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Abstract

Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumber the cells in 

the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate 

of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to 

cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed 

at promoting GI tract homeostasis.
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 1 Introduction

Breast cancer is the most frequently diagnosed cancer in women [1–3]. It has been known 

for some time that antibiotics and anti-inflammatory drug therapy, such as aspirin, alter 

relative risks for breast cancer in women [4–6]. However, the etiopathogenic factors leading 

to breast malignancy are not well understood [5, 7, 8]. During studies of gastrointestinal (GI) 

tract inflammation, it was discovered that certain gut commensal bacteria trigger not only 

colonic tumors but also mammary and prostate gland tumors in susceptible mouse models 

[9, 10]. More recently, human milk-borne microbes were found to inhibit mammary 

neoplasms in predisposed mice [11], with effects transcending several generations [12]. This 

raises the intriguing possibility that our microbial passengers may unveil novel targets for 

cancer prevention and therapy.

 1.1 Cancer development is a multi-factorial process

Cancers of tissues including the colon and breast are attributable to complex interactions 

between cells surviving genetic damage and their micro- and macro-environments [13–16]. 

This continuous interplay eventually leads to the formation of indestructible cancer cell 

clones through a natural selection process [14]. Immune and stromal cells, cytokines, 

proteases and hormones are now acknowledged as major environmental contributors in the 
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natural history of cellular malignant transformations [13, 14]. Consequently, the immune 

system status [17], the metabolic profile [18] and the psychological condition of the host 

[19], which influence each other at the whole organism level, could be viewed as external 

determinants of the perturbed ecosystem of abnormal cells with neoplastic potential.

Studies in animal models of cancer increased the understanding of the multistep evolution of 

dysplasia and pre-neoplasia to cancer [11, 20–22]. Several of these studies have also 

highlighted the fact that early neoplastic lesions are less autonomous in their growth than 

previously thought [11, 22–26]. Instead, their thriving and evolution depends on their micro- 

and macro-environment[13–15, 17, 27, 28]. This finding raises interesting possibilities for 

cancer prevention. Indeed, accidental gene mutations occurring during the lifetime of a 

human being are countless [15, 29]. Therefore, most people develop focal dysplastic and 

pre-neoplastic lesions during their lifetimes. These lesions rarely develop into cancer. 

However, co-existing local or systemic smoldering inflammatory disturbances of 

homeostasis have a trophic effect on them, promote their development, and greatly increase 

the chances of carcinogenesis [15, 17, 23].

Taken together these recent conceptual advances in tumor biology suggest that immune 

system elements, hormones and psychosomatic factors may determine the fate of pre-

neoplastic lesions towards progression to cancer through interrelated mechanisms. This 

raises an important question whether effective modalities that could contribute towards 

shaping an overall systemic homeostatic, non-tumor promoting status may exist.

Recent findings using mouse models suggest this may be possible. It appears that 

supplementation with certain gastrointestinal bacteria initiates multifaceted systemic events 

that overlap with basic pro-carcinogenic signaling [12, 27, 28, 30–34]. In this case, bacteria 

apparently suppress the evolution of early neoplastic lesions to cancer in epithelia locating 

distally from the gut, such as those of mammary gland, by down-regulating the systemic 

inflammatory index in the form of pro-inflammatory cytokine levels and inflammatory cells 

[11]. Beneficial Firmicutes bacteria including Lactobacillus spp are likewise able in mice to 

interrupt metabolic disorders such as obesity and induce a reproductive fitness-matching 

hormonal milieu with youthful testosterone, free thyroxin (T4), and oxytocin levels [35–37]. 

Interestingly, these same hormones have been connected with healthful mentality and 

anxiolytic effects [38–40]. As pivotal elements of the gut microbiota-brain axis, certain 

gastrointestinal tract bacteria are being introduced as psychobiotics due to their potential to 

counteract depression and promote a sense of well-being [41].

 2 Our gut reactions: a balancing act that shapes systemic immune tone

The GI tract encompasses the largest surface of the human body where microbial products 

interact with the immune system. It has become clear that balance of systemic health is 

routinely enforced by activities of CD4+ T regulatory (TREG) cells along mucosal surfaces. 

These lymphocytes have evolved to play a sophisticated balancing act of allowing host 

protective immune responses during acute inflammatory responses, while later regaining 

suppressive roles that limit deleterious pathological sequellae of chronic smoldering 

inflammation [42–44]. Recent evidence highlights the important developmental and 
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functional associations of intestinal microbiota with TREG cells [45–48]. Both in vitro data 

and lymphocyte titration experiments in preclinical models have revealed that homeostatic 

potency of TREG [ie., ability of TREG to restore homeostasis after environmental insults] is 

modulated by prior intestinal bacterial challenges [9, 23, 49–55]. These studies on TREG 

cells complement other data showing an array of different effects of gut bacteria on systemic 

innate and adaptive immunity [56] thus solidifying a pivotal role for gut microbiota in 

shaping systemic immune tone and responses [Figure 1].

Disruptive events in the GI tract also increase risk for microbial translocations [57] together 

with systemic immune cell trafficking. Microbial translocation from gut to mammary tissue 

has been postulated in breast cancer etiopathogenesis [ 74]. The subsequent increase of the 

systemic inflammatory index would be expected to increase likelihood of cancer in distal 

tissues. However, the bacterial translocation due to the compromised intestinal integrity 

caused by cancer treatment therapies has been shown to augment anti-tumor immunity 

networks of activated myeloid cells and T-lymphocytes. This beneficial effect was lost in 

germ-free mice or animals treated with antibiotics. Therefore, in this setting, bacterial 

translocation worked synergistically to certain cancer therapeutic regimens [32, 33, 56, 58]. 

This discrepancy is not surprising. The divergent effects of translocating bacteria-induced 

systemic immune responses on neoplastic disease outcomes reflect the multifaceted 

relationship of inflammation with cancer.

Taken together, there is abundant evidence that bacteria modulate cancer development and 

growth. Finding that bowel bacteria or their products promote a competent, healthy immune 

system provides an explanation for perplexing increases in cancers arising from epithelia in 

colon, breast and other sites in countries with more stringent hygiene practices [23, 59]. 

Along similar lines, chronic antibiotic therapy may disrupt constructive bacterial processes, 

ultimately leading to higher rates of breast cancer in women [4]. Systemic NSAID therapy 

has been linked with significant decreases in several types of cancer [60–63]. Thus, ways in 

which gut microbiota stimulate inherent host homeostatic properties are an attractive target 

for systemic good health approaches using probiotic bacteria or microbial product vaccines.

 3 Cancer and Inflammation: Interleukin-6 and neutrophils

In the context of cancer, inflammation is widely believed to represent the body’s fight 

against tumor cells [64, 65]. Other data, however, suggests just the opposite; chronic 

smoldering inflammation may be a cause of cancer and is a powerful stimulus for tumor 

growth and invasion [66–68]. These opposing observations are not easily reconciled, and are 

most easily comprehended in the context of immune balance, with cancer arising during 

dysregulated attempts by the host animal to restore homeostasis after an insult.

Several lines of evidence support that pathogenic GI tract microbiota stimulate certain innate 

immune cells to enhance tumor formation throughout the body [9, 22, 69–73] [9, 74]. In 

order to identify the key immune cell players, prior studies have built upon reciprocal 

systemic relationships existing between neutrophils, mast cells and macrophages with cells 

of adaptive immunity [70, 75–81]. During homeostasis, these immune networks are 

persistently down-regulated by anti-inflammatory activities of CD4+ TREG that bestow 
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intestinal homeostasis [9, 52, 69]. In this context, a weakened TREG-mediated inhibitory 

loop imparts carcinogenic consequences of elevated IL-6 and possibly IL-17, leading to 

more frequent inflammation-associated distal cancers [82]. In this context, neutrophils have 

been identified in animal models as an important factor in cancer initiation and development 

[24–26, 70] [83] [84–88]. A distant neoplastic effect of a commensal gut microbe was 

recently shown in FVB-Tg(C3-1-TAg)cJeg/JegJ mammary tissue by a neutrophil-mediated 

mechanism [75]. Importantly, systemic interplay between microbes, IL-6, and neutrophils 

was recently shown in human patients with breast cancer [77].

To the same extent that pathogenic gut bacteria can lead to carcinogenic events in distant 

tissues, it appears that beneficial bacteria may inhibit or even suppress carcinogenesis. A 

prototype beneficial microbe Lactobacillus reuteri was recently shown to rescue mice from 

age-associated obesity and the deleterious IL-6 and IL-17-rich smoldering systemic 

inflammatory obese status [10]. Obesity has been linked with postmenopausal mammary 

cancer [89–91]; thus, it was subsequently examined and shown that beneficial Lactobacillus 
sp microbes inhibit obesity-associated mammary carcinogenesis in mice [75]. Interestingly, 

the same anti-neoplastic effect occurred in the Her-2/Neu mouse, a genetically engineered 

mouse model of mammary cancer, in which the association between immunity and 

mammary carcinogenesis is less obvious. This animal model is transgenic for ErbB2 

Epidermal Growth Factor [EGF] receptor and over-produces the protein HER-2; a condition 

that occurs in up to 30% of breast cancer patients and carries a poor prognosis [20].

 4 It starts earlier in life

Recently, much attention has been focused on the possibility that modulating intestinal flora 

early in life may provide life-long protection against cancer. Prior work [9, 51, 52, 74, 92] 

supports a model whereby prior enteric infections serve to suppress gut inflammation, 

consistent with the observations of Belkaid and Rouse (2005) involving immune 

competency and TREG cells [50]. More recent evidence highlights the importance of 

intestinal microbiota during maturation of the immune system [45–48]. Data from 

preclinical models has substantiated this notion that host ability to restore homeostasis after 

environmental insults is modulated by prior intestinal bacterial exposures [9, 23, 49–55]. 

This makes sense involving a paradigm proposed by Kuchroo and co-workers [93, 94] 

showing that ability of TREG to enforce homeostasis and inhibit immune-mediated diseases 

depending upon levels of inflammation, and IL-6 in particular. In this paradigm, elevated 

levels of IL-6 trigger a T helper type (Th)-17 host response that contributes to worsening 

systemic disease conditions. Taken together, these observations link the immune system, 

gastrointestinal infections, and seemingly divergent downstream phenotypes: allergies, 

autoimmune disease, and cancer. These observations suggest that TREG may do more than 

block constructive anti-cancer responses [64, 65]. Following this reasoning, a model in 

which childhood infections protect from inflammatory diseases later in life, TREG cell 

biology may help explain unanswered questions of cancer risk and modern lifestyle.

During early life in mammals, the immune system programming process is chaperoned by 

milk-borne lactic acid bacteria that apparently serve to protect nursing infants by stimulating 

anti-inflammatory cytokine IL-10 and TREG cells along naïve mucosal surfaces. Modern 
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lifestyle practices that remove natural exposures due to Caesarian births and bottle-feeding 

may compromise host ability to navigate future mucosal challenges. It is promising that 

administration of similar beneficial bacteria later in life may serve to prevent enteric 

inflammation [95, 96] as well as a wide variety of inflammation-associated systemic 

disorders [97]. For example, as a consequence of eating L. reuteri, aged mice displayed 

superb integumentary health with increased wound healing capacity, and resisted age-

associated thyroid and testicular involution [10, 98]. Dosing mice orally with L. reuteri 
isolated from human milk was proven sufficient to down-regulate systemic inflammatory 

cytokines and neutrophil accumulations [37, 98], in addition to lowered risk for mammary 

cancer [78], in mouse models.

According to recent studies, diet and dietary microbes may have transgenerational cancer 

consequences involving integrated immune and hormonal factors [99]. De Assis et al have 

shown that descendant generations of female rats fed a high-fat diet or exposed to estrogen 

during pregnancy are more prone to carcinogen-induced mammary cancer. In those studies, 

the increased sensitivity to mammary chemical carcinogenesis was epigenetically inherited, 

since offspring rats had an altered mammary tissue DNA methylation pattern [99]. 

Interestingly, both treatments used to achieve this epigenetically-regulated effect connect 

with pivotal elements of one proposed gut-centric mechanism of remote cancer risk control 

involving gut microbiota and regulatory T-cells. High fat diets have been shown to alter gut 

microbial communities in both rodents [98][99] and human beings [100]. In mice, high-fat 

diet and the related obesity-type gut microbiota coincide with reduced numbers of TREG 

cells in both mesenteric and mammary lymph nodes [78, 98]. In the offspring with maternal 

estrogen changes, the prenatal exposure to estrogens disrupts T-cell differentiation in the 

thymus and has long-term effects in its immune system [103] including reduced TREG cells 

[104]. Disrupted thymic maturation of suppressive CD4+ T cells has been recently shown to 

be responsible for spontaneous cancer upon aging [55]. Estrogenic prenatal exposures have 

been associated with increased mammary cancer later in life, but the mechanism has not 

been fully elucidated [101] [102] [105]. It is intriguing to hypothesize that gut microbiota, 

hormones and dysfunctional thymus, during the perinatal period are implicated with TREG 

cells and unbalanced immune responses to explain increased cancer risk in subsequent 

generations. Indeed, a recent study showed that detrimental effects of the obesity-type gut 

microbiota were neutralized by enriching the microbiota of descendent mice with beneficial 

lactic acid bacteria [99].

 5 Conclusion

It would follow logically that microbial measures aimed at restoring immune balance and 

reducing systemic inflammatory index would be beneficial for counteracting cancer. Yet, the 

roles of gut microbes may be far more complex, depending on the stage of the neoplastic 

disease or the specific aspects examined. Although it remains unclear precisely how 

microbes achieve these beneficial effects, this work highlights the need to exploit bacteria in 

novel cancer prevention and treatment strategies aimed at promoting intestinal homeostasis.
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Figure 1. A proposed model of gut microbe-induced extra-intestinal carcinogenesis
Humans infected with pathogenic gut bacteria are at increased risk for inflammation and 

cancer. The compromised intestinal epithelial barrier during pathogenic infection leads to 

translocation of bacteria thereby triggering systemic activation of immune cells, culminating 

in an elevated septic and systemic inflammatory index and to cancer in distant sites such as 

breast tissue. Immunocompetent hosts have efficient T regulatory (Treg) cell responses in 

response to microbial challenges that help restore gut epithelial homeostasis.
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