even 

infeasible to first generate all the designs and then seek to identify the Pareto frontier. The 

same is true when designing interacting proteins or selecting deimmunizing mutations; if 

more than a few amino acids are to be chosen, we cannot enumerate all sets and then 

evaluate them. Thus while there are many solutions to the problem of finding the Pareto 

frontier in explicit datasets (e.g., [29, 10]), our problem here is to find the Pareto optimal 

designs in an implicit design space parameterized by choices of breakpoints or substitutions.

We develop a general approach, PEPFR, to identify protein engineering Pareto frontiers. Our 

approach is essentially a “meta-design” algorithm, controlling the invocation of an 

underlying design optimization algorithm to explore different regions of the design space. It 

is applicable when an algorithm is available for optimizing a linear combination of the 

objectives within a bounded region of the design space. We note that this subroutine must be 

generative, producing a design subject to constraints, rather than evaluative, assessing a 

given design; in the latter case, stochastic search methods may be more appropriate (e.g., 

[13]). We have instantiated our method with two powerful optimization algorithms that have 

been successfully applied in protein design: dynamic programming and integer 

programming. Integer programming is sufficiently general to immediately support our 

method; for dynamic programming, we have developed a specialized backtrace algorithm to 

enable the discovery of Pareto optimal designs. PEPFR then works by hierarchically 

dividing-and-conquering the design space,1 using the underlying design optimizer to 

identify a design in a specific region of the space, eliminating the portion of the space that 

design dominates, and recursively exploring the rest. It thereby finds all Pareto optimal 

designs, and only those, avoiding explicit generation of the combinatorial design space. It 

does so efficiently, in that the number of subdivisions of the space (and invocations of an 

optimizer) is directly proportional to the number of Pareto optimal designs.

1Since it uses divide and conquer, the full name of our approach is DRPEPFR, but we use PEPFR more informally.
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While PEPFR is the first algorithm guaranteed to find the Pareto frontier in protein 

engineering, others have pursued Pareto optimality (sometimes implicitly) in a number of 

different protein engineering contexts. A simple approach is to manually sample different 

relative weights between the objectives; this was done, for example, in the work of Parker et 
al. to trade off immunogenicity and bioactivity in therapeutic protein deimmunization [43], 

as well as in that of Suárez et al. to trade off stability and catalytic activity in enzyme design 

[56]. Clearly such sampling approaches may miss Pareto optimal designs and even entire 

regions of designs. A more sophisticated approach is to focus on one objective as the 

primary one, optimizing it while systematically constraining the values taken by the other 

objective. Grigoryan et al. pursued this approach for designing bZIP interactions [11], 

optimizing for binding strength while “sweeping” the specificity by incrementally increasing 

the difference between on- and off-target strengths. While this approach yields a good 

overview of the space and identifies some Pareto optimal designs, the exact designs obtained 

are sensitive to the steps taken in the sweep, and beneficial ones may be missed. Finally, 

Zheng et al. developed an approach to find Pareto optimal designs that trade off average 

hybrid stability and overall library diversity in site-directed recombination [67]. Their 

method finds all the designs on the lower envelope of the convex hull of the design space, 

and attempts to find some in the concavities by iteratively fixing some breakpoint locations. 

While the approach also provides a maximal error on the designs that might have been 

missed, many designs may still be missed, and the error guarantees may be loose.

We use as case studies here design problems that have previously been tackled with the 

approaches described in the preceding paragraph, and reimplement the design parameters 

and objectives of Parker et al., Grigoryan et al., and Zheng et al. within our framework to 

assess the impact of completely characterizing the Pareto optimal designs. We demonstrate 

the effectiveness of PEPFR in discovering the Pareto frontier in these three case studies. In 

all cases, we identify many more Pareto optimal designs than the previous methods. We also 

demonstrate that profiling the Pareto frontier provides additional information about local and 

global trends that can be useful to the protein engineer in deciding upon experiments to 

pursue.

 2 Methods

Let us denote a design (i.e., choices of values for the design parameters) as λ and the entire 

design space (i.e., all possible λs) as Λ. See again Fig. 1, where each λ specifies a set of 

breakpoint locations, and Λ includes all possible sets for the parent proteins. Let f(λ) = 

(f1(λ), f2(λ), …, fn(λ)) be the vector of quality measures evaluating design λ for n design 

objectives. Here, we assume that each objective is represented by a real number, such that fi: 

Λ → ℝ and f: Λ → ℝ n; thus each design λ is represented by a point f(λ) in the objective 

space Rn. In Fig. 1, the objectives are overall diversity and average stability. As a convention 

(and without loss of generality), the objectives are to be minimized. We then say λ 

“dominates” λ′, written λ ≺ λ′, iff λ is at least as good as λ′ in all the dimensions, and better 

in at least one: ∀i ∈ {1, 2,…, n}, fi(λ) ≤ fi(λ′) and ∃i ∈{1, 2,…, n}, fi(λ) < fi(λ′). A design λ 

is Pareto optimal iff it is not dominated: ∀λ′ ∈ Λ, λ′ ⊀ λ.
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Our approach uses a task-dependent constrained optimization algorithm, which we call g, as 

a subroutine to find an optimal design, with respect to a set of positive coefficients α on the 

objectives, within a specified region B of the objective space. We specify the region as an n-

dimensional open axis-aligned box, or just “box” for short, B = (l1, u1) × (l2, u2) ×…× (ln, 

un) ⊂ ℝn, where (li, ui) is the range of B in dimension i. We say that a design λ is in a box B 
as shorthand for f(λ) is in B. We also say that a design is undominated in a box if there is no 

other design in the box that dominates it. In order to find a single unique point within a box, 

we specify a choice of weights on the different objectives as a vector of positive real values 

α = (α1, α2,…, αn) ∈ (ℝ+)n. As we discuss further below, any such α is acceptable; in 

practice, we generally weight all terms equally (i.e., α = (1, 1,…, 1)). In order to be generic 

to the details of the design task, we allow the user to provide the constrained optimization 

algorithm g that optimizes a linear combination of the objectives within a given box. We 

show how to employ either dynamic programming or integer programming, and further 

instantiate these approaches for our case studies.

In summary, our protein engineering Pareto frontier algorithm PEPFR produces all Pareto 

optimal designs based on the problem-dependent constrained optimization algorithm g:

Input box-constrained optimization algorithm g, such that g(α, B) = arg min {α · 

f(λ) | λ ∈ Λ, α · f(λ) ∈ B}, where α is a positive coefficient vector and B is a box.

Output all Pareto optimal designs, {λ | λ ∈ Λ, ∀λ′ ∈ Λ: λ′ ⊀ λ}.

PEPFR leverages the geometry of Pareto optimality to employ a divide-and-conquer 

approach that identifies all the Pareto optimal designs while avoiding the large quantity of 

dominated ones. We present here the basic approach for two objectives, since 2D is easier to 

illustrate and results in some simplifications to the algorithm. We then present how to 

develop a suitable box-constrained optimization algorithm g using either dynamic 

programming or integer programming, and instantiate g for three case studies. The extension 

of our method to multiple objectives is detailed in the Supplementary Material.

 2.1 Divide-and-conquer for two objectives

Fig. 2 illustrates the idea; pseudocode is provided in the Supplementary Material. We now 

detail each step.

 Initialize—Each of the two objectives is separately minimized and also maximized (i.e., 

its negative is minimized), using the optimizer g with the single objective over the entire 

objective space. In our presentation, we define all the boxes to be open, not containing the 

boundaries. To be consistent with that, we relax the determined minimum and maximum 

values with a tiny value ε, to yield an open box B = (min(f1) −ε, max(f1) + ε) × (min(f2) − ε, 

max(f2) + ε).

 Conquer—The box-constrained optimization algorithm g is applied to find the optimal 

design λ within the current box B, under a set of coefficients α to linearly combine the 

objectives. We can prove (see Supplementary Material) that this design is in fact 

undominated within B. Since, as we discuss more in the “divide” step, no design in any 

other box dominates any design in B, it then follows that λ is Pareto optimal.
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 Divide—Let λ be the undominated design uncovered in the box B = (l1, u1) × (l2, u2) 

during a conquering step. Let p = (p1, p2) = f(λ). We use p to divide B into four rectangular 

portions, excluding points on the two lines x = p1 and y = p2 because they are dominated by 

p. We name the regions B00, B01, B10, and B11, where the subscript 0 denotes (li, pi) and 1 

denotes (pi, ui); since li < pi < ui, the naming is consistent with the geometry. Since p is 

undominated in B, no design is in B00, otherwise it would dominate p, a contradiction. 

Furthermore, p dominates all the points in B11. Therefore, both B00 and B11 can be pruned, 

and we recurse in B01 and B10. Note that B10 has a better range in the second dimension 

while B01 has a better range in the first dimension, so points in one cannot dominate those in 

the other. They therefore can be recursively explored independently and their undominated 

designs simply unioned together.

The algorithm recurses twice (once for each sub-box) for each Pareto optimal design added 

to F; a recursion terminates upon discovering an empty box. Thus the algorithm can be 

viewed as having an “output sensitive” complexity, in that the cost is proportional to the size 

of the output. More specifically, the underlying optimizer g (whose computational 

complexity we don’t know) is invoked 2|F| + 1 times. Thus the total time required is O(Ft) if 
t bounds the time required by g.

 2.2 Instantiations of the box-constrained optimizer

We show how to instantiate the box-constrained optimization algorithm g for approaches 

employing integer programming or dynamic programming, two common optimization 

techniques in protein engineering.

 2.2.1 Integer linear programming (IP)—Integer programming is a powerful 

optimization technique applicable to a number of NP-hard optimization problems including 

protein engineering. NP-hardness implies that both efficiency and optimality cannot 

simultaneously be guaranteed. Here we choose to guarantee optimality, and use the state-of-

the-art solver CPLEX that typically works quite efficiently in practice. An integer program is 

specified in terms of a set of integer (often binary) variables, an objective function that is a 

linear combination of the variables, and a set of constraints on the values of the variables:

Variables vector x, with xi an integer

Objective minimize c · x

Constraints such that Ax ≤ b

To make this more concrete, let us consider a generic site-directed mutagenesis experiment; 

we will instantiate later for specific objectives. The variables represent the entire amino acid 

sequence (including both wild-type and substituted positions): binary variable xik ∈ {0, 1} 

indicates whether or not residue position i is of amino acid type k, with i ranging over the 

entire sequence and k over the amino acid types allowed at position i. The objective function 

expresses the contribution of each possible amino acid type at each position, weighting xik 

by a coefficient cik. Thus x effectively serves as a mask, with only those variables that end 

up being set to 1 actually adding to the score. Constraints ensure that there is a single amino 

acid type at each position. For example, one row in A would ensure that the sum of x1k (all 
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the amino acid types at position 1) is at least 1, while another row would ensure that it is at 

most 1, and similarly for other positions. Additional constraints can also limit the total 

number of substitutions, etc.

In our PEPFR framework, we need to optimize a weighted combination of the design 

objectives, α · f(λ), within a box B. We represent λ with x, and each objective fi as a set of 

coefficients ci on the values in x. Then c is an α-weighted sum of these coefficients, α1c1 + 

α2c2. Finally, to focus on a box B = (l1, u1) × (l2, u2), we add constraints such that l1 < c1 · x 
< u1 and l2 < c2 · x < u2.

 2.2.2 Dynamic programming (DP)—Dynamic programming (DP) is another standard 

combinatorial optimization technique, also applicable to protein engineering problems. In 

contrast to integer programming, it can guarantee both optimality and efficiency, but is only 

suitable in a more limited range of scenarios in which a problem can be decomposed into 

subproblems such that the optimal solution to the original problem is determined from the 

optimal solutions to subproblems. It is naturally applicable to protein engineering problems 

that can be decomposed in sequential order, proceeding from the N-terminus to the C-

terminus (in the same way as the well-known pair-wise sequence alignment algorithms).

Dynamic programming is a general technique, so for the sake of concreteness, we describe 

here one particular formulation suitable for protein engineering. This formulation can 

readily be extended or adapted for other protein engineering problems. We use one variable 

to represent progress through the sequence (from N- to C-terminus) and another variable to 

represent progress through the different design parameters (breakpoints or mutations) for 

which values must be chosen. Thus D(r, k) represents a design for the first r residues and the 

first k parameters; in fact, we define it such that the kth choice is made exactly at position r. 
For example, D(200, 5) represents the best design placing 5 breakpoints or mutations within 

the first 200 residue positions, with the 5th at 200. A recurrence expresses the best score (α-

weighted sum of design objectives) attainable for an (r, k) design based on the best score 

attainable for sub-designs. For recombination design and for mutation design when treating 

mutations additively, the sub-designs are those for previous positions r′ < r where the (k − 1) 

choice could be made, and the recurrence takes the form

(1)

incrementing the score of the (r′, k − 1) design by the score contribution Δf due to the 

additional design choice.

Dynamic programming computes the recurrence by starting from trivial subproblems and 

building up solutions to increasingly larger subproblems, using a table to keep track of the 

solutions (since they may be used by multiple super-problems). Thus we fill in a table of 

D(r, k) values with an inner loop from the N-terminus to the C-terminus and an outer loop 

from the first breakpoint or mutation to the last. In addition to the optimal score, we keep 

track of the choice made to obtain it (which r′, which substitution). Then the optimal overall 

design can be obtained by backtracing from the best cell for the final design choice (which 
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could be at any residue position), moving recursively back through the predecessors to the 

first design choice.

While PEPFR requires the ability to find an optimal solution within a particular box, 

standard dynamic programming can yield an optimal solution anywhere in the design space. 

Thus to use DP as our box-constrained optimizer, we have developed a new backtracing 

algorithm (analogous to algorithms for finding near-optimal solutions in a DP table [1, 63]) 

that performs a tree search to identify an optimal design within a given box. While a regular 

backtrace produces a single path by following the best predecessor from each cell, our 

backtrace produces a tree of paths by following all predecessors of a cell. (Note that a cell 

can be reached by multiple paths.)

When reaching a cell, there are three possibilities: stop if we have found a design within the 

box; prune if we are guaranteed not to find an optimal solution within the box along this 

path; else branch to continue exploring predecessors. To be able to make the decision, we 

need the following information (Fig. 3):

• o: the optimal value of α · f(λ) within B found so far. This is initialized to a 

large value and minimized during the algorithm.

• b(P, r, k): the vector of contributions to f back along path P from a terminal cell 

to cell r, k. This is tallied in the process of building P, incrementing by Δf each 

step.

• d(r, k): the vector of contributions to f forward from an initial boundary cell to 

cell r, k. We extend the regular DP computation to maintain this information 

for each cell, by simply adding Δf to the d(r′, k − 1) vector for the optimal 

predecessor.

• : the range of f values achieved over any path from an initial 

boundary cell to cell r, k. This requires filling in additional DP tables with 

recurrences to maintain the lower (L) and upper (U) bounds on the different 

objectives (i):

(2)

(3)

and then computing , U1(r, k) + b1(P, r, k)) × 

(L2(r, k) + b2(P, r, k), U2(r, k) + b2(P, r, k)).

Then when reaching cell r, k on backtracing path P, we use this information to decide how to 

proceed:

prune if , as this path will not lead to any solution in the box
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stop if d(r, k)+b(P, r, k) ∈ B; then compare α·(d(r, k)+b(P, r, k)) against o, and keep 

the better solution

branch otherwise

To implement the backtracing algorithm, we maintain a priority queue of active paths. The 

priority is set by α · (b(r, k) + d(P, r, k)), based on the usual heuristic that a path with a better 

combination of score so far plus bound on remaining score is more likely to lead to a 

suitable design faster, and thus provide better pruning power via o. The queue starts with the 

trivial path(s) containing the terminal cell(s) in the dynamic programming matrix. When a 

path is to be branched, it is extended by each possible predecessor, and the resulting paths 

added to the queue. The search continues until the queue is empty.

 2.3 Case studies

To illustrate the power and generality of PEPFR, we instantiate it for three protein 

engineering problems for which other techniques have previously been applied in order to 

optimize competing objectives. We here briefly motivate these studies and summarize their 

formulations in PEPFR.

 2.3.1 Therapeutic protein deimmunization—Protein therapeutics derived from 

exogenous sources have a high risk of eliciting an immune response in human patients [25], 

mitigating the therapeutic benefits and potentially even yielding detrimental effects 

including anaphylactic shock [50]. Deimmunization seeks to modify a protein so that it does 

not produce an immune response yet still is an effective therapeutic. While therapeutic 

antibodies have been successfully deimmunized by techniques leveraging their particular 

structure and function [38, 21, 64], other classes of proteins (e.g., enzymes, receptors, and 

binding proteins) still pose significant challenges for deimmunization. One generally 

applicable approach, epitope deletion, has been successfully applied to several therapeutic 

candidates including staphylokinase [62], erythropoietin [57], and factor VIII [22]. The key 

idea [6] is to identify immunogenic peptide fragments, or epitopes, within the protein, and 

mutagenize key residues so as to disrupt the fragments’ ability to complex with type II major 

histocompatability complex (MHC II) proteins and/or T-cell receptors. By disrupting the 

formation of a ternary peptide-MHC II-T-cell receptor complex, the immune response is 

forestalled.

Parker et al. [43] recently developed a computational approach called IP2 to optimize site-

directed mutations for protein deimmunization, in order to delete T-cell epitopes while 

maintaining therapeutic activity. These two objectives are competing, as structurally and 

functionally conservative mutations may not help in reducing immunogenicity, while 

effective mutations for deimmunization may be structurally and functionally disruptive. The 

deimmunization objective is assessed by sequence-based T-cell epitope predictors, which 

encapsulate the specific recognition of peptides by MHC II proteins. Numerous such 

predictors have been shown to be predictive of immunogenicity and employed in analysis 

and design contexts [55, 52, 40, 8, 39, 61, 7]. An epitope predictor is packaged up in a 

function e that takes a 9-mer peptide and returns an epitope score, with lower numbers for 

less immunogenic peptides. The stability/activity objective is assessed with one-body and 
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two-body sequence potentials that capture position-dependent residue conservation and co-

variation from a multiple sequence alignment of homologs to the target. Such potentials, 

which have been essential in other protein engineering contexts [60, 46, 53], take advantage 

of the fact that constraints on amino acid choices required to maintain structure and function 

are likely to be manifested in the sequence record. These potentials are represented as 

negative logs, so that lower is better, and denoted ϕi(a) for amino acid type a at position i, 
and ϕi,j(a, b) for types a, b at positions i, j.

As we discussed, an integer program (IP) is specified in terms of integer variables, a linear 

objective function, and a set of linear constraints. Parker et al. employed three types of 

binary variables: singleton binary variables si,a indicating whether or not position i has 

amino acid type a, pairwise binary variables pi,j,a,b indicating whether or not positions i, j 
have respectively amino acids types a, b, and window binary variables wi,X, indicating 

whether or not the 9-mer starting at position i has the 9 amino acid types in order in X. The 

deimmunization objective function (“epitope score”) is the sum of the scores for all the 

constituent 9-mers of the protein, with the w variables essentially masking which peptides 

actually contribute:

(4)

The stability/activity objective function (“sequence score”) similarly sums the potential 

functions over all positions and pairs of positions, using the s and p variables as masks:

(5)

The constraints then ensure a single amino acid type at each position (Eq. 6), consistency of 

the single and pairwise variables (Eqs. 7 and 8), consistency of the single and window 

variables (Eq. 9), and that the desired number of mutations is made relative to the wild-type 

sequence S (Eq. 10):

(6)

(7)

(8)
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(9)

(10)

To perform optimization constrained to box B = (l1, u1) × (l2, u2), we add the constraints we 

previously described: l1 < f1 < u1 and l2 < f2 < u2.

While Parker et al. manually sampled relative weights α1 and α2 between the two objectives, 

our divide-and-conquer approach is able to find all Pareto optimal designs by using this IP 

for the box-constrained optimizer g, and a fixed choice for α (we used (1,1) for the results 

given).

 2.3.2 bZIP partners—Protein-protein interactions play important roles in numerous 

biological processes, and have been the focus of much significant protein design work for 

both strength and specificity [34]. Grigoryan et al. [11] targeted human basic-region leucine 

zipper (bZIP) transcription factors, as human bZIP proteins participate in a wide range of 

important biological processes and pose attractive targets for selective inhibition. They 

developed a computational approach for designing bZIPs that successfully designed 

synthetic interacting bZIP peptides with desired interaction strength and specificity. The 

strength and specificity goals are competing, as strength against the target may have to be 

sacrificed in order to obtain specificity, and similarly a very specific but low-affinity binder 

is not desirable.

In order to assess the strength and specificity of a designed interaction, Grigoryan et al. used 

“cluster expansion” to truncate their previously-developed structurally-based bZIP 

interaction energy functions [12], yielding position-specific single-position and pairwise 

energy terms that depend only on amino acid type and may be linearly combined. Interaction 

strength is evaluated as the design:target energy and interaction specificity as the minimum 

gap between the design:target energy and all design:competitor energies (including off-target 

bZIPs and the homo-dimer). The interacting proteins are represented as an undirected p-

partite graph (for a designed protein of length p) with position-specific sets Vi of nodes for 

the allowed amino acid types at position i, and edges D = {(u, v): u ∈ Vi, v ∈ Vj, i ≠ j} 

between all pairs of amino acid nodes at different positions.

They then developed an IP-based optimization approach called CLASSY, as usual specifying 

variables, an objective, and a set of constraints. Two types of binary variables are employed: 

singleton binary variables xuu representing the amino acid choice at node u, and pairwise 

binary variables xuv representing the pair of amino acid choices for edge (u, v). The 

design:target objective is the total energy:
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(11)

where  is the single-position energy term for node u (one of the amino acid choices at a 

position), and similarly  is the pairwise energy term between nodes u and v. The strength 

against competitor c (from the set of k competitors, including the homodimer) has a similar 

form. While Grigoryan et al. use it in a constraint, we view it as a competing objective:

(12)

and show below how to handle the fact that each competitor results in such an objective.

The constraints then ensure the choice of single amino acid type at each position (Eq. 13), 

match choices of pairwise binary variable with corresponding singleton binary variables (Eq. 

14), enforce a “PSSM score” threshold to favor a leucine-zipper fold based on consistency 

with sequence statistics in a multi-species bZIP alignment (Eq. 15), and enforce a minimum 

energy gap between the design:design energy and each design:competitor energy (Eq. 16).

(13)

(14)

(15)

(16)

Grigoryan et al. employed a “specificity sweep” approach, first identifying the design with 

the strongest binding strength, noting its energy gap, running the IP again using that gap as a 

constraint in order to find a design with a better gap (but worse strength), and repeating to 

incrementally increase the gap. We instead seek to find all Pareto optimal points by applying 

our divide-and-conquer approach based on this underlying optimizer.

To use this integer program in PEPFR, we need an objective combining the strength (f1 

target energy) and the specificity (gaps between f1 and the various f2,c off-target energies). 
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We treat each competitor separately, essentially assuming it has the smallest gap, and run k 
different IPs for the different competitors, each extended from the above IP. The extended IP 

for competitor c has the objective α1f1 + α2(f1 − f2,c), with specificity inverted to be 

consistent with our minimization convention. It incorporates the additional specificity 

constraint

(17)

and the usual box constraints l1 < f1 < u1 and l2 < f1 − f2,c < u2. The minimum value of α · f 
is the minimum of the integer programming objective over the k different runs.

 2.3.3 Site-directed recombination—Site-directed recombination generates a library 

of hybrid proteins from homologous protein parents, mixing-and-matching fragments in 

seeking to uncover new combinations with improved function [60]. In contrast with 

stochastic recombination (natural or in vitro), site-directed recombination allows the 

breakpoints to be specified, based on an analysis of which are likely to yield beneficial 

hybrids. In contrast with mutagenesis, site-directed recombination employs amino acid 

combinations that have been evolutionarily accepted in the same structural context, and thus 

are likely to yield viable proteins. Site-directed recombination has been successfully applied 

to develop variant enzymes with improved properties and activities [36, 9, 42, 35, 41, 30, 32, 

19, 18].

Zheng et al. [67] developed a Pareto optimization approach called STAVERSITY to 

optimize site-directed recombination experiments according to two criteria: whether the 

hybrids are likely to be stable and active and how diverse the library is. These are competing 

goals, as in order to produce stable, active hybrids, the best strategy is to cluster the 

breakpoints at the termini, yielding hybrids that closely resemble the parents. The stability/

activity objective evaluates the expected sequence-structure “perturbation” in the hybrids 

relative to the parents, according to the potential developed by Ye et al. [65] This potential, 

like other similar ones [60, 37, 47, 9], is based on correlation statistics between interacting 

residues, recognizing that recombination potentially disrupts the pairwise interactions 

underlying stable folding. While Ye et al. considered up to 4-residue interactions, we focus 

here only on pairwise interactions. In this case, the perturbation score between a set P of 

parents and set H of hybrids is:

(18)

where i and j are contacting residue positions and a and b are amino acid types there, and 

ϕi,j(a, b) is the potential score. Ye et al. showed how to compute f1 efficiently, without 

actually having to enumerate all the hybrids in the library [65].

The diversity objective evaluates the overall “mutational variance” within the library [68]. 

Minimizing the variance seeks a relatively uniform sampling of the design sequence space, 
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and thus improves the chances of finding a novel variant. Diversity had been optimized only 

indirectly in earlier work, though others had found it to be important in development of 

beneficial hybrids. The diversity variance is:

(19)

where the indicator function I returns 1 when hybrid Hi and parent Pa have different 

residues. To ignore conservative substitutions, “equality” is evaluated according to standard 

amino acid classes {{C},{F,Y,W},{H,R,K},{N,D,Q,E},{S,T,P,A,G}, {M,I,L,V}}. As with 

perturbation, we do not actually have to enumerate the hybrids to compute the diversity 

variance [68].

Perhaps surprisingly, given that the perturbation computation includes long-range pairs of 

contacting residues (including those spanning breakpoints), a polynomial-time dynamic 

programming algorithm is applicable for each objective and there are recurrences to 

compute the incremental perturbation and variance due to adding one more breakpoint. 

While the actual formulas are quite detailed [67], the structure of the dynamic program is 

exactly like the one we presented. The STAVERSITY algorithm of Zheng et al. [67] finds 

some of the Pareto optimal points based on this dynamic program. PEPFR finds all of them, 

when using the same DP formulation combined with our new back-trace algorithm within 

our divide-and-conquer framework.

 3 Implementation

PEPFR is implemented in standard C++, compilable by the GNU compiler. As a “meta-

design” algorithm, it is developed in a modular fashion, with classes for the box-constrained 

optimizers and objective functions. We provide optimizer classes encoding our integer 

programming and dynamic programming approaches. For IP, the optimization is performed 

by calls to CPLEX via its C++ API. We directly implement a standard DP recurrence and 

our custom backtrace. We provide objective function classes for the various metrics used in 

the case studies. Auxiliary classes handle input data (e.g., multiple sequence alignments, 

epitope scoring matrices, position-specific scoring matrices) to compute the various potential 

scores.

Our source code is freely available for academic use, at http://www.cs.dartmouth.edu/~cbk/

pepfr/.

 4 Results and Discussion

We now demonstrate the effectiveness of PEPFR in discovering the Pareto frontier for our 

three case studies. For each, we are able to incorporate the published objective functions 

(and their parameters) into PEPFR and thereby directly compare our designs with those 

previously determined. In addition to finding all the Pareto optimal designs found by the 
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earlier methods, we find a large number of new designs and demonstrate that some 

previously determined designs were not Pareto optimal.

The CPU time required by PEPFR is case-specific; as discussed, it is directly related to the 

number of outputs and the cost of the underlying optimizer. The optimization cost can in 

turn depend on the density of points designs near the Pareto frontier, as well as the α 

coefficients (which we fix at (1, 1) here). The following results were collected on a single 

core machine, and most runs required minutes to hours of wall-clock time, though the range 

spanned from seconds (2-breakpoint recombination design) to a few days (9-breakpoint 

recombination designs). The expense of the 9-breakpoint optimization was due largely to the 

sheer density of points in one region of the space. While that amount of time for planning 

seems acceptable, the approach could readily be parallelized to reduce the required wall-

clock time if that were desired in some context.

 4.1 Therapeutic protein deimmunization

Parker et al. applied their IP2 deimmunization method to several different therapeutic 

proteins, identifying sets of mutations predicted to be both deimmunizing and function-

preserving [43]. We examine here erythropoietin (Epo), peptides from which had previously 

been experimentally targeted by Tangri et al. [57] We instantiated the objective functions as 

described by Parker et al. For the epitope score (Eq. 4), we compute the number of the 8 

most abundant MHC-II alleles [54] predicted to bind a peptide according to ProPred [52] at 

a 5% threshold. For the sequence score (Eq. 5), we compute one- and two-body potentials 

from the Pfam-curated MSA (id PF00758), after removing sequences with less than 35% or 

more than 90% identity to the target. We consider mutations appearing in at least 5% of the 

remaining sequences; while one might typically want to eliminate Cys and Pro substitutions, 

we did not do so here in order to render our results directly comparable.

We generated the Pareto frontier at a number of different mutation loads. Fig. 4 illustrates 

the scores of 4-mutation and 8-mutation designs identified by PEPFR, along with those 

sampled by Parker et al. For 4 mutations, PEPFR identified 24 Pareto optimal designs, while 

for 8, it identified 40. In both cases, Parker et al. sampled only 6 designs by varying the 

relative weight between the two objectives. As Fig. 4 shows, one of the 4-mutation designs 

is not Pareto optimal; we believe this to be due to the setting of a parameter controlling 

which substitutions are considered. Following the Pareto frontiers from right to left (with 

decreasing immunogenicity), we see a smooth decrease in epitope score with relatively little 

penalty in sequence score, until reaching a “knee” at which point progress in 

immunogenicity requires substantially less conservative substitutions. PEPFR fully 

elucidates the set of Pareto optimal designs around that knee. Studying the trade-offs made 

along the frontier helps the engineer calibrate the price that must be paid on one objective in 

order to make gains on the other.

Fig. 5 illustrates one of the 8-mutation designs (epitope score 88) near the knee in the Pareto 

frontier. We see that each mutation is effectively employed to reduce epitopes and no new 

epitopes are introduced. While some of our mutations focus on the immunogenic peptides 

experimentally targeted by Tangri et al. [57], PEPFR is a global design method allowing 

mutations throughout the protein and evaluating their predicted impacts on both epitope and 
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sequence scores. Thus it also picks up additional promising-looking mutations in other 

regions of the protein. It also simultaneously considers each residue in each MHC frame (not 

just as, say, the P1 anchor). It can more confidently propose higher mutational loads by 

explicitly evaluating the relative conservativeness of substitutions (including their interaction 

terms).

One of the benefits of elucidating the entire Pareto frontier is the resulting ability to track 

trends in mutations, as we trade off between one objective and the other. Fig. 6 shows the 

mutation profile of the 8-mutation Epo Pareto frontier, from least immunogenic but least 

conservative (top) to most conservative but most immunogenic (bottom). We see the trade-

off between placing mutations in the more immunogenic regions (though not necessarily at 

the initial residues of immunogenic peptides), near the top, and employing more 

conservative mutations, near the bottom. We also see some “popular” mutations employed 

over long stretches of the Pareto frontier; these may combine the best of both worlds. The 

trend analysis also helps in identifying a small number of relatively different plans for 

additional modeling and ultimately experimentation.

 4.2 bZIP partners

Grigoryan et al. computationally developed (using Classy) and experimentally evaluated 

synthetic partners for 46 different human bZIPs (nearly all human bZIPs) [11]. We consider 

here one representative (and well-characterized) target, MafG, an oncoprotein involved in 

regulating cell differentiation and other cellular functions [20]. We apply PEPFR to design 

anti-MafG partners that are predicted to be both strong and specific binders, preferring 

MafG to 45 other human bZIPs from the 20 different families of human bZIPs, as well as to 

the design:design homodimer. We adopt the energy model used by Grigoryan et al., 
including values for the energies Euu and Euv (Eqs. 11 and 12). In this model, only four 

positions (a, d, e, and g) of the bZIP heptad repeat contribute to the energy. Following 

Grigoryan et al., we selected amino acids for the other positions by maximizing likelihood 

based on frequencies in a multi-species dataset of 432 bZIP sequences.

Fig. 7 shows the PEPFR Pareto frontier, along with the designs identified by the Classy 

method of Grigoryan et al., in both our objective space representation and their specificity 

sweep representation. We find 108 designs, of which they identified 35. Relative specificity 

is better further to the left in our representation, and to the right in theirs (with an 

increasingly positive gap between target stability and off-target stability). The design:design 

homodimer interactions tend to be the strongest competitors for the Pareto optimal anti-

MafG designs; we see from the bottom figure that for the most of designs, the design:design 

homodimer (back squares) has the smallest energy gap with the design:target heterodimer. 

We see a relatively smooth trade-off of stability for specificity (moving left in our 

representation and right in theirs), though there is a clearly evident “knee” in our 

representation where we must begin to pay a much larger penalty for stability in order to 

gain additional specificity. Notice that PEPFR has a much denser set of designs with good 

specificity. By characterizing all the designs, PEPFR elucidates the relative value and cost of 

the two competing factors, and provides more opportunity to identify the most beneficial 
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ones for experimental evaluation, as well as additional designs with very similar properties if 

alternatives are needed.

Fig. 8 profiles the amino acid content of the anti-MafG designs. Inspection of nearby designs 

allows us to assess the key determinants of their stability and specificity, and alternatives 

with similar properties. For example, consider the design at index 60 in Fig. 8, which was 

selected by Grigoryan et al. for experimental characterization. We see that many of the 

amino acid choices in this design (of those that vary from the baseline most stable design at 

index 1) are common nearby in the Pareto frontier. Furthermore, much of the variability is 

fairly conservative, e.g., K or R at e4, V or L at a5, and D or E at g7. As a result, the 

objective scores (Fig. 7, top) remain fairly constant locally. Interestingly, we see the 

emergence of N at a1 in this neighborhood, a mutation that is preserved from that point on 

for better specificity (a large number of off-targets have A, T, I, L, or V at a1′, undesirable 

for interactions with N). Furthermore, there is a set of mutations that consistently distinguish 

this neighborhood from the most stable designs (e.g., g2 is now K instead of I, g3 is now R 

instead of D, and e5 is now R or E instead of L) and from the most specific ones (e.g., d3 is 

still L instead of K, e4 is still R or K instead of A, and a5 is still L or V instead of R).

Further characterizing entire portions of the design space allows us to see trends underlying 

the trade-off between stability and specificity. For example, the first 26 designs are not 

specific, and in fact prefer to homodimerize rather than bind MafG (see again Fig. 7, 

bottom). In Fig. 8, we see that, compared to the most stable design, these designs primarily 

make substitutions at heptad positions g and e. Grigoryan et al. also noticed that their 

method initially improved specificity by modulating electrostatic g-e’ interactions (i.e., the g 

in one heptad and the interacting e in the next). We often observe E-E and K/R-K/R pairs at 

g-e′, yielding like charges in the homodimer, increasing its energy; these same positions 

yield only one undesirable R-K pair in the design:target heterodimer, leaving its energy 

practically the same. Following these first 26 nonspecific designs, we begin to see more 

substitutions modulating the g-a’ and a-d interactions, to further destabilize the 

design:design homodimer. We observe many of the characteristics of designs that are 

disruptive to homodimers, as summarized by Grigoryan et al., including like charges in g-a′ 

interactions (e.g., E-E at g5-a6) and pairs of beta-branched residues in a-d’ interactions (e.g., 

I-V in a6-d6 and a7-d7). Finally, we see characteristics stabilizing the design:target 

heterodimer, including paired L at d and paired N at a.

 4.3 Site-directed recombination

We apply PEPFR to optimize site-directed recombination designs for beta-lactamases, 

enzymes that hydrolyze the beta-lactam in various antibiotics including penicillins and 

cephalosporins. Beta-lactamases have previously been the targets of site-directed 

recombination [36, 9, 35, 65], including as a case study for the STAVERSITY approach of 

Zheng et al. [67] Following that case study, we also target parents TEM-1 and PSE-4, and 

derive a sequence potential from the same set of 136 beta-lactamases multiply aligned to 263 

residues (average sequence identity: 41.8%), limiting the two-body terms to pairs of residues 

within 8 Å in the TEM-1 structure (pdb id: 1btl). As discussed in the methods, we only use 

one- and two-body potentials, while Zheng et al. also used three- and even four-body 
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potentials; thus for comparison, we re-ran their method with only the one- and two-body 

potentials.

Fig. 9 illustrates the Pareto frontier identified by PEPFR, along with the scores of the 

designs identified by re-running STAVERSITY. For each score, there are multiple designs 

producing that score (e.g., by sliding a breakpoint left or right in homologous regions). 

PEPFR identifies all such designs. In all three cases, as we follow the Pareto frontier from 

left to right, we see an initial sharp drop of perturbation score with relatively little penalty of 

diversity variance until reaching a “knee”. After that point, there is a relatively smooth 

decrease of perturbation score but a sharp increase in diversity score, finally ending with 

several jumps. For 2 breakpoints, PEPFR identified 45 distinct Pareto optimal points, and 

STAVERSITY identified the same number. For 6 breakpoints, PEPFR identified 203 distinct 

Pareto optimal points; STAVERSITY identified 154 distinct points, 10 of which are not 

actually Pareto optimal. For 9 breakpoints, PEPFR identified 257 distinct Pareto optimal 

points, while STAVERSITY identified 174 distinct points, including 17 that are not Pareto 

optimal. Thus while the PEPFR and STAVERSITY curves look similar to the eye, 

STAVERSITY actually missed 59 of the 203 6-breakpoint plans and 100 of the 257 9-

breakpoint plans.

Fig. 10 illustrates the breakpoint selections along the Pareto frontiers. Going from top to 

bottom in each panel, we see that the best libraries in terms of perturbation cluster the 

breakpoints near the N-terminus (leaving the hybrids largely the same as the parents), while 

the best libraries in terms of diversity spread the breakpoints out more evenly. We also see 

some “hot spot” locations where breakpoints are frequently placed and persist over large 

ranges of perturbation and diversity scores; these locations seem to lead to beneficial hybrids 

under both objectives. Reference to the secondary structure elements does not reveal any 

clear pattern of preference for placement of breakpoints within or between them.

 5 Conclusion

We have presented a new approach to balancing competing objectives in rational protein 

engineering, generating the complete Pareto optimal frontier in order to enable 

characterization of local and global trends and selection of the most beneficial experimental 

designs. In contrast to earlier methods for optimizing multiple objectives in protein 

engineering, our PEPFR method is guaranteed to find all Pareto optimal designs. While 

algorithms for Pareto optimization have also been developed in support of other applications 

(e.g., see the survey by Handl et al. on approaches in computational biology [15]), the most 

common techniques include sampling relative weights (as previously discussed) and 

performing a heuristic search (e.g., genetic algorithms). Unfortunately, such techniques 

cannot provide any guarantees of correctness and may miss important points or even regions 

of the Pareto frontier. Before performing costly experiments, it is worth fully characterizing 

the trade-offs that must be made between the competing objectives. In the context of rational 

protein engineering, completeness implies that experimental outcomes can be directly tied 

back to the models underlying the optimization, without worrying about artifacts from the 

optimization algorithm. Assessing the local and global trends in designs (persistence of 

design choices) can also help better assess the likelihood of success of an experiment. As we 
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showed with three quite different case studies, PEPFR is very general, supporting powerful 

integer programming and dynamic programming optimization techniques to select mutations 

or breakpoints. It remains future work to integrate other design techniques (e.g., dead-end 

elimination [5] and RosettaDesign [28]) within the framework. PEPFR provides the protein 

engineer with a powerful mechanism for developing robust, diverse, high-quality 

experimental plans.
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Figure 1. 
Design of site-directed recombination experiments with two competing design objectives f1 

(here the overall library diversity) and f2 (here the average hybrid stability), each of which is 

expressed as a function to be minimized (a convention employed throughout). The possible 

breakpoint locations are the design parameters, defining the design space Λ. Two designs, λ′ 

and λ″, are illustrated, along with their corresponding evaluations, f(λ′) and f(λ″), in the 

objective space f1 × f2 ⊂ ℝ2. Blue points in the objective space represent Pareto optimal 

designs, while green points represent designs that are dominated by the Pareto optimal ones. 

Our goal is to find all the Pareto optimal designs (the Pareto frontier) without explicitly 

enumerating and evaluating the combinatorially large number of dominated designs. 

Characterization of the Pareto frontier enables the identification of designs (such as the 

circled points) that are most promising in terms of the trade-offs.
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Figure 2. 
PEPFR divide-and-conquer approach for identifying the Pareto frontier, illustrated for two 

objectives. (Initialize) The boundaries of an initial box are defined by separately minimizing 

and maximizing f1 and f2. (Conquer) The box-constrained optimizer g produces a Pareto 

optimal design λ within the current box B, using weights α on the two objectives. (Divide) 

The current box B is divided into four sub-boxes according to the design λ determined in the 

conquer step. B00 and B11 are discarded, and the algorithm recurses independently with B10 

and B01.
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Figure 3. 
Backtrace for box-constrained optimization by dynamic programming. (left) The dynamic 

programming table. Different paths from the final cell (lower right) have been followed back 

to three different cells, marked with different colors and subscripts. (right) The objective 

space, showing the contributions to f of the optimal designs and bounds on the values for the 

three different cells reached by the three different paths, using corresponding colors and 

subscripts (instead of the parameters to b, d, and ). The desired box is B. The design for 

cell 1 is in B, so we stop and see if it is the best so far. The design for cell 3 is in , 

guaranteed to be outside of B, so we prune the cell. The design for cell 2 is in , and thus 

may or may not be in B, so we must continue backtracing from the cell.
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Figure 4. 
Pareto frontiers for (left) 4-mutation and (right) 8-mutation Epo deimmunization designs (x: 

epitope score; y: sequence score). Green dots: Pareto optimal designs discovered by PEPFR; 

red stars: designs (not necessarily Pareto optimal) sampled by Parker et al. [43]
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Figure 5. 
Epitope profile (following Parker et al. [43]) of a selected Epo 8-mutation Pareto optimal 

design identified by PEPFR. x-axis: starting position of each 9-mer; y-axis: predicted 

number of alleles recognizing the 9-mer. Thin black bars indicate wild-type scores and thick 

orange bars indicate variant scores. Note: wild-type epitope scores are always greater than or 

equal to corresponding variant ones; i.e., no new epitope is introduced. Blue circles indicate 

mutated positions. Black ellipses at top indicate Tangri et al. [57] mutated positions. The line 

plot, from Tangri et al., displays wild-type Epo antigenicity using ELISPOT assays, with 

black dots giving the number of alleles bound to overlapping 15-mers; it trends very well 

with the ProPred-predicted epitopes.
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Figure 6. 
Mutation profile for Pareto frontier of Epo 8-mutation designs. Each design is represented as 

a dashed line marked with mutations; the bottom row shows the corresponding wild-type 

residues. Designs are ranked from top to bottom as increasing epitope score and decreasing 

sequence score (values are on the right). The wild-type epitope profile is provided at the very 

bottom, with red bars indicating the number of alleles for each starting 9-mer position.
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Figure 7. 
Anti-MafG Pareto frontier, with the PEPFR designs plotted as green dots and those of 

Grigoryan et al. [11] as red stars. (top) Objective space representation, with x for specificity 

and y for stability. (bottom) Specificity sweep representation of Grigoryan et al. The y-axis 

indicates binding stability values; the designs are sorted in x in order of their binding 

specificity (minimum gap). In addition to the design:target stability values (green dots and 

red stars), the design:off-target values are shown with gray squares and the design:design 

values with black squares.
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Figure 8. 
Amino acid content along the Pareto frontier of anti-MafG bZIP peptide designs. Rows: 

amino acid positions, grouped by heptad from top to bottom, showing only the optimized 

heptad positions g, a, d, and e. Columns: MafG sequence (leftmost, in red) and designs, from 

most stable (left) to most specific (right), using the same indices as in the bottom of Fig. 7. 

The full sequence is shown for the most stable design; only differences are shown for the 

others.
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Figure 9. 
Pareto frontier for (top) 2-breakpoint, (middle) 6-breakpoint, and (bottom) 8-breakpoint 

beta-lactamase designs (x-axis: diversity; y-axis: perturbation). Green dots: Pareto optimal 

designs discovered by PEPFR; red crosses: designs (not necessarily Pareto optimal) sampled 

by the STAVERSITY method of Zheng et al. [67]

He et al. Page 31

Proteins. Author manuscript; available in PMC 2016 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Designs along the Pareto frontier of beta-lactamase site-directed recombination designs, for 

(top) 2, (middle) 6, and (bottom) 9 breakpoints. In each panel, columns represent residue 

positions and rows represent designs by marking the breakpoint locations; rows are ordered 

from best according to structural perturbation (top) to best according to diversity (bottom). 

The secondary structure according to the TEM-1 structure (pdb id:1btl) is shown at the 

bottom of each panel, with blue boxes for α-helices and red boxes for β-sheets.
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