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Myotonic dystrophy type 1 (DM1) has a wide phenotypic spectrum and potentially may affect central nervous
system with mild to severe involvement. Our aim was to investigate grey matter (GM) and white matter
(WM) structural alterations in a sample of adult-onset DM1 patients and to evaluate relationship with clinical
and cognitive variables.
Thirty DM1 patients underwent neuropsychological investigation and 3T-MRI protocol. GM and WM changes
were evaluated calculating brain parenchymal fraction (BPF), voxel-basedmorphometry (VBM),whitematter le-
sion load (LL% and Fazekas scale) and tract based spatial statistical (TBSS).
Patients showed main impairment in tests exploring executive and mnesic domains with visuo-spatial involve-
ment, significantly related to BPF. VBM revealed clusters of widespread GM reduction and TBSS revealed areas of
decreased fractional anisotropy (FA) and increased radial diffusivity (RD), mean diffusivity (MD) and axial diffu-
sivity (AD) in patients compared to a group of matched healthy controls. Multiple regression analyses showed
areas of significant negative relationship between left temporal atrophy and verbal memory, between RD and
mnesic and visuo-spatial cognitive domains, and between AD and verbal memory.
TBSS results indicate that the involvement of normal appearance WM, beyond the signal changes detected with
conventional MR imaging (Fazekas scale and LL%), was associated with neuropsychological deficit. These data
suggest that disrupted complex neuronal networks can underlie cognitive-behavioural dysfunctions in DM1.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Myotonic dystrophy type1 (DM1) is themost common formofmus-
cular dystrophy in adults, with a prevalence of about 1 in 8000 people
worldwide. It is an autosomal dominant disorder due to an unstable cy-
tosine-thymine-guanine triplet repeat ([CTG]n) expansions on chromo-
some 19 (Huang and Kuo, 2005), showing no definitive correlationwith
phenotypic expression (Udd and Krahe, 2012). DM1 can be classified
into four clinical forms: congenital, childhood and classical or late-
onset (Ekström et al., 2009; Harper, 2001). Classical DM1 form is a
multisystem disorder ranging from mild to more severe phenotypes
and affecting many organs and tissues, including central nervous
en access article under the CC BY-NC
system (CNS), this finally responsible of cognitive and behavioural
dysfunctions.

Several studies have demonstrated that DM1 patients show a selec-
tive impairment in cognitive functioning, particularly in attentional,
visuo-spatial, and executive domains (Meola et al., 2003; Winblad et
al., 2010); the existence of a “DM1-related-dysexecutive-syndrome”
has been already proposed (Meola and Sansone, 2007). Intelligence as-
sessment documented an IQ below average in the DM1 population as
compared to healthy subjects, with no clear evidence of a progressive
decline (Meola and Sansone, 2007; Jean et al., 2014).

Beside cognitive impairments, in DM1 patients neuropsychiat-
ric comorbidities are frequently reported with variable pathologic
behavioural patterns: lack of interest (apathetic behaviour), a de-
creased emotional participation and an increased irritability are
the main clinical features, defined by some authors as “an emotion-
al imbalance” (Meola and Sansone, 2007; Laberge et al., 2013);
moreover, a high prevalence of dysfunctional personality has
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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been described (Meola et al., 2003; Winblad et al., 2010; Sistiaga et
al., 2010).

Previous studies have documented brain abnormalities in DM1
through different imaging techniques and investigated their relation-
ship with cognitive impairment without reaching univocal conclusions.
Voxel-basedmorphometry (VBM) technique showed greymatter (GM)
atrophy in several regions of temporal and frontal lobes, hippocampi
and thalami (Weber et al., 2010; Minnerop et al., 2011;
Schneider-Gold et al., 2015); some studies revealed non-specific patho-
logical findings such as ventricular enlargement and white matter
(WM) hyperintensities in different cerebral lobes (Minnerop et al.,
2011; Romeo et al., 2010); single photon emission tomography and
PET studies demonstrated hypoperfusion and glucose hypometabolism
of frontal and temporal lobes (Weber et al., 2010; Meola et al., 1999).
Recent studies adopting tractography evaluation (Minnerop et al.,
2011; Wozniak et al., 2014) provide data showing microstructural
WM damage in interhemispheric, corticospinal and limbic pathways
and in frontal, temporal, parietal and occipital lobes. To date, only one
study demonstrates that brain atrophy and white matter involvement
are progressive over time in DM1 (Conforti et al., 2016).

Although considerable structural CNS involvement on one hand and
cognitive deficits on the other hand have been detected in DM1, only
few studies investigate their relationship. Some studies have found sig-
nificant correlations between MR imaging features and neuropsycho-
logical profiles (Weber et al., 2010; Wozniak et al., 2014; Caso et al.,
2014), while others did not (Minnerop et al., 2011; Romeo et al., 2010).

To this purposewe investigated the structural alterations of GM and
WM in a sample of adult-onset DM1 patients and evaluated their rela-
tionship with clinical and cognitive variables.

2. Material and methods

Thirty patients (24 males, 6 females; mean age 44.6 ± 12.4 years;
age range 24–67 years) with clinical and genetic diagnosis of adult
form of DM1, according the International Consortium formyotonic dys-
trophies guidelines (IDMC, 2000), were consecutively recruited at Neu-
rological clinic of University of Pisa. Exclusion criteria were mental
retardation (IQ b 70), severe visual impairment, psychiatric illness and
a history of substances abuse. None of the patients presented motor or
coordination disability sufficient to account for possible delay in any of
the neuropsychological tests administered. Patients were grouped on
the basis of the number of [CTG]n expansions: 12 patients (40%) were
classified as E1 (b150 [CTG]n) and 18 patients (60%) as E2 (150–1000
[CTG]n). The mean disease duration from symptoms onset to the MRI
examination was 16.5 ± 11.8 years, while age at onset was 29.0 ±
12.0 years. Patients' mean educational level was 11.3 ± 3.4 years.

Control group was retrospectively selected from our database and
included 30 healthy subjects (22 males, 8 females; mean age 44.8 ±
12.6 years; age range 27–68 years) for VBM analyses and 21 subjects
(14 males, 7 females; mean age 44.6 ± 12.7 years; age range 27–
61 years) for diffusion tensor imaging (DTI) analysis. Age and gender
did not significantly differ between patients and controls either for
VBM (Mann–Whitney U test p = 0.95 for age; Fisher's exact test, two
tailed p = 0.54 for sex), and for DTI (Mann–Whitney U test p = 0.33
for age; Fisher's exact test, two tailed p= 0.92 for sex). All healthy con-
trols beside not to be affected by neurological or psychiatric disorders,
had negative neurological examination and no family history for neuro-
psychiatric illness.

2.1. Neuropsychological evaluation

An experienced neuropsychologist, whowas unaware of the clinical
andMRI data, performed the neuropsychological evaluation. For assess-
ment of immediate memory Immediate and Delayed Recall (IR, DR) of
Rey Auditory Verbal Learning Test (RAVLT), Immediate andDelayed Re-
call (IR, DR) of Rey Osterrieth Complex Figure (ROCF), digit span and
Corsi Block-tapping Test (CBT) were administered. Trail Making Tests
(TMT-A and TMT-B) were used to assess selective attention and cogni-
tive flexibility and Stroop Test was used to assess automatic response
inhibition. Frontal and executive functionswere examined by phonemic
verbal fluency test (FAS), Frontal Assessment Battery (FAB) and Modi-
fied Wisconsin Card Sorting Test (WCST). Rey-Osterrieth Complex Fig-
ure was used to assess spatial organization and visuo-constructional
skills (ROCF-copy). Patients' raw scores were corrected according to
Italian normative values (Spinnler and Tognoni, 1987; Lezak et al.,
2012). Percentages of impairment of DM1 patients who showed signif-
icant neuropsychological dysfunctions across different cognitive do-
mains were established using Italian normative data for both, score
adjustment (sex, age, education) and definition of cut-off thresholds;
the latter have been determined as the lower limit of the 95% tolerance
interval for a confidence level of 95%.

2.2. Data acquisition

MRI imaging was performed with a 3T scanner (Discovery MR750
3.0 T, GE Healthcare, Milwaukee) equipped with an 8-channel head
coil with ASSET-technology. The examination protocol included a sagit-
tal CUBE T2 FLAIR sequence (TR 8000 ms; FOV 256 mm; matrix
256 × 256; thickness 1.0 mm; spacing 0 mm; NEX 1.0), a sagittal high
resolution 3D T1weighted images with isotropic voxels (TR 8.1 ms; TE
3.2ms; TI 450ms; flip angle 12°; FOV 256mm;matrix 256 × 256; thick-
ness 1.0 mm; spacing 0 mm; NEX 1.0) and DTI performed by using a
multiacquisition echoplanar sequence (TR 7000 ms; TE minimum;
FOV 240 mm; matrix 128 × 128; thickness 2.9 mm; spacing 0 mm; dif-
fusion gradients applied in 25 directions with b factor = 1000 s/mm2

and 1 b0 volume).

2.3. GM evaluation

The evaluation of GM atrophywas performedwith a Region of Inter-
est (ROI) based method and using VBM analysis.

In ROI basedmethod FLAIR images, reformatted in axial slices (thick-
ness 4 mmwithout spacing), were manually segmented using software
AW VolumeShare 4 (ADVANTAGE WORKSTATION 4.3, GE Healthcare,
Milwaukee) to measure the parenchymal volume and total intracranial
volume. Brain parenchymal fraction (BPF) was calculated through the
ratio of brain parenchymal to intracranial volume and was considered
as an expression of the degree of atrophy, as done in previous studies
of volumetric analysis of DM1 patients (Kassubek et al., 2003). Correla-
tions betweenBPF values and clinical (age, disease duration) andneuro-
psychological scores were evaluated by using Pearson correlation
coefficient, considering p-value statistically significant at p b 0.05.

2.3.1. VBM
The automated analysis of T1 structural data was carried out by FSL-

VBM (Douaud et al., 2007), an optimised VBM protocol (Good et al.,
2001) carried out with FMRIB software library package (FSL) (Smith
et al., 2004). As preprocessing step T1 imageswere corrected forWM le-
sions using the lesion filling toolbox available in FSL (Battaglini et al.,
2012). Structural images were brain-extracted using BET (Brain Extrac-
tion Tool) (Smith, 2002), and then they were automatically segmented
into GM, WM and cerebrospinal fluid (CSF) tissue-type by FAST4 tool
(Zhang et al., 2001). The GM volume images were aligned to the Mon-
treal Neurological Institute (MNI) 152 standard space (Mazziotta et al.,
1995) by the affine registration tool FLIRT (Jenkinson et al., 2002),
followed by non-linear registration using FNIRT (Andersson et al.,
2007). The registeredGM images of an equal number of healthy controls
andDM1patientswere averaged andflipped along the x-axis to create a
left-right symmetric, study-specific grey matter template. After that all
native GM images were non-linearly registered to this study-specific
template, modulated and smoothed with an isotropic Gaussian kernel
with a sigma of 3 mm.
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Fig. 2. Negative relationship between RAVLT-DR scores and grade of atrophy (in green) in
DM1 patients superimposed on volume (a) and coronal and axial slices (b) of MNI
standard brain (TFCE p b 0.05 corrected for multiple comparisons). Clusters are located
in left postcentral*, left middle and inferior temporal+ gyri and left supramarginal°
gyrus. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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A voxel-wise General Linear Model (GLM) was applied using
permutation-based non-parametric testing (5000 permutations),
correcting for multiple comparisons across space (p b 0.001) by
threshold-free cluster enhancement (TFCE) option (Smith and
Nichols, 2009). Since voxel based quantification of atrophy is in-
fluenced by aging (Draganski et al., 2011) we inserted age and
gender of patients and controls as covariate variables within the
GLM matrix.

In order to establish a possible relationship with VBM changes mul-
tiple regression analyses were also performed inserting neuropsycho-
logical scores in different GLM design matrix, using age and gender as
covariates of no interest (TFCE p b 0.05 corrected for multiple
comparisons).

The description of statistical maps obtained from VBM analysis was
based on Anatomical Automated Labeling (AAL) Atlas (Tzourio-
Mazoyer et al., 2002).

2.4. WM evaluation

Sagittal CUBE T2 FLAIR sequencewas also acquired in order to estab-
lish recurrence, localization and patterns of distribution of white matter
hyperintense lesions in DM1 patients. WM alterations were evaluated
with a visual scale according to a modified version of the Fazekas scale
(Pantoni et al., 2005) on reformatted FLAIR images. A quantitative mea-
sure of the white matter lesions was performed with a ROI based ap-
proach by manually contouring the WM lesions. The lesion load (LL%)
was calculated through the ratio of lesions volume to brain parenchy-
mal volume and expressed as a percentage. Correlations between le-
sions indices (Fazekas scale and LL%) and clinical and
neuropsychological scoreswere evaluated by using Spearman and Pear-
son correlation coefficients, respectively for Fazekas scale and LL%, con-
sidering p-value statistically significant at 0.05.

2.4.1. TBSS
DTI sequence was acquired in order to perform tract-based spatial

statistical (TBSS) analysis (Smith et al., 2006).
The preprocessing steps on the raw diffusion data consisted in

minimizing the distortion relative to gradient application using
‘eddy current correction’ tool and to perform brain-extraction
using BET. DTIfit toolbox (Behrens et al., 2003) was used to fit a dif-
fusion tensor model at each voxel of the preprocessed DTI images in
order to obtain fractional anisotropy (FA), mean diffusivity (MD)
and eigenvalues (L1, L2, L3) maps for each subject. Maps of axial
diffusivity (AD) were evaluated (L1 maps) and maps of radial diffu-
sivity (RD) were calculated averaging L2 and L3 maps. All subjects'
DTI-derived maps were nonlinear registered to a target image
(FMRIB58_FA) using FNIRT. After that, a mean FA image was calcu-
lated and thinned (threshold 0.2) in order to create a mean FA skel-
eton which represented the centres of all tracts common to the
group. For each subjects, registered DTI-derived maps were then
projected onto this skeleton and the resulting data fed into
voxelwise cross-subject statistics.

Group differences between patients and controls in DTI-derived in-
dices were performed using permutation-based non-parametric testing
(5000 permutations), correcting for multiple comparisons across space
(p b 0.05) by TFCE option (Mazziotta et al., 1995). Age and gender were
used as covariates of no interest in the statistical design matrix.

Multiple regression analyses were also performed using neuropsy-
chological variables in different GLM designmatrix to evaluate relation-
ship with DTI-derived indices, inserting age and gender as covariates of
no interest (TFCE p b 0.05 corrected for multiple comparisons).
Fig. 1.VBM analysis reveals clusters of greymatter atrophy (in green) inDM1 patients compared
(TFCE p b 0.001 corrected for multiple comparisons). Clusters are diffuse in both hemispheres
parietomesial, anterior and posterior cingulated areas. (For interpretation of the references to
JHU DTI-based white-matter atlas (ICBM-DTI-81 white-matter la-
bels atlas) has been superimposed to statisticalmaps in order to identify
the WM tracts (Mori et al., 2005).
2.5. Ethics statement

The researchwas conducted according to the principles expressed in
theDeclaration of Helsinki. The studywas authorized by the Local Ethics
Committee and written informed consent was obtained from all the
study participants.
3. Results

3.1. Cognitive profile

TMT-A was impaired in 17.2% of patients, TMT-B in 14.8%, FAB in
20.0%, Stroop test as in bracket (Error Interference in 20.7%, Time Inter-
ference in 27.6%) and FAS in 26.7%; impairment in WCST was detected
in 36.7% of patients as for Categorization ability, while Perseverations
were found in 40.0%.

CBT showed impairments in 40.0% of patients, while 16.7% had im-
pairments in Digit Span. As for delayed recall memory, 3.3% showed
RAVLT-DR impaired performances, while 10.0% had impaired ROCF-
DR. Motor planning and visuo-spatial abilities, tested using ROCF-
copy, ranked below the normal range, in 40.0% of patients.

Neuropsychological findings are summarized in Supplementary
Table 1.
to healthy controls superimposed on axial slices (a) or volumes (b) ofMNI standard brain
, particularly in perirolandic, orbitofrontal, dorsolateral frontal, insular, temporo occipital,
colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Grey matter atrophy

BPF value in DM1 subjects was 0.760 ± 0.035 and correlated with
visuo-spatial and executive performance (TMT-A, TMT-B, ROCF-copy
and WCST categorization) (p b 0.05).

VBM revealed several clusters of reduced cortical GM in DM1 pa-
tients compared to healthy controls (TFCE p b 0.001 corrected for mul-
tiple comparisons). Atrophy was diffuse in both cerebral hemispheres
(Supplementary Table 2) and in particular it was located in perirolandic,
orbitofrontal, dorsolateral frontal, insular, temporo occipital,
parietomesial, anterior and posterior cingulated areas (Fig. 1).

VBM analysis showed a negative relationship between RAVLT-DR
scores and the grade of atrophy respectively in left postcentral (AAL
Fig. 3. TBSS maps show the tracts of significantly decreased FA (a, in blue) and the tracts of sign
compared to healthy controls superimposed on axial and sagittal slices of MNI standard brain (
(For interpretation of the references to colour in this figure legend, the reader is referred to th
57), left middle and inferior temporal gyri (AAL 85 89) and left
supramarginal gyrus (AAL 63) (TFCE p b 0.05 corrected for multiple
comparisons) (Fig. 2).
3.3. White matter alterations

WM alterations, evaluated visually with modified Fazekas scale,
classified 5 patients (16.7%) as grade 0 (absence of lesions), 11 patients
(36.7%) as grade 1 (mild changes), 10 patients (33.3%) as grade 2 (mod-
erate changes), while 4 patients (13.3%) were classified as grade 3 (se-
vere changes). No correlation between Fazekas scale and clinical and
neuropsychological scores was demonstrated (p N 0.05).
ificantly increased RD (b, in red), MD (c, in yellow) and AD (d, in purple) in DM1 patients
TFCE p b 0.05 corrected for multiple comparisons). Green indicates the skeleton template.
e web version of this article.)



Fig. 4. Multiple regression analyses reveal negative relationship (in red) between RD and ROCF-copy (a), RAVLT-DR (b) and CBT (c) scores in DM1 patients. AD had a significant negative
relationship (in purple) with RAVLT-DR (d) and digit span (e) scores in DM1 patients. Results are superimposed on axial and sagittal slices of MNI standard brain (TFCE p b 0.05 corrected
for multiple comparisons). Green indicates the skeleton template. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

195S. Baldanzi et al. / NeuroImage: Clinical 12 (2016) 190–197



196 S. Baldanzi et al. / NeuroImage: Clinical 12 (2016) 190–197
LL% measured with ROI based method was 0.7 ± 0.9% (range 0–
4.1%) and no significant correlation was found with clinical and neuro-
psychological features (p N 0.05).

TBSS analysis revealed several areas of decreased FA and increased
RD, MD and AD in white matter of DM1 patients compared to healthy
controls (TFCE p b 0.05 corrected for multiple comparisons). DTI index-
eswere extensively impaired in association andprojection tracts of both
hemispheres (Supplementary Tables 3, 4, 5, 6). FA and MD changes in-
volved the brainstem and the cerebellum of the DM1 patients with re-
spect to healthy controls while RD and AD only the brainstem (Fig. 3).

Multiple regression analyses to correlate neuropsychological tests to
WMabnormalities showed areas of significant negative relationship be-
tween RD and ROCF-copy, RAVLT-DR and CBT scores;moreover, AD had
a significant negative relationship with RAVLT-DR and digit span scores
(TFCE p b 0.05 corrected for multiple comparisons) (Fig. 4).

4. Discussion

4.1. Cognitive profile

According to previous evidences about cognitive impairment in
DM1 (Meola et al., 2003; Winblad et al., 2010; Minnerop et al., 2011),
most of our patients presented diffuse neuropsychological dysfunction,
mainly characterized by impairment in executive and mnesic domains
with visuo-spatial component (WCST categorization 36.7%, WCST per-
severations 40%, ROCF-copy 40.0%, CBT 40.0%). DM1 cognitive perfor-
mance points out patients' relevant and likely specific difficulties in
tasks which represent currently used paradigms to test executive con-
trol ability. In a smaller portion of patients, we detected cognitive im-
pairment also in attentive and other executive domains, as showed by
FAS, FAB, STROOP, TMT-A andDigit span. Despitewide neuropsycholog-
ical impairment, opposite to visuo-spatial domain, our study elucidated
a preservation of verbal abilities (about 80%) in these patients, this sug-
gesting the need for systematic assessment of memory and cognitive
planning in similar studies.

4.2. Grey matter atrophy

The BPF that we obtained was in line with value measured in DM1
patients and reduced respect to the normal population (Kassubek et
al., 2003), confirming a global loss of central nervous tissue in this my-
opathy. The BPF showed a significantly correlation with age
(p b 0.001), indicating that the central nervous system atrophy in the
adult form of DM1 progresses with age as in the normal elderly and dif-
ferently from the juvenile form of DM1 where the atrophy is present
from the beginning of the disease in early childhood (Caso et al.,
2014). Brain volume loss has been correlatedwith disability progression
and cognitive impairment in other neurological disorders, such as mul-
tiple sclerosis (MS), but up to nowdata aboutDM1 are scarce (Kassubek
et al., 2003); a better knowledge about brain volume loss may have im-
portant clinical implications for treatment and prognosis in DM1.

Notably in our sample the main executive dysfunction as well as
memory and visuo-spatial impairment was not related to focal atrophy
in specific brain regions, as already reported by previous studies (Meola
et al., 1999), but they were associated to the overall cerebral atrophy
expressed by BPF.

The atrophy at VBM is widely distributed and includes the cortical
areas pertaining the sensori-motor and cognitive brain networks. The
involvement of these brain areas fits with the supposed motor defect
in DM1 (Caramia et al., 2010) and with the well-known impairment
in cognitive functioning (Meola et al., 2003; Winblad et al., 2010).

Our resultswere in linewith recent reports (Caso et al., 2014) show-
ing similar GM atrophy pattern, but differently from the previous
experience, we also reported a significant association between GM
atrophy in temporo-parietal areas (left postcentral, left middle and
inferior temporal gyri and left supramarginal gyrus) and specific
neuropsychological tests investigating verbal learning. Although these
tests are not significantly impaired in DM1, the reported correlation
could support the putative role of these regions in conceptual represen-
tation and recognition of wordsmeaning (Acheson and Hagoort, 2013).
Indeed, temporo-parietal cortex includes multimodal associative areas
that receive auditory, visual, and somatosensory inputs, and are impli-
cated in processing the phonological and semantic aspect of language.

To our knowledge some studies report controversial associations be-
tween cortical atrophy and cognitive deficits, in particular with nonver-
bal episodic memory and cognitive flexibility (Weber et al., 2010;
Schneider-Gold et al., 2015); on the other hand, others studies failed
to provide consistent associations in that (Minnerop et al., 2011;
Romeo et al., 2010).
4.3. White matter alterations

TheWM lesions have been frequently reported in patientswithDM1
(Minnerop et al., 2011; Romeo et al., 2010) and predominate at level of
frontal and temporal lobes. An important result of our study is the lack
of correlation between the LL% and the neuropsychological defects. On
the other hand, the TBSS results indicate that projection and associative
fibres are extensively affected in DM1 patients with an involvement of
the normal appearingwhite matter beyond the signal changes detected
with conventional MR imaging.

We found interesting similarities between the pattern of WM dam-
age revealed in our patients and recent whole-brain DT MRI studies
(Minnerop et al., 2011; Wozniak et al., 2014; Caso et al., 2014)
consisting in a significant overlap of altered DTI indexes along several
fibre bundles.

Greater white matter abnormalities (as indicated by RD or AD
changes) were associated with lower score at neuropsychological tests
indicating worse functioning. In our study the cognitive performance
in visuomotor coordination and working memory tasks (ROCF-copy,
CBT, digit span) was associated to microstructural damage detected in
major associative tracts as corpus callosum (Reuter-Lorenz, 2003),
while scores in visuo-spatial and episodic verbalmemorywere associat-
ed mainly to associative tracts of the internal capsule and corona radi-
ate, that collectively connect neocortex to deeper brain structures.

From a neuropsychological perspective a cognitive-behavioural dys-
function usually depends upon both the size and site of a given lesion.
Although certain areas in the brain can be critical for specific cognitive
functions, also small but diffuse WM subcortical lesions can produce
major effects since they disrupt interconnections between brain regions
in distributed neural networks (Lezak et al., 2012).

This is the case of DM1 in which neuropsychological studies suggest
that the dysfunctionmay occur not only in distinct CNS regions but also
in complex neuronal networks, this implying that patients' cognitive
profile is likely to be the result of a multifactorial process in which ge-
netic and epigenetic factors interact through complex mechanisms re-
lated to brain plasticity, compensation, neurodegeneration or
neurodevelopmental defects. Since the DTI explores complex neuronal
networks and can detect abnormalities in the normal-appearing white
matter, this technique has to be tested as a possible marker of the pro-
gression of cognitive impairment of DM1.

Finally, it has to be considered that, beside cognitive deficits, DM1
patients suffer from an emotional imbalance expressed by symptoms
like depression, lack of interest, decreased emotional participation.
While it is accepted that the disruption ofwhitematter tracts, has a clin-
ical relevance in several developmental and psychiatric disorders (Von
Der Heide et al., 2013), we cannot exactly evaluate the contribution of
the psychiatric component to the cognitive deficit because a specific
correlation between psychiatric scales andMR parameters was not per-
formed. This should be the object to be addressed with further studies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.06.011.
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