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Abstract

Mercury (Hg) bioaccumulation in fish poses well-known health risks to wildlife and humans 

through fish consumption. Yet fish Hg concentrations are highly variable, and key factors driving 

this variability remain unclear. One little studied source of variation is the influence of habitat-

specific feeding on Hg accumulation in lake fish. However, this is likely important because most 

lake fish feed in multiple habitats during their lives, and the Hg and caloric content of prey from 

different habitats can differ. This study used a three-pronged approach to investigate the extent to 

which habitat-specific prey determine differences in Hg bioaccumulation in fish. This study first 

compared Hg concentrations in common nearshore benthic invertebrates and pelagic zooplankton 

across five lakes and over the summer season in one lake, and found that pelagic zooplankton 

generally had higher Hg concentrations than most benthic taxa across lakes, and over a season in 

one lake. Second, using a bioenergetics model, the effects of prey caloric content from habitat-

specific diets on fish growth and Hg accumulation were calculated. This model predicted that the 

consumption of benthic prey results in lower fish Hg concentrations due to higher prey caloric 

content and growth dilution (high weight gain relative to Hg from food), in addition to lower prey 

Hg levels. Third, using data from the literature, links between fish Hg content and the degree of 

benthivory, were examined, and showed that benthivory was associated with reduced Hg 

concentrations in lake fish. Taken together, these findings support the hypothesis that higher Hg 

content and lower caloric content make pelagic zooplankton prey greater sources of Hg for fish 

than nearshore benthic prey in lakes. Hence, habitat-specific foraging is likely to be a strong driver 

of variation in Hg levels within and between fish species.
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 1. Introduction

In order to minimize mercury (Hg) exposure risks to humans and fish-consuming wildlife, 

there is a need to continue to refine and improve predictions of Hg concentrations in fish. 

Human consumption of fish is increasing worldwide (Fisheries and Agriculture Organization 

of the United Nations (FAO), 2014), and continues to be a primary source of Hg exposure to 

wildlife and humans (UNEP, 2003). Mercury exposure and its concomitant health risks are 

difficult to manage because fish Hg concentrations are highly variable, even within a species 

(Karimi et al., 2012; Sunderland, 2007). Fish obtain Hg from their diet (Hall et al., 1997), 

with Hg concentrations in fish prey, as well as bioenergetic factors such as fish growth and 

metabolism, known to influence fish Hg concentrations (Essington and Houser, 2003; 

Schindler et al., 1995; Trudel and Rasmussen, 2006; Ward et al., 2010).

To refine our understanding and improve predictions of fish Hg concentrations within and 

across systems, it is necessary to continue to identify and examine unexplored sources of Hg 

to fish. One potential source of variation that is not well understood is the effect of fish 

foraging in different habitats, where prey Hg and fish bioenergetic rates can differ widely. 

Many lake fish species consume invertebrate prey from both pelagic and nearshore benthic 

(shallow sediments and macrophytes along the shoreline) habitats for at least part of their 

lives (Schindler and Scheuerell, 2002; VanderZanden and Vadeboncoeur, 2002). For 

example, young-of-year largemouth bass (Hodgson et al., 1993; Post, 2003) and yellow 

perch of 1–3 years (Prout et al., 1990; Wu and Culver, 1992) eat both benthic and pelagic 

invertebrates (zooplankton) before switching to piscivory (Pelham et al., 2001; Post, 2003; 

Schindler et al., 1997a). Similarly, bluegill sunfish consume zooplankton as young-of-year, 

switch to benthic invertebrates as juveniles, then consume zooplankton as adults (Mittelbach 

and Osenberg, 1993; Osenberg et al., 1992; Werner and Hall, 1988). These cross-habitat diet 

shifts can occur on relatively short timescales, such as intermittently throughout the summer 

(Mittelbach, 1981) or on a diel basis (Baumann and Kitchell, 1974; Keast and Welsh, 1968). 

Further, piscivorous fish indirectly consume both benthic and pelagic prey by consuming 

forage fish. Evidence suggests that comparable amounts of benthic and pelagic-derived 

carbon are transferred to top predators. For instance, Vadeboncoeur et al. (2002) showed that 

an average of 65% of the diet of numerous forage and piscivorous fish species comes from 
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benthic sources due to direct and indirect consumption. Clearly, cross-habitat prey 

consumption is neither rare nor insignificant. Therefore, the relative importance of benthic 

and pelagic sources of Hg to fish must be quantified to understand and predict patterns of Hg 

accumulation in lake fish.

Studies have begun to measure concentrations of Hg in nearshore benthic and pelagic prey 

as sources to fish in freshwater (Back et al., 2003; Chetelat et al., 2011; Gorski et al., 2003) 

and marine (Chen et al., 2014; Chen et al., 2009) ecosystems. These studies provide crucial 

information to understand Hg patterns in lower trophic level organisms that are key sources 

of Hg into the food web (Cleckner et al., 1999; Folt et al., 2002). However, existing evidence 

regarding the relative importance of freshwater zooplankton and benthic invertebrates as 

sources of Hg to lake fish is sparse and contradictory. Two studies suggest that while some 

benthic invertebrates have lower Hg concentrations than zooplankton (Back et al., 2003; 

Gorski et al., 2003), predacious water scorpions and notonectids have the highest Hg 

concentrations among all invertebrates, consistent with higher Hg in predators due to 

biomagnification. Among zooplankton, cladocerans have significantly higher Hg 

concentrations than copepods (Back and Watras, 1995; Pickhardt et al., 2002; Pickhardt et 

al., 2005; Watras et al., 1998).

Patterns of Hg concentrations among fish provide indirect evidence that in general, pelagic 

prey may be more important sources of Hg to fish than benthic prey. Gorski et al. (2003) 

found higher Hg concentrations in fish (adult pike and large adult yellow perch) in a lake 

with a pelagic-based food web compared to a lake with a more benthic-based food web, 

even when fish trophic level, size and age were similar between lakes. Similarly, studies 

show that benthivorous lake fish have lower Hg concentrations than pelagic-feeding lake fish 

(Becker and Bigham, 1995; Kidd et al., 2003; Power et al., 2002; Willacker et al., 2013). 

Studies of estuarine and marine systems also found greater biomagnification of Hg 

(indicated by a higher slope of the Hg-δ15N relationship) in pelagic compared to benthic 

food chains (Lavoie et al., 2010), and that a higher degree of pelagic feeding (determined 

from δ13C) is associated with higher Hg concentrations in fish and shellfish (Chen et al., 

2014; Chen et al., 2009; Karimi et al., 2013). Overall, these findings are consistent with 

higher Hg concentrations in zooplankton and other pelagic prey. Yet, there are numerous 

exceptions to this pattern. For example, one study found similar methylmercury (MeHg) 

concentrations among zooplankton and benthic invertebrates (Wyn et al., 2009). Also, 

benthic prey can be relatively more important Hg sources in contaminated (Eagles-Smith et 

al., 2008a; Eagles-Smith et al., 2008b) or shallow (Chumchal et al., 2008) lakes. Differences 

in relative Hg concentrations between benthic and pelagic invertebrates among studies likely 

depend on the taxa collected, and the sources of Hg to habitat-specific prey (e.g., 

concentrations of bioavailable Hg from sediments, consumption of detrital material versus 

periphyton or algae). Mercury concentrations for a given taxon can be highly variable 

(Tremblay et al., 1996), further complicating our ability to make general comparisons of Hg 

concentrations in lower trophic level taxa across ecosystems. Currently, there are insufficient 

data to assess the generality of these patterns across lake ecosystems, and compare the 

overall importance of benthic and pelagic invertebrates as sources of Hg to fish.
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Past Hg studies also have not examined the potential influence of differences in benthic and 

pelagic prey quality on fish growth and subsequent somatic growth dilution of Hg (Karimi et 

al., 2007; Ward et al., 2010). Past research showed that rapid, efficient growth can reduce Hg 

concentrations in the body by decreasing the amount of Hg obtained from food relative to 

weight gain (Karimi et al., 2007; Karimi et al., 2010). This process of somatic growth 

dilution is hypothesized to be particularly important for MeHg, the organic, dominant form 

found in fish (Watras and Bloom, 1992), and other contaminants with low rates of efflux 

(excretion) that tend to persist in the body and biomagnify through the food chain (Karimi et 

al., 2010; Reinfelder et al., 1998). Among the factors that influence fish growth, those that 

most strongly increase growth efficiency (weight gain relative to consumption, and Hg 

intake) are more likely to result in somatic growth dilution (Karimi et al., 2007; Karimi et 

al., 2010; Trudel and Rasmussen, 2006). Such factors include prey quality (caloric content, 

digestibility), and fish activity level (including energy expended to capture and consume 

prey), with higher prey quality and lower fish activity level hypothesized to increase somatic 

growth dilution (Trudel and Rasmussen, 2006). Despite the growing recognition of the 

influence of growth dilution on Hg bioaccumulation, the relative importance of differences 

in fish growth from habitat-specific diets on fish Hg content is unknown.

The overarching goal of this study was to compare nearshore benthic versus pelagic prey as 

sources of Hg to fish based on differences in prey Hg content and caloric content using three 

different approaches. The first approach was to conduct a field study to compare Hg 

concentrations in common nearshore benthic and pelagic invertebrates across five New 

England lakes, and over a summer season in one lake. We hypothesized that Hg 

concentrations would be lower in benthic invertebrates than pelagic zooplankton in the lakes 

included in this study. Second, to gain a better mechanistic understanding of fish Hg 

accumulation from different habitats, the second approach examined the influence of 

habitat-specific diet composition (nearshore benthic, pelagic or mixed-habitat) and prey 

quality on Hg accumulation in fish using a bioenergetics-Hg mass balance model 

parameterized with invertebrate and zooplankton Hg concentrations from the field studies 

and invertebrate and zooplankton energy densities or caloric content (cal g−1) from 

published studies. Third, the relationship between the degree of benthivory (proportion of 

nearshore benthic prey in the diet) and fish Hg content among fish species using data from 

the literature was examined.

 2. Materials and methods

 2.1. Field sampling approach and study sites

To compare Hg content in zooplankton and nearshore benthic invertebrates, zooplankton and 

nearshore benthic invertebrates from multiple lakes (multi-lake study), and over a summer 

season in one lake (seasonal study) were collected. These organisms were collected in 2003 

and 2004 for a study examining overall trace metal composition and variability. We include 

them in this study to focus on Hg patterns. For the multi-lake study, total Hg concentrations 

were measured for common nearshore benthic invertebrate taxa in 5 lakes in New 

Hampshire and Vermont United States in July and August 2003. We chose lakes that ranged 

from oligotrophic to eutrophic (Gregg Lake (NH), Post Pond (NH), Canobie Lake (NH), 
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Weatherhead Hollow Pond (VT) and Horseshoe Pond (NH)), to include variation in Hg 

concentrations across lake types. Detailed lake characteristics are provided elsewhere (Chen 

et al., 2000; Ward et al., 2012). Briefly, all sites have no known point sources of Hg 

pollution and had no major land use changes between sampling periods. For the multi-lake 

study, we used Hg concentrations in zooplankton collected from 3 of the 5 lakes (Gregg 

Lake, Post Pond and Horseshoe Pond) in 2001–2002 from a previous study (Ward et al., 

2012). We examined the potential for, and found no evidence of, interannual differences in 

prey Hg content (see 2.4 Statistical analysis of field data). In the multi-lake study, samples 

were collected within one month to minimize seasonal variation. For the seasonal study 

conducted in mesotrophic Post Pond, Hg concentrations of a subset of nearshore benthic 

invertebrate taxa were compared to zooplankton composite samples each month from June 

through October 2004. Mercury concentration data from the multi-lake and seasonal studies 

were analyzed separately.

 2.2. Invertebrate collection

Nearshore benthic invertebrates from shallow sediments and shoreline macrophytes, where 

many lake fish species commonly feed, were collected using a stratified random design. 

Three to five macrophyte stands were identified at each lake. Organisms were collected from 

three random subsections within each stand. Collection and sorting procedures used trace 

metal clean techniques (Back et al., 2003; Chen et al., 2000). A 250 μm mesh d-frame net 

was used to collect benthic organisms from macrophytes by sweeping, and by dragging 

across the top 5 cm of sediments. For each lake, net contents were sieved through 250 μm 

mesh and pooled across stands and subsections into polyethylene buckets with filtered lake 

water for transport. Bulk zooplankton samples were collected by vertical tows using a 202 

μm plankton net at maximum lake depth.

Common benthic invertebrate taxa, representing different functional groups, were collected 

from each lake in the multi-lake study. These taxa included amphipods (grazers), libellulids 

(dragonfly naiads, predators), coenagrionids (damselfly naiads, predators), chironomids 

(grazers, detritivores, predators), snails (grazers) and unionid bivalves (filter feeders). In the 

seasonal study, macrozooplankton (>202 μm) and a subset of soft-bodied benthic 

invertebrate taxa collected in the multi-lake study (amphipods and coenagrionids), were 

collected. The taxonomic resolution of the samples varied, and included subphylum 

(zooplankton; crustacea), order (amphipod; amphipoda) and family (chironomids, 

chironomidae; damselflies, coenagrionidae; dragonflies, libellulidae; snails, planorbidae and 

viviparidae; bivalves, unionidae). Bulk zooplankton samples were collected using trace 

metal clean techniques. In the multi-lake study, zooplankton were collected as in Chen et al. 

(2000) and Ward et al. (2012). Briefly, zooplankton were collected from 1 to 5 vertical tows 

in the deepest part of the lake using a >202 μm plankton net. Zooplankton from multiple 

tows were split equally among 3 replicate samples for Hg analysis, and 3 replicate samples 

for paired biomass measurements. For Hg analysis, zooplankton were filtered onto Teflon® 

filters and placed into Teflon® vials in the field. Sample blanks consisting of Teflon filters 

filtered with deionized water in the field were taken to account for background Hg 

concentrations. For biomass measurements used to calculate mass-specific Hg 

concentrations for the multi-lake study zooplankton were filtered using preflushed glass 
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fiber filters in the field. In the seasonal study, 3 replicate zooplankton samples per sampling 

date were taken for both Hg and biomass measurements, and were filtered onto preweighed 

Teflon® filters and placed into Teflon® vials in the field. For the seasonal study, duplicate 

zooplankton samples were preserved as a reference for taxonomy and abundance of different 

zooplankton taxa at each sampling point. Taxonomy samples were anaesthetized in 

carbonated water and preserved in buffered formalin sucrose solution (Stemberger and 

Lazorchek, 1994). Abundance and biomass of individual plankton taxa were estimated from 

3 replicate 1 ml subsamples as in Stemberger and Lazorchek (1994).

Benthic organisms were sorted live in the lab, by taxa, into Teflon® sample vials within 48 h 

of collection. Organisms were triple-rinsed and placed in nanopure water for 1–2 h to allow 

stomach contents to depurate, although complete depuration is unlikely. Snails were rinsed, 

frozen, thawed, and removed from their shells before Hg analysis. Sample blanks (nanopure 

rinse water in Teflon vials) were collected throughout the sorting period to account for 

background Hg levels. For each taxon, three replicates were taken per lake (multi-lake 

study), or per month (seasonal study). Samples consisted of single individuals for larger 

organisms (libellulids). For smaller organisms, samples consisted of composites (~20 

chironomids or amphipods), to ensure detectable Hg levels. We preserved representative 

individuals of each benthic taxon when possible to serve as body size and taxonomy 

references in an effort to keep these factors consistent between sampling points.

 2.3. Mercury analysis

Invertebrate samples were analyzed for total Hg (the sum total of organic and inorganic Hg 

species) with a high resolution inductively-coupled plasma mass spectrometer (HR-ICP-MS, 

Finnigan MAT, Bremen, Germany) at the Trace Element Analysis Core Facility at 

Dartmouth College. Hg analysis was conducted within five months of sample collection. 

Total Hg includes both inorganic and organic forms of Hg. The organic form, MeHg, is the 

dominant form of Hg found in fish (Watras and Bloom, 1992), and tends to biomagnify in 

aquatic food chains (Watras et al., 1998). However, total Hg was measured because of the 

lower cost of sample analysis, greater ability to measure accurate concentrations in small 

biomass samples, and studies have found strong relationships between total Hg content in 

fish and their invertebrate prey (Ward et al., 2010). Benthic samples were frozen in Teflon® 

vials, lyophilized, weighed, acidified and homogenized with trace metal grade 70% HNO3 

(Seastar®) and H2SO4. Sulfuric acid was added to digest total P for a separate study (Karimi 

and Folt, 2006). Benthic invertebrate samples were microwave digested and diluted with 

nanopure water before analysis. Zooplankton samples were digested with trace metal grade 

70% HNO3 (Seastar®) and H2SO4 on a 100 °C hot plate overnight in a trace metal-clean 

hood. Quality control procedures reported elsewhere (Chen et al., 2000; Karimi and Folt, 

2006) included digesting and analyzing standard reference materials (DORM-2, NRC-

CNRC Canada, Prawn CRM, China, and a standard aqueous reference material), and 

recovery rates ranged from 95 to 105%. We subtracted lab blank concentrations from 

samples of the same sorting period only when the mean blank concentrations were 

significantly above zero. The detection limit was 2 ng g−1. Sample Hg concentrations below 

detection (N = 9 for the study) were assumed to be at a concentration of one-half the 

detection limit (Clarke, 1998).
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 2.4. Statistical analysis of field data

To evaluate differences between nearshore benthic and pelagic prey across lakes in the 

multi-lake study, we compared Hg concentrations in benthic invertebrates (collected in 

2003) to Hg concentrations in macrozooplankton (>202 μm) collected in August 2001 

(Gregg Lake), and 2002 (Horseshoe Pond and Post Pond) (Ward et al., 2012). To minimize 

effects of seasonal differences in the multi-lake study, we analyzed zooplankton sampled on 

particular dates in August (2001 in August (2002) that most closely matched dates for 

benthic invertebrate sampling (August 2003). The potential for significant inter-annual 

variation in invertebrate Hg concentrations was examined by comparing zooplankton Hg 

concentrations in Post Pond between 2001–2002 samples and 2004 by a one-way ANOVA 

using JMP 5.01 (SAS Inst., Cary, NC). There were no significant differences in zooplankton 

Hg concentrations among sampling years in July (P 0.55), August (P = 0.56), and September 

(P = 0.13). Earlier analyses also show that between-lake differences in metal concentrations 

of aquatic biota significantly exceed between-year variation within lakes (Chen et al., 2000). 

Benthic invertebrate and zooplankton Hg concentrations were compared in Gregg Lake, Post 

Pond and Horseshoe Pond each by a one-way ANOVA using JMP 5.01. Two outliers out of 

60 total samples from the multi-lake study were removed for each quantitative analysis. Both 

outliers were amphipod samples from two different lakes that had element concentrations 

that were orders of magnitude higher than the remaining replicates from the same lakes, 

indicating sample contamination. Removing both outliers did not change the qualitative 

results. Tukey’s HSD was used to make multiple comparisons among taxa. Significant 

differences were assessed with a Bonferroni correction (α = 0.05).

For the seasonal study, Hg concentrations among invertebrates in Post Pond over the 

summer season were compared with a two-way MANOVA-Repeated Measures 

(MANOVAR) on log10−transformed values, analyzing the effects of taxonomic identity, 

sampling month and their interaction on Hg concentrations in benthic invertebrates and 

zooplankton using JMP 5.01.

 2.5. Modeling fish mercury accumulation

To predict the effects of prey quality (caloric content) on fish Hg level, fish Hg accumulation 

under four habitat-specific diet scenarios were modeled using Fish Bioenergetics 3.0 

(Hanson et al., 1997). This model uses empirically derived physiological rates for a variety 

of fish species to estimate growth, metabolism, waste losses and contaminant accumulation, 

given user-defined parameters such as those describing diet and prey Hg concentrations. 

Bluegill sunfish (Lepomis macrochirus) was selected as a model species because, among 

fish with known physiological rates in the Fish Bioenergetics 3.0 model, their foraging 

behaviors across lake habitats are well-studied (Mittelbach and Osenberg, 1993; Osenberg et 

al., 1992; Werner and Hall, 1988). Hg concentrations in typical, individual forage fish were 

estimated by parameterizing the model with invertebrate prey Hg concentrations from the 

multi-lake field study (Tables 1, 2) and prey energy densities (caloric content, cal g−1) from 

the literature (Table 2). Values for Hg assimilation efficiency and depuration were based on 

studies of MeHg, because it is the form of Hg that is primarily trophically transferred and 

biomagnified through the food web (Watras et al., 1998). The percent MeHg of total Hg can 

vary widely for both benthic invertebrates (e.g., 17–93% for dytiscids, 51–84% for odonates, 
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Tremblay et al., 1996) and for zooplankton (e.g., 30–70% (Back et al., 2003), or 11–83% 

(Watras et al., 1998) for >153 μm size fraction). Therefore, we assumed that percent MeHg 

of total Hg concentrations in the prey was 50% for all invertebrates, and that fish assimilated 

MeHg with the same efficiency (0.8) from all prey types (Wang and Wong, 2003). We also 

assumed that Hg depuration was a function of temperature and fish weight, given previously 

described relationships for MeHg (Trudel and Rasmussen, 1997). Temperature (20 °C), prey 

energy densities, MeHg assimilation efficiency and prey Hg concentrations were held 

constant.

The effects of four habitat-specific diet scenarios on fish MeHg content were tested. 

Scenario parameter values are summarized in Table 2. To test for effects of previously 

observed differences in Hg concentrations between cladocerans and copepods on fish Hg 

accumulation, diet scenarios included 2 pelagic diets, a cladoceran-dominated diet (75% 

cladoceran, 25% copepod) and a copepod-dominated pelagic diet (75% copepod, 25% 

cladoceran). Cladoceran and copepod Hg concentrations were estimated from the mean bulk 

zooplankton Hg concentration from multiple lakes (Table 1). We assumed that cladocerans 

and copepods each comprised an equal proportion (50%) of the bulk zooplankton samples, 

and that the cladoceran concentration was 2.5 times higher than copepods (Pickhardt et al., 

2005). To calculate a standard error for each of the cladoceran and copepod Hg values, we 

assumed that both cladoceran and copepod Hg concentrations had the same coefficient of 

variation and sample size (9) as the bulk zooplankton samples.

A mixed diet (50% cladoceran-dominated pelagic diet, 50% nearshore benthic diet) and a 

nearshore benthic diet scenario (Table 2) were also included. Diet composition for bluegill, 

in lakes of this region, are not well described. Therefore, the nearshore benthic diet was 

based on gut content data for pumpkinseed (Lepomis gibbosus) from Post Pond (Dionne, 

1991; Dionne and Folt, 1991). Also, pumpkinseed fish are a congener of bluegill, thus are 

more likely to have similar physiological rates to bluegill, than other shoreline-feeding fish 

species. However, pumpkinseed consume snails, (Mittelbach et al., 1992; Osenberg et al., 

1992) while bluegill and other common lake fish that feed on nearshore benthos do not. 

Therefore, we noted the general implications of including snails in the benthic diet 

component of the model scenarios, and how diets of forage fish that do not specialize on 

snails would qualitatively compare.

For each diet, simulations were run for mean, minimum, and maximum prey Hg 

concentrations based on mean ± SE of Hg content for each prey taxa in the diet. Simulations 

were based on physiological rates for small, juvenile bluegill sunfish (L. macrochirus), with 

a starting size of 1 g, and run for 2 years with a daily time step. Simulations were run 

assuming a daily ration of 6% fish wet mass per day, similar to that observed for bluegill in 

the field (Keast and Welsh, 1968). Small juvenile fish were used as a model to capture 

differences in Hg bioaccumulation before ontogenetic diet shifts occur. Fish MeHg 

concentrations were compared once fish reached 3.3 g wet weight. Beyond this size, both 

pumpkinseed and bluegill are known to shift their diets (Osenberg et al., 1988).

Finally, sensitivity of the model to differences in %MeHg of total Hg in each diet scenario 

were examined. For each diet scenario, fish Hg accumulation was modeled in response to a 
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minimum and maximum MeHg content in the diet based on the widest range of %MeHg 

values reported from the literature, and the minimum and maximum total Hg values for the 

diet. Specifically, for a given scenario, the minimum MeHg concentration was calculated as 

the minimum %MeHg ∗ minimum total Hg, and the maximum MeHg concentration was 

calculated as the maximum %MeHg ∗ maximum total Hg, for that diet. We assumed the 

%MeHg for nearshore benthic diet ranged from 17 to 93% (Tremblay et al., 1996), and 11–

83% for the pelagic diet (Watras et al., 1998). We assumed the %MeHg for the mixed diet 

contained the widest range of 11–93%, reflecting the combined range of benthic and pelagic 

prey. The range of predicted fish MeHg content resulting from the range of MeHg content in 

prey was compared across diet scenarios at the benchmark fish size of 3.3 g.

 2.6. Analysis of literature data

Finally, the relationship between fish Hg content and the degree of benthivory (proportion of 

fish diet from nearshore benthic prey) across lake fish species was examined using data from 

the literature. Specifically, principal component analysis was conducted to compare the 

Hgbenthivory relationship relative to other diet-related factors (fish trophic position (a 

continuous measure of position in the food web) and body size) that are known to influence 

fish Hg levels (Cabana et al., 1994; Karimi et al., 2013). Mean Hg fillet concentrations and 

mean length for common fish species were obtained from a study summarizing these values 

across lakes from the northeastern United States (Kamman et al., 2005). Estimates of the 

degree of benthivory (benthivory index) were used from one study, based on the proportion 

of benthic prey in the diet (VanderZanden and Vadeboncoeur, 2002). Trophic position values 

were obtained for the same fish species from studies that based estimates on fish diet, or gut 

content data (percent prey item in diet by volume) and trophic position of prey 

(VanderZanden et al., 1997; VanderZanden and Rasmussen, 1996). From the study by 

VanderZanden and Rasmussen (1996), values for Class 2 Lakes that contained forage fish 

and lacked the invertebrate predator Mysis relicta, and values for warm-water lake trout, 

were used. In addition, trophic position was estimated for 6 fish species that did not have 

estimates from these studies, based on general knowledge of feeding habits for these fish. 

Specifically, we assumed that these species (longnose sucker, white sucker, bluegill, brown 

bullhead) are forage fish with relatively lower trophic positions compared to piscivorous fish 

in the dataset (Lake et al., 2001; Power et al., 2002; VanderZanden et al., 1997; Werner and 

Hall, 1988). The final, merged dataset included 14 common lake fish species 

(Supplementary Table A1). Thus, the degree of benthivory, Hg content, body size, and 

trophic position values in this dataset were obtained from different sources and lake systems. 

Therefore, in combining these datasets, we assume values for these factors are similar across 

lakes for a given species.

 3. Results

 3.1. Multi-lake comparisons

Taxonomic differences in Hg concentrations for invertebrates varied across lakes. However, 

some consistent taxonomic patterns emerged. Pelagic zooplankton generally had higher Hg 

concentrations than most soft-bodied nearshore benthic invertebrates in the same lakes (Fig. 

1). Snails and damselfly larvae also had similar, high Hg concentrations compared to 
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zooplankton in two of the three lakes. In each lake, there were significant differences in 

invertebrate Hg concentrations among taxa (F4,10 = 17.05, P = 0.0002, Gregg Lake; F4,9 = 

16.83, P = 0.0003, Horseshoe Pond; F4,9 = 2.04, P = 0.1715, Post Pond). Zooplankton had 

significantly higher Hg concentrations than benthic invertebrates except damselfly naiads in 

Gregg Lake (Tukey’s HSD, Fig. 1). Zooplankton Hg concentrations were significantly 

higher than those of all benthic invertebrates except snails in Horseshoe Pond. However, 

zooplankton and benthic invertebrates shared similar Hg concentrations in Post Pond. These 

same patterns were consistent when comparing with other size fractions of zooplankton (45–

100, 100–202 μm Ward et al., 2012). Among the benthic taxa, relative Hg concentrations 

were variable across lakes. For example, snails had among the highest Hg concentrations in 

Post Pond, but not in the other two lakes. Across lakes, odonates had consistently low 

(libellulid dragonfly larvae) or variable (damselfly larvae) Hg levels, even though odonates 

prey on other invertebrates, and are higher in the benthic food chain. Also, among benthic 

taxa, chironomids had consistently low Hg content across lakes.

 3.2. Seasonal comparisons

While the quantitative differences in Hg concentrations among taxa varied over the season 

(F8,8 = 4.23, P = 0.03), zooplankton clearly and consistently had higher Hg concentrations 

than both amphipods and damselfly larvae throughout a season (June–Oct) in Post Pond 

(Fig. 2). Seasonal differences in overall invertebrate Hg concentrations were marginally 

significant (F4,3 = 9.28, P = 0.05). Seasonal dynamics were notably more dramatic in 

zooplankton Hg content than in the benthic invertebrates. Zooplankton Hg concentrations 

were particularly high in September, during destratification, at which time Daphnia 
comprised a much larger portion (82%) of the macrozooplankton assemblage compared to 

other months (Fig. 2).

 3.3. Model results

The bioenergetic model estimated that Hg concentrations are greatest in fish consuming a 

cladoceran-dominated, pelagic diet due to higher cladoceran Hg concentrations as well as 

lower fish growth rates. Fish Hg concentrations were highest from the cladoceran-dominated 

pelagic diet, lowest from the nearshore benthic diet, and intermediate from the copepod-

dominated pelagic diet and mixed near-shore benthic-pelagic diet (Fig. 3, Table 2). This 

pattern was robust to fish size, and thus would be qualitatively the same if the analysis 

started with a larger sized juvenile fish. At the benchmark size of 3.3 g wet weight, the 

benthic diet resulted in a mean Hg concentration 65% lower than the cladoceran-dominated 

pelagic diet (Table 2). Even though daily ration was fixed for all diet scenarios, specific 

growth rate was highest in fish consuming the nearshore benthic diet due to higher mean 

prey quality (prey energy density, Table 2). Due to the faster growth rate, specific 

consumption rate, which scales with body size, was also highest in fish consuming the 

nearshore benthic diet. When prey Hg concentrations were held constant (equal to the mean 

for the mixed diet), the range in prey quality resulted in fish consuming the highest quality 

prey to have 25% lower Hg concentrations than fish consuming the lowest quality prey (Fig. 

4).
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The analysis of the sensitivity of habitat-specific fish Hg bioaccumulation to variability in 

%MeHg in the diet shows overlap in fish MeHg content from these diets at low fish MeHg 

levels when prey MeHg concentrations are low (i.e., when %MeHg or total Hg in prey is 

low). However, fish MeHg concentrations can reach higher maximum values from the 

pelagic, cladoceran-dominated-diet. This higher maximum MeHg value for pelagic fish 

occurs even though the %MeHg reaches a lower maximum in pelagic zooplankton (83%) 

compared to benthic invertebrates (93%). Thus, the higher maximum values for fish MeHg 

from cladoceran-dominated diet was due to the combination of higher maximum total Hg, 

and lower caloric content of pelagic prey relative to the other diets.

 3.4. Relationship between fish Hg and benthivory from the literature

Principal component analysis showed a clear, negative relationship between fish Hg and the 

degree of benthivory, and positive relationships between fish Hg, trophic position, and fish 

length (Fig. 5). These associations were reflected in Component 1, for which fish Hg, 

trophic position, and length loaded positively, and benthivory loaded negatively (Table 3). 

Fish length also loaded positively on Component 2 (Table 3). Together, the first two 

components explained 85% of the variation among observations in the dataset.

 4. Discussion

Results from this study support the hypothesis that the consumption of nearshore benthic 

prey reduces Hg bioaccumulation in fish due to generally lower Hg concentrations in benthic 

invertebrates, and higher prey quality compared to pelagic zooplankton. Understanding 

processes that influence these Hg patterns in lower trophic level organisms, particularly as 

they relate to food quality and growth, is important, because these organisms are key sources 

of Hg and other contaminants to the food web.

Findings from this study show that zooplankton generally have higher Hg concentrations 

than most nearshore benthic invertebrate taxa measured in this study. Concentrations of 

many other metals (As, Se, Zn) from the same field samples also were higher in zooplankton 

than nearshore benthic invertebrates (Karimi and Folt, 2006). There are notable exceptions 

to this general pattern. For example, in Post Pond, Hg concentrations in zooplankton and 

benthic invertebrates were similar in the multi-lake study (Fig. 1), but significantly higher in 

zooplankton in the seasonal study (Fig. 2), possibly due to differences in the life stage and 

ages of the benthic invertebrates sampled between field studies, or due to introduced 

variability from measuring biomass in paired samples, separate from the Hg samples, in the 

multi-lake study. Second, snails had the highest Hg concentrations in Post Pond, but not in 

Gregg Lake and Horseshoe Pond, possibly because snails in Post Pond (pulmonate snails) 

were physiologically and taxonomically distinct from snails in the other lakes (prosobranch, 

or gill-breathing, snails). Third, damselfly larvae also had relatively high Hg content 

compared to other taxa in two lakes, consistent with previous studies that found other 

predacious benthic invertebrate taxa to have high Hg content (Back et al., 2003; Gorski et 

al., 2003). Finally, evidence from the literature suggests that while total Hg concentrations 

are generally higher in zooplankton, MeHg content is highly variable in both zooplankton 

and benthic invertebrates (Back et al., 2003; Kainz et al., 2002; Tremblay et al., 1996; 
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Watras et al., 1998). Thus, contrasting concentrations of organic Hg species in lower trophic 

level organisms from different lake habitats (e.g., Chetelat et al., 2011) merits further study. 

Overall, results from this and previous studies (Back et al., 2003; Gorski et al., 2003), 

suggest that while many common benthic invertebrate taxa have lower Hg content than 

pelagic zooplankton, exceptions to this pattern (e.g., in shallow (Chumchal et al., 2008) or 

contaminated lakes (Eagles-Smith et al., 2008a; Eagles-Smith et al., 2008b)) occur and are 

not well understood. Future work should identify the major factors that drive Hg 

accumulation in invertebrates and other lower trophic level organisms in benthic and pelagic 

lake habitats. Differences in MeHg at the base of the food web (periphyton, phytoplankton), 

body size, lifestage, and bioenergetic factors are likely to influence Hg patterns in benthic 

and pelagic invertebrates.

In addition to Hg content in prey, findings from this study also show that prey quality can 

strongly influence Hg bioaccumulation in fish through somatic growth dilution. Specifically, 

the model results show that consuming a nearshore benthic diet reduces Hg content in fish 

due to higher caloric content, and lower Hg content in the benthic invertebrates included in 

this study (Table 2). As a result, benthivorous fish obtained more energy per gram prey 

consumed, grew faster than planktivores (Table 2), and increased their net biomass gain 

relative to the amount of Hg ingested from their prey, thus decreasing their weight-based Hg 

concentration. In the benthic and mixed diet scenarios, snails were included in the benthic 

diet component. On average, gastropods have lower caloric content and higher Hg content 

than other benthic taxa included in these scenarios (Table 2). Therefore, excluding snails 

from the diet would result in even lower Hg accumulation in benthivorous fish other than 

pumpkinseed that do not consume snails.

Studies have shown somatic growth dilution of Hg in fish populations in the field (Harris 

and Bodaly, 1998; Ward et al., 2010). However, less is known about growth dilution of Hg in 

lower trophic level organisms (e.g., Karimi et al., 2007; Karimi et al., 2010). In general, prey 

quality, respiration, and other factors that influence growth rate and efficiency should be 

examined relative to Hg bioaccumulation in fish and lower trophic level organisms to gain a 

broader understanding of Hg trophic transfer in lake and other aquatic food webs. Other prey 

characteristics (e.g. digestibility, handling time, nutrient content), as well as systematic 

differences in fish bioenergetic rates between habitats not tested in this study, may also 

influence fish growth. Little is known about the overall, relative quality of benthic 

invertebrates and zooplankton for fish growth. Zooplankton, particularly Daphnia, are 

generally higher in phosphorus content (Elser et al., 1996) than benthic invertebrates (Frost 

et al., 2003), and may be of higher quality for fish that are phosphorus-limited. Similarly, 

differences in prey fatty acid content may influence relative prey quality and fish growth 

(Copeman et al., 2002; Kainz et al., 2006). Alternatively, when fish are energy-limited 

(Schindler and Eby, 1997b), benthic invertebrates may be of higher quality due to their 

higher caloric content. In this study, differences in prey Hg concentrations had a much 

stronger influence (65% difference) on fish Hg accumulation than prey quality (25% 

difference). However, one laboratory study found strong effects of algal nutrient quality on 

Hg accumulation in Daphnia (Karimi et al., 2007) via the process of growth dilution. Thus, 

the overall importance of growth dilution of Hg driven by habitat associated differences in 

prey quality, or other factors, may vary widely.
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Consistent differences in bioenergetic factors and food sources at the base of the food web 

among invertebrate taxa may also explain higher Hg concentrations in zooplankton, as well 

as the exceptions to this general pattern. Zooplankton, particularly large-bodied cladocerans, 

have exceptionally high filtering rates (Haney, 1973), thus are likely to ingest food-borne Hg 

at a greater rate than benthic invertebrates, and may explain higher Hg content in 

cladocerans among zooplankton (Back and Watras, 1995; Pickhardt et al., 2002; Pickhardt et 

al., 2005; Watras et al., 1998). Zooplankton also have higher metabolic rates (Glazier, 2005) 

than benthic invertebrates (Hamburger and Dall, 1990). In particular, while metabolic costs 

decrease with increasing body size in benthic invertebrates, cladocerans and other pelagic 

organisms maintain a constant metabolic cost, possibly due to the larger demands required to 

maintain buoyancy and avoid predators in the pelagic zone compared to the sedentary 

behaviors typical of benthic organisms (Glazier, 2005; Glazier, 2006). As a result, 

zooplankton may increase their weight-based Hg concentrations by respiring a greater 

proportion of biomass per unit Hg ingested. Thus, increased metabolic demands in 

zooplankton and other pelagic organisms may make pelagic zones important conduit 

habitats of Hg and other food-borne-contaminants, in freshwater as well as marine systems. 

Bioenergetic processes may also explain differences in Hg and other metals among closely 

related benthic taxa. For example, pulmonate snails, including viviparidae in Post Pond, 

have higher respiration rates than prosobranch snails (Berg and Ockelmann, 1959), such as 

planorbidae in Horseshoe Pond and Gregg Lake. These higher respiration rates could result 

in higher weight-based Hg concentrations (Essington and Houser, 2003; Trudel and 

Rasmussen, 2006) as observed in Post Pond snails (Fig. 1). Finally, differences in Hg 

content among food sources at the base of the food web likely influence differences in Hg 

among benthic and pelagic invertebrates. Bioconcentration of Hg from water to 

phytoplankton is extremely high (Driscoll et al., 2007), and is considered the basis for Hg in 

the pelagic food web. In contrast, benthic feeders may derive some of their food intake from 

organic carbon in sediments that in some cases can have much lower MeHg concentrations 

than particulates (Balcom et al., 2015).

Results from this study show that zooplankton are particularly important sources of Hg to 

fish, due to high Hg concentrations in zooplankton, particularly in late summer, and lower 

caloric content. Seasonal shifts in zooplankton Hg concentrations coincided with Daphnia 
abundance, and were highest in late summer when Daphnia comprised a much larger 

percentage of the macrozooplankton assemblage (Fig. 2). This observation is consistent with 

studies that have shown cladocerans to have significantly higher Hg concentrations than 

copepods (Back and Watras, 1995; Pickhardt et al., 2002; Pickhardt et al., 2005; Watras et 

al., 1998). Seasonal variation in Hg also can result from abiotic factors such as 

destratification (Herrin et al., 1998), or biotic factors, such as periods of high phytoplankton 

or zooplankton abundance that can cause bloom dilution, or trophic dilution of Hg, 

respectively (Chen and Folt, 2005a; Chen et al., 2005b; Pickhardt et al., 2002; Walters et al., 

2015). We did not observe dramatic seasonal variation in nearshore benthic invertebrate Hg 

concentrations, although this has been found for other metals in highly contaminated 

systems (Hare and Campbell, 1992). Seasonal variation in benthic invertebrate Hg 

concentrations may be lower because benthic invertebrates are longer lived, and therefore 

integrate Hg intake over a longer time compared to zooplankton, or due to lower variability 
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in the Hg content in benthic food sources. Nevertheless, these results confirm findings from 

other studies that cladocerans, such as Daphnia, have higher Hg concentrations than other 

freshwater zooplankton taxa.

These findings, that zooplankton are conduits of Hg to fish due to relatively high Hg 

concentrations and lower prey quality, are an important step toward a thorough 

understanding of Hg trophic transfer. This study exemplifies how the trophic transfer of Hg, 

even in one step of the food chain from zooplankton to fish, is highly complex and involves 

many factors that should be more fully examined. First, differences in Hg content among 

benthic and pelagic prey are sensitive to the taxa examined. For example, snails and 

damselfly larvae each have variable Hg concentrations across lakes resulting in variable, 

relative differences in Hg content among taxa within each lake. Such variability challenges 

our ability to generalize both absolute and relative Hg concentrations for broad taxonomic 

groups. Second, the potential influence of seasonal and inter-annual variability in MeHg 

production and bioavailability on MeHg content among lower trophic level organisms 

warrants further study, in order to determine whether habitat-specific differences in prey 

MeHg content are consistent over time. Third, the shifts in Hg bioaccumulation and growth 

dilution that may occur across ontogenetic life stages of fish are not adequately known. The 

model analysis examines Hg bioaccumulation in the juvenile stage, and shows that 

differences in habitat-specific Hg content in fish are maintained as body size increases (Fig. 

3). There is a need to build on this information to understand how habitat-specific patterns of 

Hg bioaccumulation change from juvenile to adult phases of growth, as ontogenetic diet 

shifts occur, influencing the relative importance of different prey items as sources of Hg.

In addition, studies that directly measure MeHg concentrations in small organisms rather 

than, or in addition to total Hg, would provide precision to estimate the transfer of MeHg, 

the more toxic, biomagnifying form of Hg, through the food web. Results from this study 

suggest that fish MeHg concentrations can reach higher maximum values from diets 

containing zooplankton, particularly cladoceran-dominated diets, even when %MeHg in the 

diet is highly variable. However, the wide range of %MeHg and total Hg values in both 

benthic and pelagic invertebrates may result in cases where pelagic feeding fish have similar, 

or lower MeHg concentrations than benthic feeding fish, even though prey quality and 

growth dilution of Hg from the pelagic diet is low. Currently, MeHg measurements on 

individual taxa are rare due to the difficulty detecting MeHg concentrations in organisms 

with low biomass. Differences in total Hg content can be similar to differences in MeHg 

content among invertebrate taxa (Cremona et al., 2008). Also, total Hg content in 

invertebrates is strongly related to total Hg content in fish (Ward et al., 2010), of which 

MeHg is the dominant form (Watras and Bloom, 1992). Nevertheless, progress toward 

directly measuring MeHg in lower trophic level organisms would help determine habitat, 

taxonomic, and seasonal differences in MeHg content in lower trophic levels, and increase 

our ability to predict fish Hg content.

The major implication of these findings is that, all else being equal, nearshore benthivory 

can reduce fish Hg concentrations. Both the model results, and analysis of fish diet and Hg 

content data from the literature (Fig. 5) support this hypothesis. This finding is consistent 

with observations from other studies that found benthivores, such as bullhead and juvenile 
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perch, often have lower Hg content than planktivores, such as shiners, cisco, and alewives 

(Becker and Bigham, 1995; Power et al., 2002). This pattern is somewhat counterintuitive, 

as many assume that bottom-feeding fish are prone to exposure from sediments that are 

thought to be repositories of MeHg (Morel et al., 1998), in addition to being of generally 

poor quality for human consumption due to relatively low fatty acid content (Institute of 

Medicine, 2006; Mozzafarian and Rimm, 2006). Lower Hg concentrations in nearshore 

benthic organisms are also somewhat surprising given that mercury methylation occurs 

primarily in sediments (Morel et al., 1998), periphyton (Cleckner et al., 1999) and 

macrophyte roots (Mauro et al., 2002) of benthic habitats. Nevertheless, given the 

importance of benthic prey in lake food webs, it is likely that the ameliorating effects of 

benthivory on Hg accumulation extend from forage fish to piscivores.

 5. Conclusions

In summary, this study demonstrated the value of examining physiological processes 

together with Hg patterns in field populations in order to understand habitat-specific 

differences in Hg trophic transfer. Differences in the abundance of different prey types 

within each habitat (e.g., Daphnia), temperature, activity levels, and other factors that 

influence bioenergetic rates are also likely to influence differences in Hg bioaccumulation 

across habitats. Characteristic differences in bioenergetic rates among organisms in different 

habitats may strongly influence differences in Hg content among fish as well as lower 

trophic level organisms. Such differences in bioenergetics may explain the growing evidence 

that pelagic feeding is associated with higher Hg bioaccumulation in fish in freshwater as 

well as marine systems. Therefore, while differences in Hg concentrations among prey items 

may distinguish trophic transfer from habitat-specific food chains, understanding 

bioenergetic-based mechanisms will ultimately allow us to better predict the accumulation 

of Hg in fish and, ultimately, humans. Finally, differences in prey Hg content, prey quality, 

and somatic growth dilution are key determinants of Hg content in fish in lakes and other 

aquatic ecosystems, and as such should be considered in the management and mitigation of 

human risks due to fish consumption in different lakes.
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HIGHLIGHTS

• We examined habitat-specific feeding and Hg accumulation in lake fish.

• Zooplankton had higher Hg content than many benthic prey.

• Literature analysis shows lower Hg content in fish associated with 

benthivory.

• Model shows role of lower Hg, higher calories, growth dilution from 

benthivory.

• Growth dilution is important to understand habitat-specific Hg 

accumulation.

Karimi et al. Page 21

Sci Total Environ. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Mean Hg concentrations (±SE) in zooplankton (2001) and benthic invertebrates (2003) in 

three lakes (n = 3 per taxon per lake; n = 2 for snails in Gregg Lake, and amphipods in 

Horseshoe and Post Pond). Groups with the same letter indicate nonsignificant differences. 

Taxa include amphipods (AMPH), chironomids (CHIR), dragonflies (libellulidae, DRA-L 

and gomphidae, DRA-G), snails (planorbidae, SNA-P and viviparidae, SNA-V), damselflies 

(DAMS), crayfish (CRA), unionids (UNIO) and zooplankton (ZOOP).
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Fig. 2. 
Seasonal Hg concentrations (ng g−1 dry weight) in zooplankton, coenagrionid odonates 

(damselflies) and amphipods from Post Pond, 2004. Means ± SE are shown for each month, 

n = 3 for each taxon per month. Filled squares show the proportion of Daphnia comprising 

the zooplankton assemblage at each time point (based on μg dry weight L−1).
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Fig. 3. 
The predicted range of Hg concentrations for given fish sizes based on four habitat-specific 

diet scenarios.
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Fig. 4. 
The effect of invertebrate prey caloric content on fish growth rate and fish Hg concentration.
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Fig. 5. 
PCA biplot on mean values across fish species. Hg content is negatively related to 

benthivory, and positively related to fish length and trophic position.
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Table 1

Mercury concentrations in benthic invertebrates and zooplankton from 5 NH and VT lakes (means based on 

dry weights ± SD). N = 3 for each taxon and lake, except N = 2 amphipods in both Horseshoe and Post Pond. 

Means across lakes are presented in bold for each taxon.

Taxon Site Mean Hg (ng g−1) ± SD

Amphipoda Canobie Lake 131 ± 3

Gregg Lake 155 ± 40

Horseshoe Pond   32 ± 41

Post Pond 106 ± 27

Weatherhead Hollow Pond     1 ± 0

MEAN   88 ± 67

Chironomidae Canobie Lake 151 ± 25

Gregg Lake   75 ± 68

Horseshoe Pond   54 ± 13

Post Pond 147 ± 34

Weatherhead Hollow Pond 148 ± 18

MEAN 115 ± 53

Crayfish Post Pond   74 ± 12

Weatherhead Hollow Pond 129 ± 23

MEAN 102 ± 34

Odonata (Gomphidae) Post Pond   70 ± 31

Odonata (Libellulidae) Canobie Lake 264 ± 222

Gregg Lake 101 ± 14

Horseshoe Pond   34 ± 38

Post Pond 176 ± 22

Weatherhead Hollow Pond   94 ± 26

MEAN 134 ± 119

Snail Gregg Lake 137 ± 10

Horseshoe Pond 127 ± 55

Post Pond 515 ± 240

Weatherhead Hollow Pond   17 ± 28

MEAN 205 ± 234

Unionidae Post Pond 144 ± 44

Zooplankton (>202 μm) Gregg Lake 351 ± 75

Horseshoe Pond 199 ± 37

Post Pond 249 ± 204

MEAN 266 ± 129

Odonata (Coenagrionidae) Canobie Lake 212 ± 103

Gregg Lake 288 ± 27

Horseshoe Pond   52 ± 3

Post Pond 378 ± 158

Weatherhead Hollow Pond   13 ± 19
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Taxon Site Mean Hg (ng g−1) ± SD

MEAN 188 ± 160
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Table 3

Principal component eigenvalues, percent variance explained, and variable loadings (loadings with an absolute 

value >0.4 in bold).

Component 1 Component 2

Eigenvalue   2.74   0.66

% Variance 68.58 16.62

Cumulative % 68.58 85.20

Benthivory −0.75   0.16

Trophic position   0.96 −0.16

Hg   0.90 −0.25

Length   0.67   0.74
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