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Abstract

Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged
by a paucity of complete reference genome sequences and the uneven/low sequencing
depth of the constituent organisms in the microbial community, which respectively limit the
power of reference-based alignment and de novo sequence assembly. These limitations
make accurate protein family classification and abundance estimation challenging, which in
turn hamper downstream analyses such as abundance profiling of metabolic pathways,
identification of differentially encoded/expressed genes, and de novo reconstruction of com-
plete gene and protein sequences from the protein family of interest. The profile hidden Mar-
kov model (HMM) framework enables the construction of very useful probabilistic models
for protein families that allow for accurate modeling of position specific matches, insertions,
and deletions. We present a novel homology detection algorithm that integrates banded
Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and
assembly computational framework. The algorithm searches a given profile HMM of a pro-
tein family against a database of fragmentary MG/MT sequencing data and simultaneously
assembles complete or near-complete gene and protein sequences of the protein family.
The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and
assembling homologs when benchmarked on both simulated marine MG and real human
saliva MG datasets. On real supragingival plaque and stool MG datasets that were gener-
ated from healthy individuals, HMM-GRASPXx accurately estimates the abundances of the
antimicrobial resistance (AMR) gene families and enables accurate characterization of the
resistome profiles of these microbial communities. For real human oral microbiome MT
datasets, using the HMM-GRASPXx estimated transcript abundances significantly improves
detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to recon-
struct comprehensive sets of complete or near-complete protein and nucleotide sequences
for the query protein families. HMM-GRASPXx is freely available online from http://
sourceforge.net/projects/hmm-graspx.
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Author Summary

Accurate analysis of microbial metabolism and function from metagenome and metatran-
scriptome data sets relies heavily on the comprehensive identification of protein family
homologs present in these data. The task is routinely being done through alignment of the
individual reads against the profile hidden Markov Models (HMM) of protein families in
the reference database. This strategy, however, is hindered by the fact that the reads usually
only represent partial protein sequences, which contain insufficient information for their
accurate classification. To tackle this problem, we present a targeted assembly algorithm
that, based on the sequence overlap information, simultaneously reconstructs complete or
near-complete protein sequences and estimates their homology given the HMM:s of the
protein families of interest. The reconstructed protein sequences contain more complete
information regarding the function of the corresponding protein, thus facilitating accurate
annotation of themselves as well as the constituent sequencing reads. The resulting pro-
gram, HMM-GRASPX, has been shown to have significantly improved performance
(>40% higher recall rate with a similar level of precision rate) over other state-of-the-art
counterparts such as RPS-BLAST and HMMER3.

This is a PLOS Computational Biology Methods paper.

Introduction

Metagenomics (MG) and Metatranscriptomics (MT) are culture-independent methodologies
[1,2] empowered by next-generation sequencing (NGS) technologies [3,4], which respectively
enable genome and transcriptome profiling (RNA-seq) of the microbes in a given environ-
ment. MG studies allow the estimation of gene abundances to reconstruct the metabolic poten-
tial [5] as well as the taxonomic profile [6] of the microbial community. MT studies, on the
other hand, can capture transcriptome-level changes of the microbial communities, possibly
induced by longitudinal, cross-sectional environmental changes and/or intra- and inter-species
interactions [7-10]. Identification of differentially expressed (DE) genes is based on compari-
sons of mRNA abundances across different conditions. Both MG and MT approaches rely
heavily on accurate estimation of the DNA/mRNA abundances in the sample.

The abundance estimation in MG/MT data is traditionally solved through homology search,
which aims at finding all homologs (as measured by sequence similarity) of the query reference.
Given the reference sequence, individual NGS reads can be aligned against it using alignment
programs such as Bowtie [11], BWA [12], BLAST [13], FASTM [14], RAPSearch [15,16], and
DIAMOND [17]. Alternatively, the individual reads can be assembled into longer contig
sequences using de novo assembly tools prior to the alignment [18,19]. Long contigs contain
more complete structural features of the corresponding protein product and thus facilitate cor-
rect annotations. However, de novo assembly can be challenging due to uneven and/or low-
coverage of the constituent organisms, leading to fragmentary assembly for many data sets.
These issues have been partly alleviated through the de novo short peptide assembly approach
[20,21] that aims at reconstructing complete protein sequences, and is not hampered by synon-
ymous DNA mutations.

Previously, we developed a framework for identifying the homologs of a query protein
sequence from a database of peptide reads that were translated from NGS reads (using
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fragmentary gene caller such as MetaGeneAnnotator [22] or FragGeneScan [23]). This frame-
work, referred to as the simultaneous alignment and assembly (SAA) approach for short pep-
tides, uses iterative alignment and assembly steps to improve homology detection, and
integrates both the reference-based alignment and the targeted fragment assembly as a unified
component [24,25]. It computes sequence similarity at each stage of contig extension, thus pro-
viding auxiliary sequence similarity information for guiding the graph traversal. Meanwhile,
the alignments computed between the reference and the assembled contigs also more accu-
rately reflect the true homology. Given the reference protein sequence, the algorithm attempts
to recruit all of its homologous short peptide reads and assemble them into full-length proteins.
This approach allows integration of the sequence overlapping information (i.e. between reads)
with the sequence alignment information (i.e. between the read and the reference) while assess-
ing homology. Intuitively, if a peptide read overlaps significantly with a second peptide read
that aligns well with the reference protein sequence, it is more likely that the first read is also a
homolog of the reference. The resulting program called GRASP (Guided Reference-based
Assembly of Short Peptides) [24] and its computationally efficient version GRASPx [25] was
shown to significantly improve sensitivity of homology search when compared to programs
such as BLASTP and FASTM, and subsequently provide more accurate abundance estimation
from MG/MT data. Currently, the SAA algorithm has only been implemented to accept a sin-
gle sequence as the query. Motivated by improved homology detection capabilities of profile
hidden Markov models (HMM), here we extend the SAA approach to enable the use of a pro-
file HMM as a query.

Currently several methods are available for protein family profile-based homology search.
HMMERS3 [26-29] and RPS-BLAST [30,31] directly operate on individual reads and demon-
strate low sensitivity [32,33]. To improve sensitivity, the Sensitive and Accurate protein
domain cLassification Tool (SALT) [32] attempts to excessively recruit candidate homologous
reads of the reference through a loose cutoff; then it applies de novo assembly on these recruited
reads. Excessive recruitment of candidate homologs can have an impact on the running time of
the program; the program is therefore only designed for analyzing single-genome data instead
of large and complex MG/MT community data. SALT was later redesigned and extended to
Xander [34], which was built on the spectrum alignment algorithm that was originally used for
guided homology search on microarray data [35]. Xander also requires relatively large amount
of computational resources to analyze tens or hundreds of protein families. On the other hand,
the Ultrafast Protein Classification (UProC) toolbox [33] implements a computationally effi-
cient approach to compare the MG/MT reads to the sequences of all members in the querying
protein family (using the Pfam FULL alignment database), which makes it reference database-
dependent. In summary, an accurate, efficient, and reference database-independent profile-
based homology search program would greatly improve current MG/MT data analysis.

In this work we present a novel algorithm for profile HMM-based homology search that
couples the banded Viterbi algorithm with the SAA framework. The resulting program
HMM-GRASPx provides two important utilities. It can be used both as a homology search pro-
gram that provides more accurate abundance estimation of the reference protein family, as
well as a targeted assembly program that focuses on the reconstruction of genes sequences for
the same protein family. Both of these features of HMM-GRASPx were benchmarked against
HMMERS [28], RPS-BLAST [30] and UProC [33]; and HMM-GRASPx demonstrated signifi-
cantly improved performances. Moreover, its utility as a homology search program was further
showcased using MG data sets from the Human Microbiome Project (HMP) [36] as well as
MT data sets that were generated from in vitro grown oral biofilms [7]. HMM-GRASPx out-
performed HMMER3 both in predicting the abundance of the antimicrobial resistance (AMR)
gene families from the MG data set and in detecting DE genes that encode known biosynthesis
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pathways from the MT data set. In addition, HMM-GRASPX’s utility as a targeted assembly
program was further demonstrated using the same in vitro oral biofilm MT data set. Targeted
assembly using HMM-GRASPx predictions reconstructed more and longer contigs than using
HMMERS3 predictions, both in protein and nucleotide space. HMM-GRASPx is freely available
online from http://sourceforge.net/projects/hmm-graspx.

Results and Discussion
The HMM-GRASPx design principle and analysis pipeline

Typical MG/MT data sets are generated from microbial communities whose compositions are
not fully known a priori and often contain taxonomic groups that do not have representative
reference sequences. In this case, the analysis of such MG/MT data sets involves homology
search with available reference sequences that may be evolutionarily distant to some of the taxa
in the sampled community. Computationally, the search for the remote homologs of a given
query protein sequence is confounded by the combination of homologous and non-homolo-
gous protein sequences in the low sequence similarity alignment space [37]. The problem is
further compounded by the current high-throughput sequencing technologies that generate
short reads, which usually leads to short alignments that only contain partial information
regarding the structural features of the protein. GRASP was designed to address these limita-
tions by evaluating the sequence similarity between the query sequence and the reconstructed
protein contigs, which resulted in longer alignments and improved accuracy [24].
HMM-GRASPx adopts a similar principle as GRASP for solving this problem, and further
extends the utility to protein family profile-based homology search.

The detailed algorithm for HMM-GRASPx is presented in the Methods section. An MG/
MT data analysis pipeline using HMM-GRASPx as its core component is summarized in Fig 1
and includes the following steps.

« Partial protein coding sequences (referred to as short peptide reads) are identified from the
raw MG/MT nucleotide reads using a gene-calling program (for instance, MetaGeneAnnota-
tor [22] or FragGeneScan [23]). These short peptide reads, together with a query profile
HMM, serve as the input to HMM-GRASPx.

o The SAA algorithm implemented in HMM-GRASPx uses the query profile HMM as a guide
and operates on the short peptide reads database, assembling protein contigs that are subse-
quently verified through HMMER3 realignment.

« Homologous short peptide reads are recruited by mapping all reads to the verified contigs
that are generated in the previous step.

o Targeted protein assembly can be performed using peptide assembler (e.g. SFA-SPA [21]) on
HMM-GRASPx recruited short peptides.

o Targeted nucleotide assembly can be performed using nucleotide assembler (e.g. SPAdes
[18]) on the original nucleotide sequences that correspond to the HMM-GRASPx recruited
short peptides.

The “Mapping” step in Fig 1 corresponds to the homology search utility of HMM-GRASPx,
while the “Nucleotide assembly” and “Protein assembly” steps in Fig 1 fully exploit its potential
for targeted assembly. The current implementation of HMM-GRASPx outputs all possible tra-
versals of its overlap graph as long as the corresponding contigs align well with the query,
which may be redundant. Therefore, we recommend using other de novo assembly programs
to further refine the set of output contigs (e.g. SPAdes [18] for nucleotide assembly and
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Fig 1. The HMM-GRASPXx pipeline for homology search and gene-centric assembly. Blue shading of the
objects indicates that the corresponding data or operation is in nucleotide space, while purple shading
indicates amino-acid space.

doi:10.1371/journal.pcbi.1004991.g001

SFA-SPA [21] for protein assembly). In summary, the HMM-GRASPx based MG/MT analysis
pipeline allows for estimation of gene/transcript abundances and targeted reconstruction of
both protein and nucleotide sequences.

Asymptotic behavior for the running time of HMM-GRASPx is shown in S1 Fig. The
expected running time of HMM-GRASPx grows linearly with the length of the sequences that
are being assembled/searched.

HMM-GRASPx accurately identifies homolog reads from simulated and
real metagenomic data sets

HMM-GRASPx was benchmarked with homology search/classification programs including
HMMERS3 (version 3.1b2) [28], RPS-BLAST (version ncbi-blast+2.2.28) [30], and UProC (ver-
sion 1.2.0) [33] on a simulated marine data set that contains 23 marine microbial genomes
from the Alteromonas, Candidatus, Erythrobacter, Flavobacteriales, Nitrosococcus, Photobacter-
ium, Prochlorococcus, Roseobacter, Shewanella, Synechococcus, and Vibrio groups (see Meth-
ods). The relative abundances of these bacteria were simulated according to their natural
composition (coverages of each genome range from 1.25X to 10X with an average of 4X, see S1
Table). Three hundred and three Pfam protein families that are involved in important meta-
bolic pathways were selected as the queries (S2 Table). Ground-truth homologous reads were
defined by searching these protein families against the complete genomes and recruiting reads
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onto the identified homologous regions (see Methods). Given the ground-truth homologous
reads, the recall rate, precision rate, and F-measure of the programs were calculated and com-
pared (see Methods).

The performances of the four programs are summarized in Table 1. HMM-GRASPx shows
the highest recall rate (~64.1% on average) among all programs. Both HMMER3 and
RPS-BLAST show equivalently the highest precision rate (~94.3%); and HMM-GRASPx also
shows reasonably high precision rate (~90.6%). Overall, HMM-GRASPx demonstrates the
highest F-measure of ~75.0% on average, followed by RPS-BLAST which has an F-measure of
~47.4%. Furthermore, note that the increase of sequencing coverage would improve the assem-
bly performance of HMM-GRASPx, which would in turn improve its overall performance. For
example, when repeating the same experiment on a simulated data set in which all the 23
marine microbial genomes were in silico sequenced with an even 10X coverage, the average F-
measure of HMM-GRASPx increased from ~75.0% to ~82.5%; the other programs were not
benefited from the increased sequencing coverage (S3 Table).

HMM-GRASPx accurately and completely reconstructs homolog protein
sequences of query protein families

The utility of HMM-GRASPx as a protein family-specific targeted assembly program was eval-
uated on a real human saliva data set SRS013942 together with HMMER3, RPS-BLAST and
UProC. A list of secondary metabolite synthesizing protein families collected from the anti-
SMASH2.0 database [38] were used as queries (S5 Table). The de novo peptide assembly pro-
gram SFA-SPA [21] was used to assemble the homolog reads recruited by each of the programs
(see Methods). The correctness of these assembled contigs was evaluated by re-aligning them
against the querying profiles (see Methods), and we correspondingly define the true contigs
(t.c.), true reads (t.r.), contig-level precision (c.P.), and the read-level precision (r.P.) (see
Methods).

The performances of HMM-GRASPx, RPS-BLAST, and UProC are summarized in Table 2.
HMMER3 was excluded from the precision benchmark because the program was used to
define the ground-truth and will consistently have precision close to 100% (for number of true
reads and true contigs for HMMERS3 see S6 Table). HMMER-GRASPx recruited as much as
two times and ~25% more true homologous reads compared to RPS-BLAST and UProC,
respectively. Using RPS-BLAST predictions, SFA-SPA was able to assemble more true homolo-
gous contigs. However, the lengths of the RPS-BLAST contigs were considerably shorter than
the ones assembled from HMM-GRASPx predictions (as measured by N50, see S7 Table).
Aside from HMM-GRASPX’s higher sensitivity, the majority of its predicted reads were assem-
bled into true homologous contigs, which corresponds to 96.8% read-level and 84.7% contig-
level precision on average. RPS-BLAST was the second best-performing program with aver-
aged values of 62.6% and 54.5%, respectively. These results show that HMM-GRASPx is well
suited to perform protein family-specific targeted assembly.

Running time for all programs on the simulated marine data set is available in S8 Table.

Antibiotic resistance gene family profiling of metagenomic data

Here we demonstrate the utility of HMM-GRASPx for functional profiling of bacterial com-
munities by studying Anti-Microbial Resistance (AMR) gene families’ abundance profiles in
HMP MG data sets [36]. AMRs are globally distributed and exist in most organisms and envi-
ronments due to the ubiquitous presence of microbes. AMR represents a natural bacterial
defense mechanism but has become a serious problem in treating infectious diseases due to the
rapid spread of resistance genes, which makes it possible for bacteria to evade treatment
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Table 1. Performances of the programs for searching metabolic protein family profiles against the simulated marine data set with uneven

coverage.

Pathway #Families HMM-GRASPx HMMER3 RPS-BLAST UProC
Rec. Prec. F. Rec. Prec. F. Rec. Prec. F. Rec. Prec. F.

KO00010 47 70.2 94.3 80.5 25.0 95.7 39.7 43.8 97.6 60.4 26.8 68.0 38.5
K000020 69 61.6 86.5 72.0 18.0 92.2 30.1 314 94.5 47.2 28.7 70.1 40.7
KO000030 21 78.0 96.2 86.1 28.6 98.5 444 49.2 97.7 65.5 33.1 56.4 41.7
KO00051 111 58.7 87.4 70.2 15.6 94.1 26.7 244 90.9 384 17.8 57.1 271
K000620 80 60.2 89.4 72.0 15.3 92.9 26.3 27.1 95.0 422 23.6 75.6 35.9
KO00680 124 59.3 89.7 71.4 17.2 95.1 29.1 27.6 92.8 42.5 21.0 73.3 32.7
KO00910 49 61.9 87.3 72.4 16.3 92.2 27.7 29.5 88.8 44.2 26.7 76.9 39.6
K000920 7 62.7 93.7 751 111 93.4 19.8 24.3 97.0 38.9 8.3 25.1 12.4
Average - 64.1 90.6 75.0 18.4 94.3 30.5 32.2 94.3 47.4 23.2 62.8 33.6

Pathway names: KO00010 (Glycolysis/Glycogenesis), KO00020 (TCA cycle), KO00030 (Pentose phosphate pathway), KO00051 (Fructose and mannose
metabolism), KO00620 (Pyruvate metabolism), KO0O0680 (Methane metabolism), KO00910 (Nitrogen metabolism), KO00920 (Sulfur metabolism). The
column “#Families” indicates the number of protein (domain) families involved in the corresponding pathway. The columns “Rec.”, “Prec.”, and “F.” indicate
Recall, Precision, and F-measure, respectively. All performances are presented as percentages. The highest performances among all programs are bolded.
Running time for all programs on the simulated marine data set is available in S4 Table.

doi:10.1371/journal.pcbi.1004991.t001

[39,40]. Knowledge of the resistome profile in an individual has potential applications for clini-
cal treatment of bacterial infections.

The AMR protein families registered in RESFAM [41] were selected as queries to profile the
resistome (S9 Table). Twelve MG data representing six individuals, where each individual con-
tributed to both a supragingival and a stool data set, were selected for this experiment (S10
Table). HMM-GRASPx and HMMER3 were individually applied to search the AMR profiles
against these data sets (see Methods). Presented AMR protein families were selected (S9 Table)
and their raw counts were further normalized into Reads Per Kilobase per Million (RPKM) to
represent their abundance profile of the given MG data set (see Methods). The predicted AMR
abundance profiles were further clustered using hierarchical clustering algorithm to show body
site-specific resistome (see Methods). The clustering results of HMM-GRASPx- and
HMMER3-predicted profiles are shown in Fig 2A and 2B, respectively.

Table 2. Performances of the programs for searching biosynthetic protein family profiles against the human saliva data set SRS013942.

Name #Pfams HMM-GRASPx RPS-BLAST UProC

#t.r. r.P. #t.c. c.P. #t.r. r.P. #t.c. c.P. #t.r. r.P. #t.c. c.P.
Bacteriocin 13 436 99.8 29 96.7 182 69.2 35 49.3 56 0.2 17 0.1
B. Lactone 1 6 100 2 100 9 13.0 4 16.0 2 0.0 1 0.0
H. Lactone 1 9 81.8 50.0 15 10.3 4 11.4 0 0.0 0 0.0
Lanti pep. 6 131 100 21 100 46 82.1 22 73.3 36 0.1 13 0.0
NRPS 3 15,037 98.9 479 86.5 6,125 98.7 623 93.1 13,786 32.8 475 2.4
Oligo sac. 3 32,393 98.5 1,315 89.9 15,463 98.5 1,662 94.4 27,232 48.7 1,372 7.6
PKS 1 913 96.8 11 52.4 48 23.8 10 18.5 0 0.0 0 0.0
Terpene 3 1,483 95.9 126 86.9 411 94.0 92 86.8 19 0.1 7 0.0
Thiopeptide 1 642 100 19 100 333 74.0 33 471 350 0.8 17 0.0

“#Pfams” indicates the number of Pfam families involved in the biosynthesis of the corresponding secondary metabolite. Abbreviations: “B. Lactone”:

Butyrolactones; “H. Lactone”: Homoserine lactone; “Lanti pep.”: Lantipeptides; “Oligo sac.”: Oligosaccharide. “#t.r.”: number of true reads; “r.P.”: read-level
precision (percentage); “#t.c.”: number of true contigs; “c.P.”: contig-level precision (percentage). The highest performances among all programs are bolded.

doi:10.1371/journal.pcbi.1004991.t002
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The results indicate that different body sites harbor bacterial communities containing dis-
tinct resistome profiles, which is in line with previous findings of the human microbiome
where distinct biogeographical signatures were observed for bacterial species at 22 different
body sites (including stool and oral plaque) [42]. For example, a clear difference between body
sites was revealed by both programs for several genes involved in vancomycin resistance (i.e.
D-Ala-D-Ala ligase genes vanA, vanB, vanC, and vanD) (Fig 2A and 2B, see Glycopeptide_Re-
sistance category), which could only be identified in MG libraries obtained from oral supragin-
gival plaque and not from the stool samples. This difference may be due to that vancomycin
targets Gram-positive bacteria (the outer membrane of most Gram-negative bacteria is imper-
meable to large glycopeptide molecules such as vancomycin), which are highly abundant in the
oral plaque and less abundant in stool. On the other hand, while the biological environment
does show a stronger impact in shaping the resistome, personalized difference can indeed be
observed for several AMR protein families. For example, both programs predicted high abun-
dance of ErmA, ErmB, and ErmC genes specifically in the stool sample SRX877102 (Fig 2A and
2B, see rRNA_Methyltransferace category). The observation of personalized resistome profile
may be explained by the antibiotics exposure history of the specific individual [43], and can be
referred to when designing personalized treatment plans.

Although both HMM-GRASPx and HMMER3 made similar predictions on abundances of
the AMR protein families for most of the cases, a notable difference is that HMM-GRASPx pre-
dicted a high abundance of all ten resistance-nodulation-division (RND) antibiotic efflux gene
families in stool samples, while the HMMER3 predicted abundance profiles for these gene fam-
ilies are less consistent (five with higher abundances in supragingival plaque samples and the
other five with higher abundances in stool samples). It is clear that HMM-GRASPx generated
more biological meaningful predictions, because RND gene families are unique for Gram-neg-
ative bacteria (e.g. Bacteroides, which is abundant in healthy stool samples) and should be in
low abundance in the Gram-positive rich healthy supragingival plaque samples. In addition,
differences in abundance predictions further affect clustering of gene families based on the
abundance profiles. Further gene family-wise WPGMA clustering algorithm clustered 7 out of
the 10 RND gene families together using HMM-GRASPx predictions (S2 Fig), compared to
only 2 out of 10 using HMMER3 predictions (S3 Fig). These results suggest that
HMM-GRASPx improves accuracy of functional characterization and profiling for MG data
sets.

HMM-GRASPx improves differential expression analysis for
metatranscriptomic data

MT data is routinely generated to profile the transcription level of genes, and comparison of
MT data sets across different conditions and/or time points can be used to identify DE genes.
Such information can be used to investigate which genes and metabolic pathways are critical in
responding to environmental disturbances and how microbial communities adapt to environ-
mental changes. The majority of the MT annotation analysis workflows rely heavily on avail-
able reference genomes, which serve as templates for read mapping. Other transcriptome
assembly approaches are hampered by a similar issue of low/uneven coverage of the expressed
transcripts by the microbial community. MT analysis of unexplored environments with high
microbial-community complexity and very few genome sequence representatives is still an
open problem.

To demonstrate both the utility of HMM-GRASPx for protein family-level MT analysis and
how its improved homology search performance also improve DE analysis, we selected eight
human oral biofilm MT data sets generated from a taxonomically well-defined oral in vitro
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Fig 2. AMR protein-family profiles from the six supragingival and six stool samples as predicted by HMIM-GRASPx and HMMERS. (A) AMR
Profile predicted by HMM-GRASPx. (B) AMR Profile predicted by HMMERS. Hierarchical clustering was performed sample-wise (column-wise). Color
bars on the left-hand-sides of the heat maps indicate AMR classification by RESFAM (bottom right legend). Abundance values (RPKM) were row-wise
normalized into Z-scores (bottom right color key).

doi:10.1371/journal.pcbi.1004991.9002

biofilm model system [7,44]. These data sets were generated to study health-associated molecu-
lar processes, which contribute to protection from caries diseases (tooth enamel mineraliza-
tion). Gene transcription responses were monitored in a temporal manner while the oral in
vitro biofilm community metabolized sugar which resulted in a classic pH drop of the growth
media followed by a health-associated pH recovery [7]. The MT data sets (SRA: SRP049210)
contain replicate libraries obtained from biofilm samples collected at 0 hour (pH 7.0, three rep-
licates), 6 hours (pH 4.2, two replicates), and 9 hours (pH 5.2, three replicates) after glucose
amendment (S11 Table). Since very little knowledge exists on the role of bacterial interactions
and cell-to-cell signaling (i.e. antagonist or cooperative interactions) in human oral health, we
focused on the identification of biosynthetic protein families that potentially synthesize signal-
ing molecules. The biosynthetic protein families were selected from the antiSMASH2.0 data-
base [38] (S12 Table). HMM-GRASPx and HMMER3 were applied individually to search all
MT libraries (see Methods).

Previous analysis of the MT data sets showed that 14 key bacterial species were highly active
across different pH stages [7]. These species belong to the Streptococcus, Lactobacillus, Fusobac-
terium, Gemella, Klebsiella, and Veillonella genera. The reference sequences of these 14 strains
were used to construct the ground-truth set for benchmarking purpose (see Methods). Bench-
mark results are summarized in Table 3, which shows that HMM-GRASPx has a higher recall
rate (~80% compared to ~15%) but a lower precision rate (~80% compared to ~90%) than
HMMERS3. The results are consistent with the previous benchmark results on the simulated
marine data set. Overall, HMM-GRASPx showed >50% higher F-measure. Spearman’s corre-
lation between the predicted and the ground-truth abundance was calculated for both
HMM-GRASPx (Fig 3A) and HMMERS3 (Fig 3B). The abundances predicted by
HMM-GRASPx were more consistent (Spearman’s correlation 0.714) to the ground-truth
abundances than HMMER3 (Spearman’s correlation 0.333). Linear regression analysis also
showed that HMM-GRASPx over-predicted the abundance by 18% (slope 1.18), while
HMMER3 underestimated the true abundances by 79% (slope 0.21).

The gene-expression underestimation by HMMERS represents a reduced statistical power
in downstream DE analysis, which subsequently leads to false negative predictions. The abun-
dances predicted by HMM-GRASPx and HMMERS3 were used to identify the DE genes in the
14 key species of the community using the DESeq2 program [45] (see Methods). Fig 3C shows
that the majority of the true DE genes were successfully identified using HMM-GRASPx pre-
dictions, resulting in a Jaccard similarity of 0.74 with the ground-truth. On the other hand,
HMMER3-based DE gene detection only showed a Jaccard similarity of 0.23. The majority
(89.7%) of the HMMER3-based DE genes were contained in the set of HMM-GRASPx-based
DE genes. The results suggest that the improved homology search accuracy brought by
HMM-GRASPx will also improve DE gene analysis.

HMM-GRASPx improves targeted assembly of metatranscriptomic data

The above benchmark for strain-level DE analysis was made possible through using the refer-
ence sequences of the 14 core genomes to partition the recruited homolog reads. In practice,

reference genomes may not always be available, especially for less-explored environments. In
this case, it might be challenging to obtain strain-level expression of the protein families from
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Table 3. Performance of HMM-GRASPx and HMMERS3 for searching biosynthetic protein family profiles against the in vitro human oral plaque bio-

film MT data sets.

Sample #Reads HMM-GRASPx HMMER3
Recall Precision F-measure Recall Precision F-measure
OH.1 22,280,139 81.5 83.0 82.3 15.8 90.5 26.9
0H.2 17,687,166 81.9 88.4 85.1 16.4 91.6 27.8
OH.3 23,106,973 824 88.0 85.1 16.0 91.6 27.3
6H.1 31,229,289 81.0 74.2 77.4 16.2 90.4 27.5
6H.2 43,702,127 83.2 78.5 80.8 16.7 95.0 28.4
9H.1 15,550,857 79.2 84.1 81.6 16.7 91.8 28.2
9H.2 37,336,599 82.6 86.8 84.6 14.5 93.2 25.1
9H.3 42,394,221 81.9 77.3 79.5 14.5 91.4 25.1
doi:10.1371/journal.pcbi.1004991.t003
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Fig 3. Comparison of HMM-GRASPx- and HMMER3-generated results from the in vitro human oral plaque biofilm MT data set. (A)
Abundances correlation between HMM-GRASPXx predictions and the ground-truth (i.e. BWA). The x- and y-axis indicate the number of
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direct application of homology search programs such as HMM-GRASPx, HMMER3, or
RPS-BLAST. A potential solution to this problem is to first assemble the recruited homologous
reads (Fig 1, “Peptide assembly” and “Nucleotide assembly”) followed by taxonomic binning of
the resulting contigs [46,47]. DE analysis within individual taxonomic bins would allow for
monitoring of transcription activities of different taxonomic groups among environmental
changes.

Here, using the in vitro oral biofilm MT data sets, we benchmarked the qualities of the
assemblies that were generated by using HMM-GRASPx- and HMMER3-recruited reads. Pro-
tein families in the antiSMASH2.0 database [38] that are longer than 200 HMM states were
used as the queries for this experiment (S12 Table). Peptide assembly was performed using
SFA-SPA [21]; and nucleotide assembly was performed using SPAdes [18] (see Methods).
Only peptide contigs that are longer than 60aa and nucleotide contigs that are longer than
180nt were considered (see Methods). Refer to the targeted assembly of a query protein family
on a MT data set as an assembly case.

For protein assembly, SFA-SPA was able to assemble more and longer contigs using
HMM-GRASPx predicted reads. Concretely, SFA-SPA generated at least one contig for 227
assembly cases using HMM-GRASPx-predicted reads (blue bars in Fig 4A), while it generated
at least one contig for only 64 assembly cases using HMMER3-predicted reads (red bars in Fig
4A). Fig 4A also shows that for the overlapping cases between HMM-GRASPx-based assembly
and HMMER3 based assembly (totaling 63), HMM-GRASPx-based contigs have higher nor-
malized N50 (see Methods) than HMMER3-based contigs (in Fig 4A where blue and red bars
overlap, blue bars are generally higher than red bars). Fig 4C shows that on average, the nor-
malized N50 for HMM-GRASPx-based peptide contigs is 2.3 fold higher than HMMER3-
based peptide contigs. Fig 4D also shows that HMM-GRASPx-based peptide assembly
recruited 18.3 fold more reads than HMMER3-based peptide assembly. We subsequently assess
the precision of the assembled contigs by realigning them back to the query HMM using
HMMER3. Among the 1,263 HMM-GRASPx-based contigs, 1,154 can be aligned to the corre-
sponding query HMM (precision 91.4%, see Methods). As expected, all 279 HMMER3-based
contigs were successfully aligned (due to that HMMERS3 was used in both the search and verifi-
cation steps).

For targeted nucleotide assembly, the same trend that HMM-GRASPx-based assembly gen-
erated more and longer contigs and maintains high precision was also observed. Specifically,
Fig 4B shows that SPAdes [18] generated at least one contig for 220 assembly cases using
HMM-GRASPx-predicted reads (blue bars), while it generated at least one contig for only 41
assembly cases using HMMER3-predicted reads (red bars). Fig 4B also shows that the normal-
ized N50 measures of the HMM-GRASPx-based contigs are generally higher than those of
HMMER3-based contigs for the overlapping 41 assembly cases. Fig 4C shows that on average,
the normalized N50 for HMM-GRASPx-based peptide contigs is 1.5 fold higher than
HMMER3-based nucleotide contigs. Fig 4D also shows that HMM-GRASPx-based peptide
assembly recruited 91.8 fold more reads than HMMER3-based nucleotide assembly. Among
the 3,842 HMM-GRASPx-based contigs, 3,437 of them were successfully verified with E-value
less than 0.01 (precision 89.4%). All 412 HMMER3 based contigs were successfully verified.

For the 3,437 verified nucleotide contigs, we further evaluated their taxonomic origins by
searching these sequences using BLASTN against the NT (non-redundant nucleotide) and
using BLASTX against the NR (non-redundant protein) databases (see Methods). BLASTX
was able to identify high-scoring hits from the NR database for all 3,437 nucleotide contigs,
while BLASTN failed to align 507 (14.8%) of them against the NT database. We also attempted
to use KRAKEN [48] with the entire RefSeq as the reference database to annotate these 507
contigs but failed on 506 or 99.8% of them (see Methods). A potential reason for not finding
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Fig 4. Targeted assembly of secondary metabolite synthesizing protein families from the in vitro human oral biofilm MT data set. Only the
protein contigs longer than 60aa and nucleotide contigs longer than 180nt were considered. (A) Normalized N50 for protein assembly. (B)
Normalized N50 for nucleotide assembly. For (A) and (B), red color indicates the performance of HMMER3 and blue color indicates
HMM-GRASPx. The x-axes indicate assembly cases and were sorted based on the decreasing values of the HMMERS performance and then the
decreasing values of the HMM-GRASPx performance. Assembly cases without corresponding red bars indicate that no contig was assembled
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HMMER3 or HMM-GRASPXx prediction. (D) Log2 fold change for the number of assembled reads in assembly cases where contigs can be
assembled using either HMMERS3 or HMM-GRASPx prediction.

doi:10.1371/journal.pcbi.1004991.9004

these contigs’ homologs from the NT database is that they might harbor a significant amount
of neutral mutations and originate from previously uncharacterized microbial species. The
BLASTX search results for these contigs can be used to infer the relationship between these
uncharacterized microbial species and known bacterial species (S4 Fig). In additional to taxo-
nomic inference, the nucleotide sequences assembled using HMM-GRASPx can also provide
valuable information for further design experiments (e.g. PCR primer design) for evaluating
the expression levels or investigating the functions of the protein families.

Conclusions

In summary, we developed a novel profile-based SAA algorithm and implemented the idea

into the HMM-GRASPx program. HMM-GRASPx aims at highly accurate MG/MT data anal-
ysis in the absence of complete reference databases. Here we demonstrate that HMM-GRASPx
significantly improves homology search and facilitates functional profiling of MG data sets for
accurate and robust characterization and comparison of microbial communities. The program
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was also shown to improve DE detection in MT data sets, which will lead to improved identifi-
cation of metabolic pathways and coverage of genes within these pathways that are under dif-
ferential regulation. Finally, HMM-GRASPx can also be used for targeted assembly, which can
subsequently enable a more in-depth analysis of taxonomy and protein family function. The
program HMM-GRASPx is freely available online from http://sourceforge.net/projects/hmm-
graspx.

Methods
HMM-GRASPx algorithm

The core algorithm of HMM-GRASPx was developed as an integration of the banded Viterbi
algorithm for HMM parsing and the GRASPx SAA engine that iteratively computes sequence
similarity and extends contigs based on overlapping short peptide sequences in the database.
The seeding and the alignment modules are substantially different from GRASPx; and we focus
on describing them here. Details for the other modules can be found in Zhong et al. [25].
HMM-GRASPx begins with seeding, a process that aims at anchoring the initial alignment
based on highly similar regions shared between the reference and the target. When searching
an HMM against the short-peptide database, seeding is performed by identifying high-scores
matchings k-grams (k-gram refers to k consecutive match states in the reference HMM model
or k consecutive amino acids in the target). Define the maximum seed score for the k-grams in
the reference as the highest log odds-ratio for any sequence that can be emitted from the k-
grams. A score scale (between 0 and 1) can be applied to the maximum seed score to define a
position-specific cutoff for seeding. HMM-GRASPx further incorporates an efficient seeding
heuristic through adopting the idea of reduced-alphabet [15] for pre-filtering target k-grams.
The alignment component of HMM-GRASPx adopts the banded Viterbi algorithm. The
Viterbi algorithm computes the most probable parse of a sequence given the HMM. The
dynamic programming algorithm can be summarized as the following recursive functions (for
extension to the C-terminus; extension to the N terminus can be derived analogously).

Ml[i—1,j— 1] + tran(M,_,, M,)
M(i,j] = emit(M,,j) + max] I[i—1,j — 1] + tran(I,_,,M,)
D[i — 1,j] + tran(D,_,, M)

Mli,j — 1] + tran(M,, 1,)

70

I[i,j — 1] + tran(I,, I,)

i 7

Y

I[i,j] = emit(I,,j) + max{

Mli — 1,j] + tran(M,_,, D,)

D[i,j] = max{
D[i — 1,j] + tran(D,_,, D;)

The first index i refers to the reference and the second index j refers to target. The tables M,
I, and D store scores (log odds-ratio) for the most-likely parse, provided that the current-stage
parse ends in the match, insert, or delete states of the HMM, respectively. The emission proba-
bilities emit and the transition probabilities trans are coded in the HMM models. The banding
was implemented through only computing table entries which satisfy the condition |i —j| < d,
where d is the band size.

The limitations of the above Viterbi algorithm are two-fold. First, the seeding and banding
constraints violate the compositional assumption (i.e. the probabilities of all possible sequences
no longer add up to 1 for the given parameters); the resulting statistics should only be used for
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ranking the targets. Second, the Viterbi algorithm only computes the best parse of the
sequence, while the Forward-backward algorithm considers all parses and provides more
meaningful statistical measures [49]. To avoid both limitations, HMMER3 is used re-compute
the scores for HMM-GRASPx assembled protein contigs. The overhead of this step is marginal
compared to the main assembly module.

The HMM-GRASPx algorithm can be summarized in the following steps:

1. Indexing: HMM-GRASPx constructs the extension links for the given MG/MT database,
which is conceptually analogous to the overlap graph [25].

2. Seeding: The seeds are identified through identifying high-score k-grams between the refer-
ence and the target. The reads that contain the corresponding k-grams are used as initial
contigs for further extension.

3. Extension: HMM-GRASPx extends the current contigs based on the pre-constructed exten-
sion links that are associated with the contigs’ terminating reads. For more details please
refer to [25].

4. Alignment: The alignment between the querying HMM and the current contig is evaluated
using the banded Viterbi’s algorithm described above. HMM-GRASPx at this step decides
whether to continue using both log odds-ratio drop-off and read redundancy [25]. If it
decides to continue, the algorithm loops back to the previous Extension step.

5. Recalibration: After all initial contigs being extended, the algorithm attempts to further
assemble this contigs to increase their lengths. For more details please refer to [25].

6. Realignment: The recalibrated contigs are realigned with the querying profile HMM to
recalculate the statistics using HMMER3.

7. Mapping: Short peptides are subsequently mapped against the trusted contigs.

Benchmark experiment on the simulated marine metagenomic data set

Twenty three bacterial genomes were chosen for the simulation as they were found prevalent
in marine environments [50] (S1 Table). According to their natural compositions, each
genome was i silico sequenced with different coverage (min coverage 1.25X, max coverage
10X, mean coverage 4X). WGSIM (version 0.3.0) was used for in silico sequencing to generate
pair-end reads with error rate 0.01 and expected read length 100; and the number of reads to
be generated were calculated using the genome sizes and the expected coverages (parameter for
running WGSIM: “-e 0.01-1 100-2 100 -N [num_reads]’). The nucleotide reads were then
translated into short peptide reads using FragGeneScan (version 1.17) [23] with parameters
-complete = 0 -train = illumina_10". The resulting simulated data set is available online from
https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/SimMarine_23G.fa.tgz.

A set of Pfam (version 27.0) protein families which involve in important metabolic path-
ways (protein family-pathway association was made using the Kyoto Encyclopedia of Genes
and Genomes, or KEGG, which was obtained in Jan. 2015) was used as queries for the bench-
mark experiment (S2 Table). The ground-truth homolog reads for a given protein family was
defined by searching the protein family profile against the complete genomes. Concretely, the
protein family profile HMM was searched against all proteins encoded (coding regions were
extracted from KEGG) by the 23 genomes listed in S1 Table using HMMER3 with default
parameters. All identified regions that are passing the HMMER3 (version 3.1b2) trusted-cutoff
(i.e. E-value 0.01) were selected as homologous regions. Such a setting was applied to all
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HMMERS runs referred in this work. Note that one protein sequence may contain multiple
homolog regions with each of them assigned to different Pfam families; this is because one pro-
tein sequence may contain multiple domains. However, each region can be assigned to only
one protein family; if the region was able to be aligned to multiple protein families, it would be
assigned to the protein family that generates the most significant E-value. The simulated pep-
tide reads were then mapped against these homologous regions using an in-house short-pep-
tide mapper ‘graspx-map’ (with parameters ‘—num_errors = 3—portion_mapped = 0.6,
which requires that a short peptide be mapped to the reference for >60% of its sequence with
less than three substitution errors). Such a setting was applied to all ‘graspx-map’ runs referred
in this work. The program ‘graspx-map’ is released together with the HMM-GRASPx software
package. The ground-truth homologous reads are available online from https://sourceforge.
net/projects/hmm-graspx/files/SupplementaryData/SimMarineGroundTruth.tgz.

The performance of each homology search program was measured as follows. Define true
positives (TP) as the successfully predicted homologous reads, false positives (FP) as the pre-
dicted non-homologous reads, and false negatives (FN) as the un-predicted homologous reads.
Subsequently, define Recall rate and Precision rate as:

TP

Recall = _r
cea TP + FP

TP .
——— , Precision =
TP + FN

The F-measure, a weighted average of recall and precision, was then defined as

2" Recall” Precision

~ Recall + Precision '

The profile HMMs of the selected protein families were retrieved from of Pfam version 27.0.
The corresponding position-specific scoring matrix (PSSM) profiles (required by RPS-BLAST
as inputs) for these protein families were retrieved from the Conserved Domain Database
(CDD, downloaded on Oct. 24", 2014) [30]. HMM-GRASPx was run in its default mode.
Default parameters of HMM-GRASPx are detailed as follows. The seed length for alignment
initialization is set to 6 (in reduced alphabet GBMRA4, see definition in [15]); the minimum
overlap length for assembly is set to 10; the alignment band-size is set to 20; the maximum
assembly depth is set to 5; the HMM-GRASPx P-value cutoff was set to 0.05; and the
HMMERS3 verification E-value cutoff was set to 0.01. Such a setting was applied to all
HMM-GRASPx runs referred in this work. Read recruitment was performed using ‘graspx-
map’. HMMERS3 [28] was run with its default parameters. RPS-BLAST (version ncbi-blast+-
2.2.28) [30] was run with its default parameters except that its E-value cutoff was set to 0.001
(“-evalue 0.001°). We tuned this parameter so as to match the precision rate of RPS-BLAST
with the other programs (~90%). Such a setting was applied to all RPS-BLAST runs referred in
this work. UProC (version 1.2.0) [33] was run using its default parameters with Pfam seed
alignments as the reference database. We chose Pfam seed alignments instead of Pfam full
alignments for fair comparison; because the query profiles of the other programs, i.e.
HMM-GRASPx, HMMER3, and RPS-BLAST, were built from Pfam seed alignments.

Benchmark experiment on the human saliva metagenomic data set
SRS013942

The data set was first retrieved from NCBI Sequence Read Archive (SRA) using the accession
ID SRS013942 and then quality trimmed using CLC Assembly Cell (version 4.0.12) using
parameters ‘-f 33 -m 55’, which only keeps reads that are longer than 55bp after the trimming.
Low-complexity regions of the reads were detected using DUST (from ncbi-blast+2.2.28) with
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default parameters; reads with >40% of their sequences being masked were subsequently dis-
carded. The preprocessed nucleotide reads were then translated into peptide reads using Frag-
GeneScan (version 1.17) [23] with parameters ‘-complete = 0 -train = illumina_10’. The data
set contains 12,036,685 reads in total and is available online from FragGeneScan-called peptide
reads available from https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/
Saliva.faa.tgz.

A list of protein family profiles compiled from the antiSMASH2.0 database (downloaded on
May 29" 2015) was used as the queries (S5 Table). Because RPS-BLAST does not build PSSMs
out of the multiple alignments from scratch, only the Pfam profiles in the antiSMASH2.0 data-
base were used as the queries for this exercise because their corresponding PSSMs can be
directly retrieved from CDD. HMM-GRASPx, HMMER3, and RPS-BLAST were run with the
parameters described in the previous section. Note that UProC was allowed to use Pfam full
alignments as its reference database as recommended by the UProC authors to optimize its
performance. The reads recruited by each of the programs were then assembled using SFA-SPA
(version 0.2.1) [21] using default parameters. The resulting assembled contigs are available
online at https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/
SalivaAssembledContigs.faa.tgz. True contigs (.c.) were defined as the contigs that can be
aligned with the querying protein family profile using HMMER3 and passing the trusted E-
value cutoff 0.01; true homologous reads (t.r.) were defined as the reads that can be mapped
onto the true contigs using ‘graspx-map’. Correspondingly, the read-level (r.P.) and contig-
level (c.P.) precision rate for each programs were respectively defined as follows:

_ #trueReads

_ . _ #trueContigs
" FttotalReads

deP.=——>.
nee #totalContigs

Analysis of the human supragingival and stool metagenomic data sets

Twelve metagenomic data sets from six healthy individuals (each individual contributing to
one supragingival and one stool data set) were downloaded from NCBI SRA using the acces-
sion numbers provided in S4 Table. Trimmomatic [51] was used to trim the reads with param-
eters TLLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:75’. The trimmed nucleotide reads were then translated
into peptide reads using FragGeneScan (version 1.17) [23] with parameters ‘-complete = 0
-train = illumina_10’.

A list of AMR gene families from RESFAM (downloaded on Aug. 12", 2015) [41] was used
as the query (see S5 Table). HMM-GRASPx and HMMER3 were run as previously described.
Only the protein families that had at least 10 homolog reads predicted by both HMM-GRASPx
and HMMER3 were selected for further analysis. In total 77 protein families were selected. The
abundances of these 77 protein families were represented as the RPKM; and the RPKM data is
available online from https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/
RESFAMResults.tgz. Sample-wise hierarchical clustering was performed on the RPKMs using
the R function ‘heatmap.2’ with one minus Spearman’s correlation as the distance measure and
the Weighted Pair Group Method with Averaging (WPGMA) as the clustering algorithm
(parameters used: ‘scale = "col", hclust = function(x) hclust(x,method = "mcquitty"),
distfun = function(x) as.dist(1-cor(t(x), method = "spearman"))’).

Analysis of the human oral metatranscriptomic data set SRP049210

All data sets from the project SRP049210 were downloaded from NCBI SRA database. Quality
trimming was performed using CLC Assembly Cell (version 4.0.12) using parameters ‘-f 33 -m
55" and low-complexity regions of the reads were detected using DUST (from ncbi-blast
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+2.2.28) with default parameters; reads with >40% of their sequences being masked were sub-
sequently discarded. The remaining reads were then further checked for ribosomal sequences
using RIBOPICKER (version 0.4.3) [52]. The nucleotide reads were then translated into pep-
tide reads using FragGeneScan (version 1.17) [23] with parameters ‘-complete = 0

-train = illumina_10’.

Fourteen strains were found important and prevailing across all samples as their genomes
recruits the largest amount of reads from all time points (>70%, BWA version 0.7.12 was used
for the mapping with default parameters, see ref. [7]). These strains include Streptococcus sali-
varius CCHSS3, S. vestibularis F0396, S. sp. C-150, S. mitis bv_2_str F0392, S. thermophilus
LMD-9, S. parasanguinis ATCC15912, S. sanguinis ATCC 49296, S. agalactiae ATCC 13813,
Veillonella atypica ACS-134-V-Col7a, V. dispar ATCC 17748, Lactobacillus fermentum
IFO3956, Klebsiella sp. MS 92-3, Gemella haemolysans ATCC 10379 and Fusobacterium sp.
2_1_31 [7]. Only the reads that can be mapped onto these 14 genomes were selected for the
benchmark experiments. Because the majority of the reads can be mapped onto these 14 strains
(64-75%, see S11 Table), the benchmark data set will largely reflect the actual performance of
the programs on these human oral MT data sets.

A list of biosynthetic gene cluster profiles registered in antiSMASH2.0 was used as the quires
(S3 Table). Ground-truth homologous reads were constructed as by first calling the protein
coding regions of these 14 complete genomes using FragGeneScan (using parameter ‘-com-
plete = 1 -train = illumina_10’), searching the querying profiles against the called proteins
using HMMER3 and identifying the homologous regions, and then extracting the reads that
were mapped to the corresponding genomic intervals of these homologous regions. The
ground-truth homologous reads are available online from https://sourceforge.net/projects/
hmm-graspx/files/SupplementaryData/OralGroundTruth.tgz. HMM-GRASPx and HMMER3
were run as previously described; and the search results of the programs are available online
from https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/
OralSearchResults.tgz.

To perform DE analysis, given a protein family, the reads recruited by HMM-GRASPx/
HMMER3 were partitioned according to their BWA mappings against the 14 genomes. The
ground-truth read count for a given protein family of a given genome was computed by sum-
ming all reads that were mapped to the homologous regions of the corresponding protein fam-
ily of the corresponding genome. The raw read count generated by HMM-GRASPx and
HMMER3 and the ground-truth read count are available from https://sourceforge.net/
projects/hmm-graspx/files/SupplementaryData/Oral AbundanceCorrelation.tgz. The raw read
counts were fed into DESeq2 (version 1.10.1) to perform DE analysis between samples that
were collected at Ohr and 6hr. To define condition group in DESeq2, experiments SRX739395,
SRX745225, and SRX748266 were pooled as condition Ohr; and experiments SRX748253 and
SRX748263 were pooled as condition 6hr. Protein families that were predicted with P-values
less than 0.05 were considered as differentially expressed. The DE results are available from
https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/OralDEResults.tgz.

For the targeted assembly experiment, all reads from the data sets were searched using
HMM-GRASPx and HMMERS. The recruited reads were further assembled in both nucleotide
level and protein level. Both protein- and nucleotide-level targeted assembly experiments were
performed on 81 antiSMASH?2.0 protein families that are longer than 200 HMM states (S8
Table). All corresponding peptide/nucleotide reads from the eight samples whose peptide-
products have been recruited by a given program (HMM-GRASPx or HMMER3) were pooled
together for assembly.

For protein-level targeted assembly, the peptide reads were assembled using SFA-SPA (ver-
sion 0.2.1) [21] using default parameters. Short contigs (that are shorter than 60aa, i.e. the
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expected sum of lengths of two peptide-reads) were discarded. The assembled protein contigs
are available online from https://sourceforge.net/projects/hmm-graspx/files/
SupplementaryData/OralTargeted Assembly.tgz. The normalized N50 was calculated as the
N50 for the contig set over the length of the corresponding querying protein family. Correct-
ness of the contigs was verified by aligning them to the corresponding querying protein family
profile using HMMER3 with default parameters. Contigs with a resulting E-value that is more
significant than 0.01 was considered as true contigs. The peptide reads were mapped against
the contigs using ‘graspx-map’ to estimate the assembly rate.

For nucleotide-level targeted assembly, the nucleotide reads were assembled using SPAdes
(version 3.5.0) [18]. Single-end assembly mode was used and no error correction was per-
formed (using ‘—only-assembler’). Short contigs (that are shorter than 180nt, i.e. the expected
sum of lengths of two nucleotide-reads) were discarded. The assembled nucleotide contigs are
available online from https://sourceforge.net/projects/hmm-graspx/files/SupplementaryData/
OralTargeted Assembly.tgz. The normalized N50 was calculated as the N50 for the contig set
over the length of the corresponding querying protein family multiplied by three, i.e. the codon
length. Correctness of the contigs was verified by first translating them into proteins using
FragGeneScan with parameters ‘-complete = 1 -train = illumina_10" and then aligning them to
the corresponding querying protein family profile using HMMER3 with default parameters.
Contigs with a resulting E-value that is more significant than 0.01 were considered as true con-
tigs. The nucleotide reads were mapped against the remaining contigs using BWA with default
parameters to estimate the assembly rate.

To infer the taxonomic origin of the nucleotide contigs assembled using HMM-GRASPx
recruitments, the true nucleotide contigs were further searched against the NCBI non-redun-
dant nucleotide database (NT, downloaded on Oct. 20, 2015) using BLASTN (ncbi-blast+-
2.2.28) with default parameters and the NCBI non-redundant protein database (NR,
downloaded on Oct. 20™, 2015) using BLASTX (ncbi-blast+2.2.28). Taxonomy of the contigs
that did not hit any NT entries was inferred using KRAKEN (version 0.10.5-beta) [48] with
default parameters and RefSeq (downloaded on Jan 13, 2015) as the reference database.
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$2 Table. The Pfam families that were selected as the queries for the benchmark experiment
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(XLSX)

S3 Table. Benchmark results of HMM-GRASPx, HMMERS3, RPS-BLAST, and UProCon a
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