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Abstract

RNA SHAPE chemistry yields quantitative, single nucleotide resolution structural information 

based on the reaction of the 2′-hydroxyl group of conformationally flexible nucleotides with 

electrophilic SHAPE reagents. However, SHAPE technology has been limited by the requirement 

that sites of RNA modification be detected by primer extension. Primer extension results in loss of 

information at both the 5′ and 3′ ends of an RNA and requires multiple experimental steps. Here 

we describe RNase-detected SHAPE (Selective 2′-Hydroxyl Acylation analyzed by Protection 

from Exoribonuclease) that uses a processive, 3′→5′ exoribonuclease, RNase R, to detect covalent 

adducts in 5′-end labeled RNA in a one-tube experiment. RNase R degrades RNA but stops 

quantitatively three and four nucleotides 3′ of a nucleotide containing a covalent adduct at the 

ribose 2′-hydroxyl or the pairing face of a nucleobase, respectively. We illustrate this technology 

by characterizing ligand-induced folding for the E. coli thiamine pyrophosphate riboswitch RNA. 

RNase-detected SHAPE is a facile, two-day approach that can be used to analyze diverse covalent 

adducts in any RNA molecule, including short RNAs not amenable to analysis by primer extension 

and RNAs with functionally important structures at their 5′ or 3′ ends.
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 INTRODUCTION

Most RNA molecules form specific secondary and tertiary structures as a prerequisite for 

carrying out their function1,2. Moreover, both large-scale and subtle conformational changes 

impact the biological roles of many RNAs. Chemical probing technologies have proven to 

be especially powerful for understanding both global and fine-scale components of RNA 
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structure3,4. Selective 2′-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) yields 

quantitative and nucleotide-resolution structural information for RNAs ranging in size from 

tRNA and small riboswitches5,6 to entire RNA genomes7,8. SHAPE chemistry takes 

advantage of the discovery that the reactivity of the 2′-hydroxyl position is highly sensitive 

to the precise conformation of a given nucleotide. Flexible nucleotides adopt many different 

conformations, a subset of which increases the nucleophilicity of the 2′-hydroxyl group. 

Electrophilic SHAPE reagents thus react preferentially at dynamic or conformationally 

flexible nucleotides to form 2′-O-adducts. Constrained nucleotides sample fewer 

conformations and generally show low reactivity with SHAPE reagents (Figure 1a)5,9.

Using this simple chemical modification reaction, it is possible to obtain a comprehensive 

view of RNA structure because most RNA nucleotides have a free 2′-hydroxyl, all four 

nucleotides react similarly with SHAPE reagents10, and reactivities correlate closely with 

biophysical measurements of local order in RNA11. All SHAPE reagents undergo an auto-

inactivating hydrolysis reaction with water (Figure 1b)9,12; this self-quenching reaction 

(with 55 M water) is so dominant that SHAPE chemistry is insensitive to the presence of 

most common biological buffer components. Thus, SHAPE chemical probing reactions can 

be performed in the presence of proteins, ligands, and other RNAs6,13–15 and in complex 

biological environments including inside viruses7,16. SHAPE reactivity data can be used to 

inform structure prediction algorithms to generate highly accurate RNA secondary structure 

models17.

Primer extension was first used to detect RNA cleavage fragments and covalent adducts 

resulting from chemical probing experiments over 20 years ago18,19. In primer extension, 

reverse transcriptase enzymes synthesize cDNA from an RNA template. Extension is 

inhibited when an RNA strand has been cleaved or the RNA base or backbone has been 

modified such that base pairing ability is disrupted. Extension is also inhibited if the adduct 

becomes too large to be accommodated in the polymerase active site. Primer extension 

coupled with recent innovations, including the use of fluorescently labeled DNA primers, 

analysis by automated capillary electrophoresis, availability of highly processive 

polymerases, and automated quantification of reactivity patterns, now makes it possible to 

obtain single-nucleotide resolution structural information for 300–650 nucleotides in a 

single experiment4,20,21. Thus, primer extension is the technology of choice when long read 

lengths are the primary consideration.

However, detection of RNA adducts by primer extension has important limitations and 

results in some regions of an RNA being inaccessible to analysis. First, reverse transcriptase-

mediated primer extension requires that a DNA oligonucleotide bind at a specific site 3′ to 

the region of interest. Second, the imperfect processivity of reverse transcriptase during the 

initial stage of primer extension results in pausing adjacent to the primer binding site. These 

factors result in a loss of structural data for 40–60 nucleotides at the 3′ end of the RNA. 

Third, primer extension typically results in a large number of cDNAs that correspond to full-

length extension products. These full-length products overlap with and result in a loss of 

structural data for 5–20 nucleotides at the 5′ end of the RNA. The combined loss of 45–80 

nucleotides of data at the 5′ and 3′ ends makes structural analysis of short RNAs in their 

native forms essentially impossible. The limitations of primer extension-based structure 
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probing are also evident in longer RNA sequences where structural data is not obtained at 

the ends8,17. A useful solution to this problem involves appending non-native flanking 

sequences, a “structure cassette”, on both ends of the RNA to move the region of interest to 

the readable center of the RNA22. Finally, although powerful and highly quantitative, the 

primer extension process requires multiple biochemical manipulations, RNA-specific primer 

design, and optimization of annealing and extension conditions.

RNase-detected SHAPE addresses these limitations by using a processive, nonspecific, 

3′→5′ exoribonuclease from Mycoplasma genitalium (RNase R) to detect covalent adducts 

in RNA6. RNase-detected SHAPE makes possible the direct analysis of RNA fragments that 

have been chemically modified either by SHAPE reagents that react at the ribose 2′-

hydroxyl group or reagents that react at the base pairing face of nucleobases6. The M. 
genitalium RNase R enzyme belongs to the ubiquitous RNR family of exoribonucleases that 

hydrolytically degrade structured RNAs to release 5′-monophosphates without requiring an 

exogenous helicase23–25.

Although a high-resolution structure of the M. genitalium RNase R enzyme is not currently 

available, we can make structural inferences based on homology modeling using the E. coli 
RNase II26 and S. cerevisiae Rrp4427 structures. The RNase R enzyme consists of four 

major domains: two N-terminal cold shock domains, CSD1 and CSD2; a central, highly 

conserved, ribonuclease (RNB) domain; and a C-terminal S1 domain (Figure 2). The RNB 

domain contains the RNA substrate-binding channel and the active site for hydrolytic 

degradation of RNA (Figure 2, inset). The RNA strand is threaded to the RNB domain 

through an opening between the CSD1 and RNB domains (Figure 2, black strand) and 

makes numerous contacts with protein residues in the RNB domain (Figure 2, inset).

Experimentally, we discovered that RNA fragments containing 2′-O-adducts or 

modifications at the base-pairing face of guanosine are 3 and 4 nucleotides longer, 

respectively, than the actual site of modification6. These fragment lengths were determined 

by comparison with guanosine markers generated by iodine-mediated cleavage of the 

phosphorothioate-substituted backbone in adduct-free RNAs6. The offsets are due to the 

different contacts made by the 2′-hydroxyl group and the nucleotide base-pairing face of the 

RNA within the substrate binding channel of the RNase R enzyme. RNase R glutamic acid 

residue 463 forms a hydrogen bond with the 2′-hydroxyl group of nucleotide N-3 (Figure 2, 

red sphere). In contrast, serine 433 makes a hydrogen bond at nucleotide N-4 (Figure 2, blue 

nucleotide). This “two site” model for interactions between the enzyme and the RNA strand 

is supported by two pieces of data. First, glutamic acid at position 463 is evolutionarily 

conserved throughout the RNR enzyme family and interacts with the 2′-hydroxyl of RNA in 

several family members26,27. Mutation of this residue in RNase II from glutamic acid to 

alanine results in a loss of RNA cleavage specificity28. Second, although the residue is not 

always a serine, a hydrogen bonding interaction between a residue in the substrate channel 

and the nucleotide base-pairing face at N-4 is also highly conserved.

RNase-detected SHAPE was previously used to characterize structural transitions induced 

upon ligand binding to the aptamer domain of the Escherichia coli thiamine pyrophosphate 

(TPP) riboswitch6. RNase-detected SHAPE analysis of the TPP riboswitch revealed the 
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secondary structure of the ligand-free state, the nucleotides undergoing the largest 

conformational changes upon ligand binding, and the existence of a single nucleotide bulge 

register shift that likely modulates a long-range tertiary interaction. The usefulness of 

RNase-detected SHAPE is general and we anticipate that this approach will make possible 

structural analysis of miRNAs and their precursors, riboswitches, and small non-coding 

RNAs in their native forms. RNase-detected SHAPE will also facilitate complete analysis of 

functionally important structures at the 5′ and 3′ ends of large RNAs, including the genomes 

of RNA viruses.

 EXPERIMENTAL DESIGN

RNase-detected SHAPE yields quantitative reactivity data for almost every position in an 

RNA. The technology combines the previously well-characterized SHAPE acylation 

reaction9,12,29 with a simple 3′→5′ enzymatic degradation step using a 5′-end labeled RNA. 

The current protocol is optimized for highly structured short RNAs (approximately 80–140 

nucleotides). However, RNase R digestion temperature and time can be optimized for 

analysis of longer RNAs. The key experimental variable is that RNase R enzyme activity is 

strongly sensitive to Mg2+ concentration. The optimal range of Mg2+ concentration for 

RNase R activity with structured RNAs is 0.25 – 0.50 mM. All nucleotide positions up to 

and including the 3′ end can be resolved with sufficiently long electrophoresis times. 

Information for approximately five nucleotides at the 5′-end of the RNA is obscured 

because, at the end of digestion, the RNase R enzyme remains bound to the very end of the 

RNA strand.

 RNAs and RNA folding

RNase-detected SHAPE is ideally suited for analysis of short in vitro transcripts. This 

protocol highlights analysis of changes in conformational states that occur upon small 

molecule binding to a riboswitch RNA and uses an RNA folding approach and buffer 

conditions that work well for the TPP riboswitch RNA. Other RNAs may require different 

conditions: essentially any folding environment appropriate for an RNA of interest can be 

used. RNase-detected SHAPE can be applied to understanding the changes in RNA folding 

as a function of temperature, ion concentration, and in the presence of proteins or ligands. 

The RNA of interest must be 5′-end labeled30,31 to facilitate detection of RNase digestion 

products by electrophoretic separation.

 RNA modification

Any SHAPE reagent9,12,29,32 can be used in RNase-detected SHAPE (for a summary of 

useful reagents, see Ref. 33). For this protocol, we used 1-methyl-7-nitroisatoic anhydride 

(1M7)12. However, any reagent that reacts with an RNA nucleotide and is sufficiently bulky 

to inhibit movement of the RNA within the RNase R active site (Figure 2) is detectable by 

this approach. For SHAPE electrophiles, the reagent is added to the folded RNA and allowed 

to react until inactivation by hydrolysis is complete (Figure 1). SHAPE reagents thus do not 

require an explicit quench step. For most conventional reagents, a quench step is required; 

for example, kethoxal is quenched with unbuffered boric acid18. In addition, a no reagent 

control is performed to account for imperfect digestion by the RNase R enzyme. Once the 
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RNA modification reaction is complete, EDTA is added to chelate free Mg2+ and the RNA is 

recovered by ethanol precipitation to remove buffer components that may inhibit RNase R 

activity.

 RNase R digestion

Sites of 2′-O-adduct formation are detected by M. genitalium RNase R23, a 3′→5′ 

exoribonuclease that (i) is readily heat inactivated6, (ii) degrades highly structured RNAs, 

and (iii) is inhibited by 2′-O-adducts in the substrate RNA. The enzyme is sensitive to Mg2+ 

concentration so it is critical that Mg2+ not be carried over from the chemical modification 

step. The RNase R enzyme is inactivated by addition of EDTA and heating at 95 °C for 3 

min. A no reagent, no enzyme control is performed to identify intrinsic or pre-existing 

degradation sites in the RNA. The RNA fragments are then recovered by ethanol/

isopropanol precipitation, optimized for recovery of small RNA fragments, and resolved by 

denaturing polyacrylamide gel electrophoresis.

 Sequencing

A sequencing lane is used to assign the bands in the (+) and (−) SHAPE reagent lanes. 

Sequencing lanes are conveniently generated by kethoxal modification of denatured RNA 

followed by RNase R degradation of the RNA. Kethoxal covalently modifies single-stranded 

guanosine residues at the N1 and N2 positions to form a cyclic adduct18. SHAPE 

modification and kethoxal sequencing reactions can be performed concurrently. Kethoxal-

mediated sequencing is advantageous because the resulting RNA fragments possess covalent 

adducts and 3′-ends that are similar to RNase-detected SHAPE fragments. For fragments 

longer than approximately 15 nucleotides, RNAs containing SHAPE and kethoxal adducts 

migrate essentially identically. There are small differences, approximately one-half of a 

nucleotide, in electrophoretic migration for shorter fragments. In practice, band assignment 

using kethoxal sequencing ladders is straightforward.

 Data analysis and assignment of reactivities

RNase-detected SHAPE yields RNA fragments that terminate three nucleotides 3′ of the site 

of modification (Figure 2, inset). Kethoxal sequencing, detected by RNase R degradation, 

yields RNA fragments that terminate four nucleotides 3′ of the kethoxal-modified guanosine 

nucleotide. Thus, as visualized using 5′-labeled RNA, the kethoxal-mediated guanosine 

sequencing lanes are exactly one nucleotide shorter than the corresponding 2′-SHAPE 

adducts (Figure 3a). Band intensities, resolved on sequencing gels, can be conveniently 

quantified using the Semi-Automated Footprinting Analysis (SAFA) software34. SHAPE 

data are highly reproducible, differences in normalized reactivities between independent 

replicates are typically less than ±10% and 0.2 absolute SHAPE units.

 MATERIALS

 REAGENTS

• 5′-[32P]-labeled RNA at a concentration of 0.1 μM or greater in 10 mM 

HEPES, pH 8.0
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CRITICAL: RNA preparation must be performed in an RNase-free environment. RNA for 

modification and RNase R digestion can be stored in aliquots to reduce RNase 

contamination.

• Glycogen, 20 mg/mL (Roche, cat. no. 901393)

• EDTA, 0.5 M (Ambion, cat. no. 9260G)

• Formamide (Acros Organics, cat. no. AC18109)

• DMSO, molecular biology grade (Sigma-Aldrich, cat. no. 115959)

CRITICAL: DMSO bottle should be stored in a desiccator at room temperature.

• 1-methyl-7-nitroisatoic anhydride (1M7) (synthesis is described in ref. 12 

and in a Supporting Protocol)

CRITICAL: 1M7 should be stored in a desiccator at 4 °C.

• Kethoxal (USB, cat. no. 17930)

CRITICAL: Kethoxal should be stored at −20 °C.

• M. genitalium RNase R, 4.5 mg/mL, conveniently obtained by affinity 

purification using a C-terminal (His)6-tagged expression construct (see 

Supporting Protocol)

• Thiamine pyrophosphate (TPP) (Sigma-Aldrich, cat. no. C8754)

• Boric acid (Sigma-Aldrich, cat. no. B7901)

• SUPERase-In (Ambion, cat. no. AM2694)

• Alkaline phosphatase (Roche, cat. no. 1097075)

• T4 polynucleotide kinase (PNK) (New England Biolabs, cat. no. M0201S)

• 10× PNK buffer (New England Biolabs, cat. no. M0201S)

• γ-[32P]-ATP (6 × 106 Ci/mol, 10 Ci/L, Perkin Elmer, cat. no. BLU502Z)

• Reagents for high-resolution polyacrylamide gel electrophoresis, including 

29:1 acrylamide:bisacrylamide, 7 M urea, 1×TBE

 REAGENT SETUP

RNase R stop dye (96% formamide, 1 mM EDTA, pH 8.0, containing bromophenol blue 

and xylene cyanol tracking dyes)

TE (10 mM Tris, 1 mM EDTA, pH 8.0)

3.3× RNA folding solution (333 mM HEPES, pH 8.0, 333 mM NaCl, 33 mM MgCl2). A 

wide variety of solution conditions that stabilize the desired structural state of the RNA can 

be used. Buffer components, ionic strength, and ions can all be varied with the proviso that 

the pH should be maintained in the 7.6–8.3 range. In the SHAPE modification reaction, the 

buffer concentration should be greater than the final reagent concentration.
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10× 1M7 in DMSO A good starting 10× 1M7 concentration is 80 mM. The useful range of 

10× 1M7 concentration is 15–100 mM. Lower concentrations yield longer read lengths, but 

less intense bands.

10× kethoxal in H2O A good starting 10× kethoxal concentration is 20 mM [equal to 1 μL 

neat kethoxal (7.88 M) in 393 μL H2O].

10× RNase R reaction buffer (200 mM Tris-HCl, pH 8.0, 1 M KCl, 2.5 mM MgCl2)

10× Thiamine pyrophosphate solution (50 μM)

5′-[32P]-labeled RNA Prepared by performing the following steps: (i) Dephosphorylation 

reaction. Mix 50 mM Tris (pH 8.5), 0.1 mM EDTA, 50 pmol RNA, 300 units SUPERase-In, 

200 units alkaline phosphatase in 300 μL. Incubate at 50 °C for 1 h. (ii) 

Phenol:chloroform:isoamyl alcohol extraction, ethanol precipitation, and resuspension in 

TE. (iii) 5′-End labeling. Mix 10 pmol dephosphorylated RNA, 70 mM Tris (pH 7.6), 10 

mM MgCl2, 5 mM DTT, 1 μL [γ-32P]-ATP, 2 μL T4 polynucleotide kinase in 20 μL. 

Incubate at 37 °C for 30 min. (iv) Purify on 8% denaturing polyacrylamide gel (1× TBE, 7 

M urea). Use autoradiography to visualize and excise the band corresponding to the 

radiolabeled RNA. (v) Passively elute RNA overnight into TE and remove acrylamide pieces 

using a centrifugal filter device. (vi) Recover radiolabeled RNA by ethanol precipitation (no 

glycogen should be used if RNA will be stored after radiolabeling). Resuspend pellet in 10 

mM HEPES, pH 8.0. Alternatively, 5′-fluorescently labeled RNAs can be used, for labeling 

protocols see Refs. 30–31.

 EQUIPMENT

• Amicon micropure-EZ centrifugal filter devices (Millipore, cat no. 42533)

• −20 °C freezer

• Microcentrifuge for 1.5 mL tubes at 4 °C

• Phosphorimaging instrument and screen

• Gel dryer

• Sequencing apparatus for high-resolution polyacrylamide gel 

electrophoresis. We use vertical denaturing gels of dimensions 0.75 mm 

(length) × 31 cm (width) × 38.5 cm (height) that are 10–12 % (29:1) 

acrylamide, 90 mM Tris-borate, 2 mM EDTA and 7 M urea.

• Programmable incubator or heat block

 PROCEDURE

 RNA folding TIMING 40 min

1 Add 0.4 pmol (~10,000 cpm) 5′-[32P]-labeled RNA in 24 μL sterile H2O to a 

0.65 mL reaction tube.

2 Heat the RNA to 95 °C for 2 min; then immediately place on ice for 2 min.
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3 Add 12 μL 3.3× folding solution and mix.

4 Incubate the tube at the desired reaction temperature (25 or 37 °C) for 10 min.

5 Preincubate a 0.65 mL reaction tube containing 2 μL 10× ligand solution 

(thiamine pyrophosphate) or H2O.

6 Add 18 μL pre-folded RNA to 2 μL 10× ligand solution (thiamine 

pyrophosphate) or H2O (in this example, the TPP riboswitch is probed in the 

ligand-free and ligand-bound states).

7 Incubate tube at the desired reaction temperature (25 or 37 °C) for 20 min.

 RNA structure modification TIMING 1.5 h

8 Aliquot 1 μL 10× 1M7 in DMSO [for the (+) 1M7 reaction] and 1 μL neat 

DMSO [for the (−) 1M7 reaction (control)] into 0.65 mL reaction tubes.

9 Remove 9 μL of folded RNA and add to (+) and (−) 1M7 reactions. Mix 

thoroughly and incubate the reaction at 37 °C for 1.25 min. This is equivalent 

to five 1M7 hydrolysis half-lives12.

? TROUBLESHOOTING

10 After the reaction has gone to completion, recover the RNA by ethanol 

precipitation. To each tube (4 total), add 2.5 μL 100 mM EDTA (to chelate 

Mg2+), 90 μL sterile H2O, 5 μL 4 M NaCl, 1 μL 20 mg/mL glycogen, 380 μL 

100% ethanol; mix; and then incubate at −20 °C for 30 min. Precipitate the 

RNA by spinning at maximum speed (14000 rpm) in a microcentrifuge at 4 °C 

for 30 min.

? TROUBLESHOOTING

11 Remove ethanol supernatant and resuspend each RNA sample in 8 μL sterile 

H2O.

CRITICAL: The activity of M. genitalium RNase R is very sensitive to Mg2+ concentration. 

It is essential to remove all Mg2+ from the RNA modification (structure probing) step prior 

to the RNase R detection step.

PAUSE POINT. The modified RNA can be stored at −20 °C overnight.

 Kethoxal modification (performed concurrently with 1M7 modification)

12 Add 0.1 pmol 5′-[32P]-labeled RNA in 16 μL sterile H2O to a 0.65 mL reaction 

tube.

13 Heat the RNA to 95 °C for 2 min; then immediately place on ice for 2 min.

14 Add 2 μL 1 M HEPES (pH 8.0) and mix thoroughly.

15 Incubate the tube at 70 °C for 3 min.

16 Preincubate a 0.65 mL reaction tube containing 2 μL 20 mM kethoxal in sterile 

H2O at 70 °C for 1 min.
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17 Add the RNA to the kethoxal solution and mix well.

18 Incubate at 70 °C for 5 min.

? TROUBLESHOOTING

19 Quench reaction with 20 μL of 10 mM unbuffered boric acid.

20 Recover the RNA by ethanol precipitation. Add 60 μL sterile H2O, 10 μL 4 M 

NaCl, 1 μL 20 mg/mL glycogen, 380 μL 100% ethanol; mix; then incubate at 

−20 °C for 30 min. Precipitate the RNA by spinning at maximum speed in a 

microcentrifuge at 4 °C for 30 min.

21 Remove ethanol supernatant and add 400 μL 70% ethanol. Invert the tube to 

dislodge and wash pellet. Recover RNA by spinning at maximum speed in a 

microcentrifuge at 4 °C for 2 min.

22 Repeat step 21.

23 Resuspend RNA in 8 μL sterile H2O.

PAUSE POINT. The modified RNA can be stored at −20 °C overnight.

 RNase R digestion TIMING 2 h

24 Add 1 μL 10× RNase R reaction buffer to RNAs from steps 11 and 23.

25 Add 1 μL M. genitalium RNase R (4.5 mg/mL) to each tube. Mix well.

CRITICAL: Use aerosol-resistant tips for all steps involving pipetting active RNase R and 

solutions containing this enzyme prior to the heat inactivation step.

26 Incubate tubes at 50 °C for 30 min.

CRITICAL: RNA secondary structure is destabilized at elevated temperatures which 

facilitates RNase R degradation of structured RNAs6,35.

? TROUBLESHOOTING

27 Add 1 μL 100 mM EDTA then incubate at 95 °C for 3 min to inactivate RNase 

R.

CRITICAL: RNase R is irreversibly inactivated by heat6. This inactivation step is especially 

important to prevent RNase contamination when working in an RNA lab.

28 Recover RNA fragments by ethanol/isopropanol precipitation. To each tube 

add 90 μL sterile H2O, 10 μL 4 M NaCl, 100 μL 100% isopropanol, 250 μL 

100% ethanol; mix; and incubate at −20 °C for 30 min. Precipitate the RNA by 

spinning at maximum speed in a microcentrifuge at 4 °C for 45 min. 

(Alternatively, samples can be loaded directly onto the gel without ethanol/

isopropanol precipitation. However, precipitation reduces the total volume, 

concentrates the intensity of the 5′-label, and removes salt and buffer 

components to yield improved gel resolution).
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CRITICAL: Isopropanol is required to efficiently precipitate smaller RNA fragments. 

Omitting this step leads to loss of RNA fragments shorter than ~15 nucleotides.

? TROUBLESHOOTING

29 Remove supernatant and resuspend pellet in 7–9 μL RNase R stop dye.

30 Heat at 95 °C for 3 min.

PAUSE POINT. Samples can be stored at −20 °C overnight.

 RNA fragment analysis by gel electrophoresis TIMING ~7 h

31 Load ~2 μL of each reaction (~5000 cpm) in individual lanes of a 10% 

polyacrylamide sequencing gel (29:1 acrylamide:bisacrylamide, 1× TBE, 7 M 

urea). To resolve both the 5′ and 3′ ends of the RNA, perform electrophoresis 

for 90 min at 70 W, then reload the same samples in unoccupied lanes on the 

gel and continue electrophoresis for 150 min at 70 W. The samples loaded first 

will have been subjected to electrophoresis for ~240 min which will resolve 

nucleotides close to the 3′ end of the RNA; whereas, samples loaded later will 

provide data on the 5′ region.

? TROUBLESHOOTING

32 Dry the gel using a heated vacuum gel dryer for ~1 h.

? TROUBLESHOOTING

33 Expose the gel overnight to a phosphor screen and quantify scanned bands 

using a phosphorimaging instrument. Quantify the intensity of every well-

defined band in the gel for the (+) and (−) 1M7 lanes by two-dimensional 

densitometry using SAFA34.

34 Calculate the absolute SHAPE reactivity at each position in the RNA by 

subtracting the (−) 1M7 intensities from the (+) 1M7 intensities. In general, the 

data are normalized by excluding the top 2% of the reactive nucleotides, 

averaging the next 10% of reactive nucleotides, and then dividing all intensities 

by this averaged value22 (Supplemental Dataset 1). For longer RNAs, it may be 

necessary to correct for signal decay, as described7,13. The guanosine 

sequencing lanes generated by RNase R-detected kethoxal modification are 

exactly one nucleotide shorter than the corresponding sites of 1M7 

modification.

 TIMING

Steps 1–7: 40 min

Steps 8–11 and 12–23: 1.5 h

Steps 24–30: 2 h

Step 31: ~ 4 h

Steps 32–34: 3 h plus time necessary to expose screen
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 TROUBLESHOOTING

Troubleshooting advice can be found in Table 1.

 ANTICIPATED RESULTS

RNase-detected SHAPE makes possible single nucleotide analysis of local nucleotide 

flexibility for most nucleotides in an RNA, including those at the 5′ and 3′ ends. The 

experiment is performed in a single reaction tube and yields direct and experimentally 

straightforward detection of RNA covalent adducts.

The representative experiment described here was performed using an 80 nucleotide in vitro 
transcript corresponding to the aptamer domain of the thiamine pyrophosphate-sensing 

(TPP) riboswitch from the E. coli thiM mRNA36; no flanking sequences were added. The 

TPP RNA structure was probed in both the ligand-free and ligand-bound states. Kethoxal-

mediated sequencing at guanosine nucleotides were used to assign bands observed in the (+) 

and (−) SHAPE reagent lanes (Figure 3a). Bands at the top of the gel correspond to 

undigested full-length RNA and larger RNA fragments that are not fully resolved in this 

particular electrophoresis run (Figure 3a). Bright bands at the bottom of the gel are short 

oligonucleotide fragments that reflect the short RNA “handle” by which RNase R binds 

RNA, and correspond to the end products of 3′→5′ exoribonuclease digestion. Using RNase 

R-detected SHAPE, we resolved and quantified SHAPE reactivities for both the ligand-free 

and the ligand-bound riboswitch RNA states (Figure 3b).

RNase-detected SHAPE accurately recapitulates the previously characterized base-pairing 

pattern and tertiary structure interactions of the TPP-bound state36. Regions that are directly 

involved in TPP binding (J3-2 and nts 60–61, Figures 3b, 4b, 4c) are constrained and 

unreactive in the ligand-bound state. The prominent long-range tertiary interaction involving 

the L5 loop binding to the P3 helix results in low SHAPE reactivities for the loop 

nucleotides (Figures 3b and 4b).

RNase-detected SHAPE also revealed that the riboswitch aptamer domain undergoes 

significant conformational changes upon TPP binding as previously reported6 [compare (−) 

and (+) TPP reactions, Figure 3]. The SHAPE data support a specific, nucleotide resolution, 

secondary structure model for the ligand-free state6. The ligand-free state forms an open Y-

conformation in which unreactive helices (P2–P5) are linked together by relatively reactive 

and thus conformationally flexible joining regions (J2-4, J3-2 and nucleotides 60–62) 

(Figure 4a).

Comparing the SHAPE-supported ligand-free and ligand-bound states reveal changes that 

are consistent with previously described large-scale structural changes associated with 

ligand binding36–38 (see J3-2 and nts 60–61, Figure 4). In addition to these changes, RNase-

detected SHAPE uniquely reveals important fine-scale changes. For example, SHAPE 

detects formation of the A53-A84 non-canonical base-pair in the ligand-bound state (Figure 

4). Also, RNase-detected SHAPE reveals a single nucleotide register shift in the P3 helix 

upon ligand binding. In the ligand-free state, C22 is reactive and likely to be a single-

stranded bulge; whereas, in the ligand-bound state, C24 is reactive while C22 is unreactive. 
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Thus, C24 forms a bulged structure in the TPP-bound state (Figure 4). This register shift 

likely plays an important structural role because C24 mediates a stacking interaction with 

A6936,38, a nucleotide that contributes to docking of the loop nucleotides in L5 with the P3 

helix.

Superposition of SHAPE reactivities on the three-dimensional structure for the TPP-bound 

RNA riboswitch domain emphasizes the tight packing of this RNA. Although this RNA 

contains numerous regions that are depicted as single stranded in a secondary structure 

diagram, many of these elements are constrained by non-canonical local interactions or 

interactions with the TPP ligand and are unreactive (Figure 4c, nucleotides in black). The 

core of the TPP riboswitch aptamer domain is tightly packed and highly constrained. 

Locally flexible nucleotides, as measured by SHAPE, lie almost exclusively at the exterior 

of the structure (Figure 4c, emphasized in orange and red).

RNase-detected SHAPE allows quantitative, single-nucleotide detection of covalent adducts 

at the 2′-OH position and at base-pairing faces of the nucleobases using an adduct-inhibited 

3′→5′ exoribonuclease, RNase R. RNase R-mediated detection is simple to implement and 

should be broadly applicable for detection of diverse classes of covalent adducts in RNA. 

RNase-detected SHAPE will allow for direct single-nucleotide structural analysis of 

previously inaccessible RNAs, especially short non-coding RNAs and RNAs with 

functionally important structures at their 5′ and 3′ ends.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RNA SHAPE chemistry. (a) SHAPE reagents, including 1M7, react preferentially at 

conformationally flexible nucleotides to form 2′-O-adducts. (b) Concurrent reagent auto-

inactivation by hydrolysis.
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Figure 2. 
Model of Mycoplasma genitalium RNase R and the interactions that mediate covalent 

adduct detection in RNA. The path of the RNA strand (in dark gray) is shown relative to the 

major enzyme domains. Inset illustrates the substrate-binding channel of the ribonuclease 

(RNB) domain. Modification of a 2′-hydroxyl group prevents exoribonuclease digestion; the 

modified residue is shown as a red sphere at N-3. The nucleobase whose base-pairing face is 

recognized by hydrogen bonding with serine 433 is shown in blue at N-4. The site of RNA 

strand hydrolysis is shown as a green sphere and a catalytic Mg2+ ion is yellow. The 

homology model was generated using I-TASSER39. Figure is adapted in part from ref. 6.
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Figure 3. 
Representative RNase-detected SHAPE experiment. (a) SHAPE reactions, performed using 

the 1M7 reagent, for the (80 nucleotide) TPP riboswitch domain and kethoxal-mediated 

sequencing (indicated with a G) resolved by denaturing polyacrylamide gel electrophoresis. 

The guanosine sequencing marker is one nucleotide shorter than bands corresponding to the 

(−) and (+) 1M7 reactions. Guanosine nucleotides are indicated at left; structural landmarks 

in the RNA are highlighted on the right. (b) Absolute SHAPE reactivities in the absence 

(top) and presence (bottom) of TPP ligand. Columns are colored by individual nucleotide 

SHAPE reactivities (see scale). SHAPE data are normalized to a scale in which zero 

indicates no reactivity and 1.0 is defined as the average intensity of highly reactive positions 

(step 34)22.
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Figure 4. 
Structural transitions in the TPP riboswitch aptamer domain visualized by RNase-detected 

SHAPE. Absolute SHAPE reactivities are superimposed on secondary structure models for 

the riboswitch RNA in the (a) absence and (b) presence of TPP ligand. (c) Tertiary 

structure36 of the TPP-bound state. Nucleotides are colored by SHAPE reactivity using the 

scale shown in Figure 3. Nucleotides not probed in this experiment are shown in gray. 

Portions of this figure were reproduced with permission from ref. 6.
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Table 1

Step Problem Reason Solution

1–31 Bright bands present in the (−) 
1M7 lane.

RNase contamination, most 
commonly caused by 
endonucleases.

Identify contaminated solution using an RNase detection kit 
or by evaluating each step of the protocol by resolving a 
labeled test RNA on a denaturing gel.

1–31 Low band intensities in all lanes. 5′-[32P]-labeled RNA does 
not have sufficient specific 
activity.
Not enough 5′-[32P]-labeled 
RNA used for each 
experiment.

Repeat with freshly prepared [32P]-labeled RNA.
Repeat with a higher concentration of RNA.

6 Nucleotide transitions associated 
with ligand binding are not 
observed; (+) and (−) ligand 
states are identical.

Ligand binding is not 
occurring.

Increase ligand concentration.

8–9 Low or no signal in (+) 1M7 
lane.

Insufficient modification of 
RNA.

Perform modification using a 2-fold higher concentration of 
1M7. Ensure that 1M7 stock is kept dry – trace amounts of 
water will react with reagent. Make sure DMSO stock 
solution is also kept dry. Make fresh 1M7 solution for each 
experiment.

8–9 Bands observed close to the 3′ 
end of the RNA (top of gel), but 
no small RNA fragments 
observed.

Excessive modification of 
RNA.

Perform structure modification step using a 2-fold lower 
concentration of reagent.

10, 24–26 Very low signal in the (+) 1M7 
lane and an intense full-length 
RNA band is observed.

Poor or inefficient RNase R 
digestion.

RNase R is very sensitive to Mg2+ concentration – ensure that 
final divalent ion concentration is 0.25 mM. Use desalting 
columns after modification. Use fresh stock of RNase R if 
enzyme activity is low. Increase enzyme concentration or 
digestion time.

15–18 Some guanosine residues are not 
detected in the kethoxal 
sequencing lane.

Complete kethoxal 
modification prevented by 
RNA folding.

Repeat kethoxal modification step at 90 °C to insure that 
RNA is denatured.

16–18 No sequencing bands in 
kethoxal lane.

Insufficient kethoxal 
modification of RNA.

Increase kethoxal concentration and/or reaction time. Make 
fresh kethoxal solution for each experiment.

24–26 Bright bands observed in (−) and 
(+) 1M7 lanes that do not 
correspond to modification stops 
or RNase contamination.

Structure-induced pausing 
by RNase R enzyme.

Heat RNA in sterile H2O to 95 °C for 3 min, and place tube 
on ice. Add enzyme and incubate tube immediately at 50 °C. 
Increase digestion time.

28 No small oligonucleotide 
fragments in any lane.

Loss of small fragments 
during ethanol 
precipitation.

Add glycogen to ethanol/isopropanol precipitation step. 
Increase incubation time at −20 °C.

31 The faintest bands in the (+) 
1M7 lane have significantly 
different intensities as compared 
to the corresponding bands in 
the (−) 1M7 lanes.

Random error involved 
with volume measurement; 
gel loaded unevenly.

Small differences in background intensity can be accounted 
for by statistical normalization (step 34). If intensities are 
significantly different, the gel should be re-run by loading 
samples with similar amounts of RNA in each lane.

31 Low resolution of bands in all 
lanes (smearing).

Overloading of gel lane.
Uneven heating of gel 
during electrophoresis.
Excess salt present in 
samples before loading on 
gel.

Reduce the volume or concentration of RNA loaded onto gel.
Ensure that electrophoresis equipment works well.
Perform additional 70% ethanol wash. Use desalting columns 
after RNase R digestion.

32 Gel drying is not effective. Ensure that gel dryer seals properly.
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