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Abstract

Iron overload and iron toxicity, whether because of increased absorption or iron loading from 

repeated transfusions, can be major causes of morbidity and mortality in a number of chronic 

anemias. Significant advances have been made in our understanding of iron homeostasis over the 

past decade. At the same time, advances in magnetic resonance imaging have allowed clinicians to 

monitor and quantify iron concentrations non-invasively in specific organs. Furthermore, effective 

iron chelators are now available, including preparations that can be taken orally. This has resulted 

in substantial improvement in mortality and morbidity for patients with severe chronic iron 

overload. This paper reviews the key points of iron homeostasis and attempts to place clinical 

observations in patients with transfusional iron overload in context with the current understanding 

of iron homeostasis in humans.

 Introduction

Toxicity and increased morbidity due to iron overload are common and well-recognized 

complications associated with various hemoglobin disorders. Chronic iron overload occurs 

primarily from repeated blood transfusions in a number of hematological disorders. In fact, 

the most extensive information regarding severe chronic iron overload comes from decades 

of experience with the management of patients with thalassemia major, a hemoglobinopathy 

where the primary morbidity stems from iron overload and that is fatal, if untreated. The 

toxicity due to transfusional iron overload depends upon a number of factors in addition to 

the degree of tissue iron loading itself. While our experience with thalassemia has been very 

helpful, it is not entirely applicable to all disorders associated with iron loading, as the 

patterns of tissue iron distribution and the severity of tissue damage differ among them.

Many advances in our understanding of the treatment of transfusional overload have 

occurred, particularly in the last 15 years. The ability to noninvasively measure tissue iron in 

humans by magnetic resonance imaging (MRI), major breakthroughs in our understanding 

of the molecular physiology of iron regulation, and the availability of new iron chelating 
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agents have resulted in a dramatic improvement in the survival of patients with severe iron 

overload [1, 2].

The purpose of this review is to summarize our current understanding of iron homeostasis, 

briefly introduce the hematological disorders primarily associated with iron overload, and 

discuss how new knowledge regarding iron homeostasis informs and is validated by 

observations made in course of clinical monitoring and management of humans with 

transfusional iron overload.

 Iron homeostasis

Biological organisms have evolved to conserve iron and as such, humans have no 

mechanisms for the excretion of iron. Approximately 1 to 2 mg per day, or about 0.05% of 

the total body iron, is lost through desquamation of the gastro-intestinal tract lining and skin, 

and in small amounts, through blood loss [3]. This is balanced through absorption of dietary 

iron, primarily in the duodenum. Iron balance is maintained entirely through the regulation 

of absorption and recycling of iron from red cells. Iron absorption can be increased by as 

much as 20 fold in cases of acute blood loss (reviewed in [4, 5]). Iron absorption can also be 

pathologically increased in certain genetic disorders of iron transport as well as in 

hemoglobin disorders associated with ineffective erythropoiesis. Figure 1 summarizes key 

features of normal and pathologic iron balance.

Patients with hemoglobin disorders have significant differences in iron utilization, 

erythropoietic drive and iron input from transfusion that result in pathological iron 

absorption, iron loading and toxicity. In these patients, the relatively small changes in dietary 

absorption and minimal iron excretion are not sufficient to maintain iron balance.

 Regulation of iron proteins

Iron balance is maintained by controlling the levels and function of iron transport proteins. 

Transferrin is the main plasma iron transporter that binds two molecules of ferric iron 

(Fe3+). Transferrin is usually between 20 and 30% saturated with iron (see below). At the 

systemic level, transferrin saturation is the main iron sensor and plays a role in controlling 

the levels of the iron regulatory peptide, hepcidin. At the cellular level, there are two 

common mechanisms that apply to most of the proteins involved in iron homeostasis. First, 

iron regulatory protein 1 (IRP1) and 2 (IRP2) bind to iron response elements (IRE) in 

untranslated regions (UTR) of mRNA encoding proteins involved in cellular iron uptake, 

storage and export (transferrin receptor-1, TfR; divalent metal transporter-1, DMT1; ferritin-

H/ferritin-L/ferroportin, FPN). IRP1/2 bind to IRE under conditions of low iron, while they 

dissociate from IRE in high iron states (reviewed in [6]). If the IRE is in the 3’UTR, IRP 

binding stabilizes the mRNA, prevents degradation, and increases protein production. If the 

IRE is in the 5’UTR, mRNA translation is inhibited [6–8]. The second general mechanism 

imparts tissue specific sensitivity to iron balance by modulation of the proportion of iron 

sensitive and iron-insensitive mRNA. At least for DMT1 and FPN, two different splice 

variants of mRNA exist, one with IRE, and the other without. This means that one variant 

responds to iron levels and one does not. The ratio of IRE to non-IRE differs in different 

tissues, resulting in differences in responsiveness to iron and differences in loading [9, 10]. 
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In general, the IRP/IRE system protects against iron loss. There are over thirty-five mRNAs 

including hypoxia inducible factor 2α that have IRE and are responsive to iron [7, 11].

 Dietary uptake

Under normal circumstances, dietary ferric iron is reduced by cytochrome B (DcytB) to 

ferrous iron (Fe2+) at the apical brush border of duodenal enterocytes, and transported into 

the cell by divalent metal transporter-1 (DMT1). DMT1 expression is highest at the 

duodenum and decreases toward the colon [12]. Dietary heme iron is absorbed into the 

enterocyte via the heme carrier protein-1 (HCP1). Inside the enterocyte, heme is degraded by 

heme oxygenase and iron is released into the cytosol [13–15]. The free iron, referred to as 

labile cellular iron (LCI), is stored in the cells by ferritin or exported to the plasma by FPN. 

As enterocytes recycle about every three days, the iron stored in enterocytes is lost in the 

stool. This and the very small amount of iron excreted in the bile are the only natural 

mechanisms for iron removal in humans and accounts for a 1–2mg loss per day, as 

mentioned above [3].

 Macrophage phagocytosis of erythrocytes

Recycling of iron from heme is a main component of iron homeostasis. Macrophages in the 

reticuloendothelial system recycle iron from senescent red cells via erythrophagocytosis 

[16]. About 90% of senescent endogenous or transfused red cells are eliminated by this 

mechanism. The internalized heme is degraded by heme oxygenase and the iron is either 

stored by ferritin, or released into the plasma through FPN by the macrophages, which are 

the main regulators of plasma iron levels [16–19]. The effects of this regulation are seen 

clinically in the case of acute inflammation. If iron release into plasma by the macrophages 

is blocked, as is the case in response to fever, plasma iron levels drop within hours because 

of the continued requirement for 25 mg/day of iron to make red cells [20, 21]

Free hemoglobin and heme, which may be present in the plasma of patients with 

hemoglobin disorders because of shortened red blood cell survival and intravascular 

hemolysis, bind to haptoglobin and hemopexin, respectively, and are taken up by 

haptoglobin- or hemopexin-mediated binding to the scavenger receptor, CD163 on 

reticuloendothelial macrophages [22–24]. Like with intact red cells, heme oxygenase 

releases iron in the macrophage where it is then stored by ferritin in the cytosol or 

transported back to the plasma via FPN.

 DMT1 regulation

In addition to enterocytes, erythroid precursors, hepatocytes, macrophages and other cells 

also express DMT1, which transports iron released from transferrin in endosomes into the 

cytosol [25]. Its expression is markedly increased by iron deprivation in the intestine, and 

less so in the kidney, liver, brain, and heart [12, 26]. DMT1 mRNA has a splice variant with 

an IRE in the 3’-UTR of the mRNA and one that has no IRE. Hence, when cellular iron 

levels are low, transcription of DMT1 is favored and more iron is transported into the 

enterocytes [26]. The ratio of the two variants differs depending on the tissue. Brain has the 

highest IRE/non-IRE ratio, while spleen, thymus, pancreas have the highest non-IRE/IRE 
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ratio. Thus, for example, iron entry into the pancreas would not be expected to decrease in 

the presence of high iron [5, 10, 12, 26].

 Ferritin storage

In the cytosol, labile cellular iron (LCI) binds to ferritin or is exported in the Fe2+ state to the 

plasma via FPN. Ferritin is a multimeric iron storage protein that is found in animal and 

plant cells as well as in fungi and bacteria, and can bind about 4500 molecules of iron. Iron 

is incorporated into ferritin as Fe2+, but is quickly oxidized to Fe3+ within the ferritin shell 

by H-ferritin ferroxidase. The main function of ferritin within the cells is to protect them 

from iron toxicity. Small amounts of ferritin are released in the plasma by macrophages as 

L-ferritin via a lysosomal secretory pathway [27]. Ferritin mRNA has an IRE, and an 

increase in intracellular free iron leads to translational increase in ferritin production [28]. 

Ferritin has been used as an estimate of iron loading, although the correlation between iron 

load and ferritin is only accurate in patient populations[29].

 Transferrin transport of iron

Transferrin (Tf) is the main iron transport protein and binds two molecules of ferric iron. 

Transferrin-bound iron (TBI) is the primary source of iron available to cells under normal 

conditions. Holotransferrin binds to the homologous transferrin receptors, TfR1 and TfR2, 

and is endocytosed. In the acidic lysosomal environment, Fe3+ is released from Tf, and exits 

the lysosomes via DMT1 into the cytosol. In order for the transfer into the cytosol to occur, 

Fe3+ has to be reduced to the ferrous state, Fe2+(reviewed in [5]). Iron can also be 

transported out of the endosomes by the metal iron transporter, ZRT/IRT-like protein 14 

(ZIP14) [30].

Both TfR1 and TfR2 have IREs in the 3’UTR and are post-transcriptionally regulated by 

IRP. TfR1 is expressed in most tissues, but at much higher levels in erythroid precursors and 

liver. TfR1 is also expressed in the heart at about the same level as in the liver, but 7.5 times 

less than in the spleen, and by implication, in splenic macrophages [31]. TfR2 is exclusively 

expressed in the liver and intestine, and at levels 5.8 times higher in the liver than the 

intestine. Levels of TfR2 are much higher than those of TfR1 in human liver [32]. Both 

receptors preferentially bind diferric Tf, but the affinity of TfR1 for iron is 25 times higher 

than that of TfR2. TBI is taken up exclusively by TfR1 in erythroid precursors, but is taken 

up by both TfR1 and TfR2 in the liver [5, 33]. Unlike TfR1, TfR2 does not have IRE and its 

expression does not respond to iron levels [34, 35].

 Ferroportin export of cellular iron

FPN is the only known cellular iron exporter. It is expressed at very low levels in the 

membranes of most cells, but is abundant in macrophages, liver, syncytiotrophoblasts in 

placenta, the basolateral membranes of enterocytes [36, 37], and in erythroid precursors 

[38]. FPN gene expression in the heart is about 3 fold less than in the liver, and does not 

change with iron deficiency [31]. However, FPN mRNA and protein levels do increase in the 

heart about 2 fold with iron loading, which is sufficient to cause a Tf saturation of 70% [39]. 

Like DMT1, FPN has two mRNA splice variants, one that contains an IRE and one that does 

not, allowing for tissue iron export variability in response to cellular iron based of the 
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relative proportion of the two forms of mRNA [38, 40]. FPN exports Fe2+, which must then 

be oxidized to Fe3+ in order to bind Tf. Though the exact mechanism is still unclear, an 

oxidase must be at play in order for iron to be exported. Ceruloplasmin, a multi-copper 

oxidase in plasma, facilitates release of iron and oxidizes Fe2+ into Fe3+ for binding to Tf. 

Low levels of ceruloplasmin in copper deficiency or congenital aceruloplasminemia lead to 

intracellular iron accumulation. The resulting high intracellular iron causes mitochondrial 

damage and can trigger progenitor apoptosis [41–43]. An analogous but membrane-bound 

multi-copper oxidase called hephaestin is present in the basolateral membrane of enterocytes 

and facilitates iron transport from the gut into the plasma [4, 5].

FPN is the target of the iron regulator peptide, hepcidin [44, 45].

 Hepcidin

Hepcidin is a 25 amino acid, defensin-like peptide that was discovered in the course of 

purifying β-defensin 1 from urine [46]. This peptide hormone is made in the liver and 

regulates the flow of iron from enterocytes and macrophages into the plasma by binding to 

FPN, thereby causing its internalization and degradation by the ubiquitin pathway [44, 45]. 

It is the primary regulator of the movement of iron into the plasma. Hepcidin is expressed 

almost exclusively in the liver, with 31 and 15 fold lower levels detectable in intestine and 

heart, respectively [31].

Hepcidin levels are very low or absent in iron deficiency, leading to increased transport of 

iron via FPN from enterocytes and macrophages into the plasma. Conversely, hepcidin is 

elevated in iron overload and inflammatory states [4, 20, 47, 48]. This results in decreased 

iron absorption, decreased release of iron into the plasma, and sequestration of iron in tissue 

macrophages.

Iron-mediated regulation of hepcidin levels is through bone morphogenetic protein-6 

(BMP-6) and its receptor on hepatocytes (Figure 2). The regulation is complex, and in 

humans, involves several proteins in addition to the BMP-6 receptor, i.e., the co-receptor 

hemojuvelin (HJV), the hereditary hemochromatosis protein (HFE), TfR1, TfR2, and 

matriptase-2 (coded by TMPRSS6). BMP-6, produced by sinusoidal endothelial cells in the 

liver, binds to the BMP-6 receptor complex on the hepatocyte, which in turn activates 

hepcidin transcription through a SMAD1/5/8 pathway. HJV, which is responsible for 

juvenile hemochromatosis, acts as a co-receptor and increases the sensitivity of the BMP 

receptor to BMP-6. Neogenin, a ubiquitous membrane protein, may also act as part of the 

BMP-6 receptor complex to enhance hepcidin production. High levels of holotransferrin 

stabilize TfR2 and displace HFE from TfR1, allowing it to interact with TfR2. The TfR2-

HFE complex then associates with the BMP receptor complex, ultimately increasing 

hepcidin production. Thus, TfR2 is acting as an iron sensor that shuts down release of iron 

from enterocytes or reticuloendothelial macrophages into the plasma when iron is high and 

Tf is saturated (reviewed in [49, 50]). Finally, matriptase-2 (TMPRSS6) is a 

metalloproteinase on the hepatocyte membrane that is stabilized by iron deficiency and 

cleaves HJV, leading to decreased activation of the BMP-6/SMAD pathway, and hence 

decreased production of hepcidin. Mutations in TMPRSS6 lead to loss of inhibition of 
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hepcidin production. The ensuing high hepcidin markedly decreases iron absorption and 

results in iron-resistant iron deficiency anemia [51].

Inflammation stimulates hepcidin production. This is mediated through the inflammatory 

cytokine, IL-6 and through activin-B. IL-6 acts through its receptor and the JAK2/STAT3 

pathway to turn on hepcidin production [36], and activin-B activates the BMP-6 receptor 

[47]. This results in sequestration of iron in the macrophages and decreased intestinal 

absorption, leading to the classic picture of chronic inflammatory anemia. High hepcidin 

levels would block release of iron via FPN from any cell.

Hypoxia, anemia, and erythropoiesis reduce hepcidin production, and increase iron 

absorption. Anemia and hypoxia affect hepcidin expression indirectly through their effects 

on erythropoiesis in the bone marrow [38]. Erythropoietin (EPO) activates the JAK2/STAT5 

pathway that turns on erythroid proliferation and inhibits differentiation [52, 53]. Hepcidin 

levels decrease when bone marrow activity increases [54]. It is clear that this effect is from 

the marrow response to anemia and not from the anemia itself [55]. Growth differentiation 

factor15 (GDF-15) is released by erythroid precursors and has been implicated in the 

downregulation of hepcidin [56–58]. GDF-15 is increased in hemoglobinopathies 

(thalassemia, congenital dyserythropoietic anemia type 1), and in refractory anemia with 

ring sideroblasts [59]. GDF-15 is decreased post-transfusion, in parallel with EPO and 

decreased marrow activity, resulting in increase in hepcidin [54]. Twisted gastrulation 

(TWSG1), soluble HJV, and erythroferrone are other factors that increase with increased 

erythroid activity and result in reduced hepcidin production [60, 61].

 Non transferrin bound iron (NTBI) and labile plasma iron (LPI)

About 20–30% of transferrin is normally bound to iron. Non-transferrin bound iron (NTBI) 

refers to a heterogeneous group of potentially toxic iron complexes found in the plasma, 

mainly Fe3+-citrate or albumin complexes. NTBI can be detected in the plasma as soon as 

transferrin saturation reaches 35% [62], and rises significantly when transferrin saturation 

exceeds 70 to 80% [63–65]. Transferrin saturation can be used as a surrogate for NTBI when 

it is above 35%. However, a fraction of NTBI, known as labile plasma iron (LPI), is very 

loosely bound to proteins, is highly redox active and thought to be the main species that 

causes iron mediated oxidative damage [66, 67]. Under normal conditions, NTBI/LPI should 

not be found in the plasma. However, in the presence of iron overload, once Tf becomes 

saturated, NTBI/LPI levels rise significantly, and can easily enter many cell types, resulting 

in increased labile cellular iron (LCI). This is thought to be primarily Fe2+-glutathione [68] 

and is highly reactive, causing organ damage and failure.

 Normal iron uptake into organs

Iron bound to transferrin enters cells by binding to TfR1. TfR1 is expressed in most cells; 

however, the relative expression and activity vary significantly with different cells and is 

higher in tissues with high iron requirements. TfR1-mediated uptake is a major route of 

entry in erythroid precursors [25] and the liver. The TfR1-Fe complex is endocytosed. With 

acidification and in the presence of the ferroreductase Steap3, Fe2+ leaves the endosome 

through DMT1 and is chaperoned in the cytoplasm to ferritin or transported into the 
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mitochondria through mitoferrin [69]. The exact mechanism of this uptake is not known. In 

the mitochondria, iron is passed to ferrochelatase for incorporation into protoporphyrin-IX 

to make heme or is used for production of iron-sulfur clusters [36]. Normally, the pancreas 

and heart do not have high iron requirements. In pathologic states, they take up iron 

primarily by non-transferrin-mediated processes.

 Organ uptake of NTBI

When transferrin becomes saturated, NTBI/LPI levels rise, and NTBI/LPI easily enters the 

liver, pancreas, endocrine glands and cardiomyocytes by non-transferrin dependent 

pathways. Hepatic uptake of NTBI in humans is rapid and efficient [70, 71]. In mice, this 

uptake is thought to involve DMT1 [72] and the zinc transporter, ZIP14 [73], which is 

upregulated in iron-loaded liver and pancreas, while DMT1 is downregulated in iron-loaded 

liver [9]. There is also evidence that ZIP14 may play a role in the uptake of TBI [9, 30], and 

that it may be expressed in the heart [74]. Spleen and pancreas have the highest proportion 

of non-IRE containing DMT1 mRNA. Thus, loading of NTBI/LPI into the spleen and 

pancreas via DMT1 does not decrease in response to high iron [10]. This, in combination 

with pancreatic ZIP14 [9, 30], may explain why rapid pancreas iron loading is observed in 

humans soon after liver iron increases [75].

The liver loads with iron via regulated, transferrin receptor-mediated processes, and via 

uptake of NTBI, possibly through DMT1 on the hepatocyte cell surface [24, 76]. Cells 

normally control the uptake of iron by modulation of the expression of the high affinity 

TfR1. Iron can also enter the liver via the lower affinity TfR2, and that may account for the 

iron uptake increase observed when iron is abundant. In states of iron excess, TfR1 in the 

liver is downregulated whereas NTBI uptake remains the same [71, 77]. The molecular 

mechanisms are not well worked out yet in humans. However, the ability of the liver to load 

both TBI and NTBI may explain the very rapid loading of iron in the liver in humans [75, 

78].

 Removal of iron from liver

Hepatocytes express FPN on the sinusoidal surfaces, with increased expression in periportal 

areas, and thus can export iron [76, 79]. Iron can also be excreted into the bile in humans. 

This may be important in conditions of iron overload [80], but it is not thought to be a major 

pathway under normal conditions [80–82]. In the rat, iron is excreted in the bile and 

reabsorbed in the intestine. This reabsorption is blocked if iron is bound to the chelator, 

deferiprone [83]. The enterohepatic circulation has been suggested to be important in 

humans [71], and significant amounts of iron are excreted in the feces of iron-overloaded 

humans in the presence of iron chelators [84, 85].

 Cardiac iron loading

Transferrin receptors are present in the heart [31] and are downregulated in presence of iron 

overload [39]. However, the rate of NTBI uptake in cultures of heart cells is 300 times that 

of transferrin iron, and is increased significantly by iron loading [86]. Thus, once cardiac 

cells are overloaded with iron, the rate of further loading is increased [86, 87]. NTBI is 

thought to enter cardiac cells through L-type calcium channels [78, 88, 89] where it causes 

Coates Page 7

Free Radic Biol Med. Author manuscript; available in PMC 2016 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oxidant-mediated cellular injury to cardiac mitochondria [77]. T-type calcium channels may 

also be involved in cardiac iron loading [89–91]. DMT1 is weakly expressed in the heart 

[80, 88], as is ZIP14 [74], but may also serve as portals of iron entry in the heart. FPN is 

expressed in the heart at lower levels than in the liver and increases with iron loading [31, 

39].

 Iron regulation during erythropoiesis

Cellular iron is closely regulated in red cell precursors during erythropoiesis. Iron import 

mechanisms are highly expressed in early committed red cell precursors, allowing high iron 

intake for heme production (reviewed in [38]). As hemoglobin is being made in the later 

stages of erythroblast development, there is an increased need for iron in these cells. Thus, 

high levels of TfR1 are expressed at the cell surface during each nucleated stage of erythroid 

development [92]. When hemoglobin production stops, TfR1 is released from the surface of 

the mature reticulocytes, the last stage of differentiation [93]. High iron levels in these 

precursors would normally decrease FPN through dissociation of IRP1 and IRP2 from the 

IRE in the FPN mRNA. Interestingly, FPN is expressed at all stages of erythroid 

development, even though it would be expected to be low when iron levels are very high. 

The IRE form of FPN mRNA predominates in early erythroid progenitors and late erythroid 

cells, resulting in iron-regulated FPN production while the iron-insensitive form of FPN1 

mRNA is present in pronormoblasts through ortho chromatophilic normoblasts. These 

variant FPN transcripts, which do not contain IRE and thus are insensitive to high iron, 

account for more that half of the total FPN mRNA in erythroid cells. The current hypothesis 

is that the FPN that is not downregulated by high iron levels in the pronormoblast to 

orthochromatic normoblast stages would provide an exit route for iron that might otherwise 

be toxic to the normoblast [38, 40]. Hydrogen peroxide (H2O2) that can diffuse into the 

nucleus, interacts with LCI and produce hydroxyl radical which can directly cause DNA 

damage [94] and can trigger apoptosis of erythroid precursors [52]. Oxidative damage from 

iron during erythropoiesis is thought to be, at least in part, the cause of ineffective 

erythropoiesis.

 Ineffective erythropoiesis

Erythropoiesis is ineffective in some hemoglobin disorders and marrow failure states, and is 

thought to be the result of apoptosis of the erythrocyte precursors. The increased marrow 

activity, driven in part by anemia, leads to low levels of hepcidin and 2 to 3 times the normal 

iron absorption [95]. The increased iron levels should increase hepcidin. However, the effect 

of increased marrow activity on lowering hepcidin levels dominates the effect of iron 

overload on increasing hepcidin. At a minimum, hepcidin does not increase as much as it 

should for the level of iron overload (reviewed in [4]). ROS produced by oxidant interaction 

with iron in hemichromes that are formed from aggregates of heme and α-globin chains 

cause hemolysis of the mature red cells and trigger apoptosis of erythroid precursors [52]. 

The anemia results in tissue hypoxia and increase in EPO, leading to erythroid hyperplasia, 

usually without a rise in hemoglobin because of the underlying hemoglobinopathy (see 

below).
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While ineffective erythropoiesis causes iron overload, the converse is also true. Consistent 

with a role for cellular iron toxicity, infusion of apotransferrin (transferrin with no bound 

iron) into iron-loaded thalassemic mice resulted in a decrease in transferrin saturation and 

LPI. This led to an increase in hemoglobin, improvement in red cell survival, correction of 

many of the red cell morphologic abnormalities, decreased deposition of α-globin on the red 

cell membrane, decreased spleen size and increased hepcidin production. The improved red 

cell survival is presumably due to the reduction in redox-active iron-containing α globin 

chains on the red cell membrane. While infused apotransferrin increased apoptosis of early 

erythroid precursors, apoptosis of mature erythroid precursors was reduced, resulting in 

overall increase in mature precursors and ultimately, an increase in hemoglobin. Hepcidin 

expression was higher in the livers of apotransferrin-treated animals and FPN tended to be 

lower [96]. The increase in hepcidin would be consistent with a decrease in putative 

erythroid-derived suppressors of hepcidin [56, 61, 97] because of reduced ineffective 

erythropoiesis. The increased hepcidin would also decrease iron release from macrophages 

and iron uptake in the gut. Overall, extramedullary erythropoiesis was reduced and there was 

significant decreased in ineffective erythropoiesis [96].

These studies suggest that increasing hepcidin in the presence of iron overload decreases 

ineffective erythropoiesis and appear to significantly improve the anemia, at least in mouse 

models of thalassemia [98]. Other strategies that increase hepcidin also decrease liver iron, 

transferrin saturation, deposition of α-globin on red cell membranes, reduce splenomegaly, 

and improve hemoglobin levels in thalassemic mice [99–101], confirming the findings seen 

with apotransferrin infusion [96]. Preliminary data in humans using an Activin IIa receptor 

fusion protein, which also increases hepcidin, demonstrated increased hemoglobin levels in 

patients with thalassemia intermedia (see below) [102]. These data suggest that iron toxicity 

contributes to ineffective erythropoiesis.

 Clinical introduction to hematological disorders associated with iron 

overload and toxicity

The primary classes of disorders associated with clinically important iron overload and 

toxicity are listed in Table 1. The disorders fall into four groups based on their pathology: 1) 

Disorders with ineffective erythropoiesis, i.e., inability to make hemoglobin or red cells. 

They have variable levels of anemia, but all are characterized by hypercellular bone marrow 

with normal to increased erythropoietic activity; 2) Disorders with increased destruction of 

mature RBC and increased effective erythropoiesis with increased RBC precursors in the 

bone marrow; 3) Disorders with marked decrease in erythropoietic activity, which is 

generally ineffective; 4) Genetic disorders of iron absorption or transport. The disorders of 

absorption are not associated with anemia while those associated with transport may 

clinically present like iron deficiency (small RBC with mild anemia), but are actually 

associated with iron loading. The clinical severity and organ distribution of iron overload 

and toxicity as well as the response to treatment with chelators depend in part on the 

underlying marrow activity, the effectiveness of erythropoiesis, and the resulting effects on 

iron regulatory mechanisms as we will discuss below.
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 Disorders with anemia and ineffective erythropoiesis

 Thalassemia—The term “thalassemia” generally refers to a family of disorders 

secondary to combinations of over 300 known mutations in the β-globin gene (β-

thalassemia) or to a smaller number of mutations in the α-globin gene (α-thalassemia). 

Humans have one β-globin gene on each allele on chromosome 11, and thus may have two 

identical β-mutations (homozygotes), two different β-mutations (compound heterozygotes), 

or a β-gene mutation in only one allele (heterozygous, trait, or carrier state). The 

heterozygous β-thalassemia state is also referred to as “thalassemia minor”. There are two α-

globin genes on each chromosome 16, thus humans have four α-globin genes. Those missing 

one α-gene are called “silent carriers” because there are no hematological abnormalities, 

while those missing one α-gene on both chromosomes or two on the same chromosome are 

called α-thalassemia trait and have very small red cells and low normal hemoglobin levels. 

Three missing α-genes gives rise to moderate anemia and is called hemoglobin-H disease. 

Four missing α-genes usually results in death in utero. The mutations are common to ethnic 

groups from the regions of the Mediterranean, Southeast Asia and China, resulting in about 

60,000 affected children born per year [103]. The individuals have varying degrees of 

anemia and their red cells have very low mean cell volume (microcytosis), high RBC count 

and abnormal RBC shapes. The term “β-thalassemia major” refers to compound 

heterozygous or homozygous combinations of mutations that result in the inability to 

maintain hemoglobin to levels greater than 6.5 g/dL, normal being 13.5 to 16 g/dL in adults. 

The term “thalassemia intermedia” refers to compound heterozygous or homozygous states 

of milder mutations where the hemoglobin level can be maintained greater than 6.5 g/dL. 

The hemoglobin level cannot be reliably predicted from the genotype, although mutations 

resulting in no production of β-globin, so-called β0 mutations, usually have more severe 

anemia.

The anemia associated with thalassemia is due the lower survival rate of mature thalassemic 

red cells and progenitors due to an α/β chain imbalance. In β-thalassemia, excess α chains 

are deposited on the RBC membranes, leading to iron/oxidant damage to the membranes. 

The effect of α/β imbalance is particularly clear in the case of individuals who are 

heterozygous for a β-thalassemia mutation and have triplicate α (βA/βthal: αα/ααα) where 

there is a marked imbalance with excess α chains, resulting in a thalassemia intermedia 

syndrome with hemoglobin levels around 7 to 9 g/dl. Excess α globin chain plays a role in 

oxidant-mediated induction of apoptosis of RBC progenitors, and contributes to the 

ineffective erythropoiesis seen in thalassemia [104, 105].

A marked increased in marrow activity is observed in thalassemia, resulting in expansion of 

the marrow cavity with very thin bone cortex, which can lead to severe facial bone and skull 

deformities and bone fractures. Extramedullary hematopoiesis can also be observed, 

resulting in marrow-containing tumors along the spine and marked enlargement of the liver 

and spleen. The standard therapy for thalassemia is to transfuse every three weeks to 

maintain the hemoglobin level at 9.5 g/dL or higher in order to provide oxygen to tissue and 

shut down marrow activity. Chronic transfusion prevents or stops all of the side effects of 

extramedullary hematopoiesis, and reverses marrow tumors and splenomegaly. 

Unfortunately, it also results in severe, chronic iron overload, compounded by the marked 
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iron hyperabsorption that occurs secondary to ineffective erythropoiesis. Before the 

introduction of effective iron chelation therapy, the median survival for thalassemic patients 

on chronic transfusion was 15 years, with death due to iron cardiomyopathy. The disease can 

now be cured by bone marrow transplantation, if a suitable donor is available [105, 106]. 

Two patients have been treated using gene therapy approaches. The first is now transfusion-

independent [107].

 Congenital sideroblastic anemia (CSA)—This disorder is due to one of several 

genetic defects in heme synthesis, resulting in accumulation of mitochondrial iron in RBC 

precursors, and characterized by significant ineffective erythropoiesis [108, 109]. The iron-

loaded mitochondria can be observed as a ring around the nuclear membrane by light 

microscopy when the marrow is stained for iron. These “ring sideroblasts” are characteristic 

of CSA. Congenital dyserythropoietic anemia (CDA): This is a group of genetic red cell 

production defects with marrow hyperactivity and abnormal nuclear changes in erythroid 

precursors [110]. Both of these disorders have moderately severe to mild anemia and varying 

levels of iron overload due to ineffective erythropoiesis. Splenomegaly and extramedullary 

hematopoiesis can also be observed, but usually not to the degree seen in thalassemia. Some 

patients require regular transfusion. Many require intermittent transfusion when the marrow 

is suppressed by intercurrent viral infection.

 Disorders with anemia and effective erythropoiesis

Sickle cell disease (SCD) is an inherited chronic hemolytic anemia due to a single amino 

acid substitution in the β-globin chain, producing the abnormal hemoglobin-S (HbS) that 

tends to polymerize at low oxygen tension. HbS polymerization results in the RBC 

becoming rigid, taking on a crescent or “sickled” shape, and obstructing blood flow in the 

microcirculation. When blood flow brings the RBC to the lungs, they re-oxygenate and 

become flexible again. This sickling process is continual; however, episodic exacerbations 

may be triggered that result in severe vaso-occlusion and pain, pulmonary failure, and 

stroke. The median survival for sickle cell patients in the United States is about 42 years, 

with significant pre-morbid complications [111]. Currently, about 95% of children survive 

until age 18 [112], but often die in early adulthood. This is due in part to significant lack of 

medical resources for the treatment of adults in the US. About 240,000 children born 

annually in Africa are affected, and only 20% survive to their second birthday [113].

The marrow activity is quite high in SCD patients as the abnormal hemoglobin is effectively 

produced. Thus, there is little abnormal iron absorption, and usually, no extramedullary 

hematopoiesis. Over 25% of children receive transfusion every three weeks to reduce the 

HbS levels to less than 30% and suppress marrow activity. Transfusion programs 

significantly reduce the incidence of life-threatening complications of vasoocclusion, but 

result in significant transfusion-related iron overload [114]. Thus, in SCD, transfusion is the 

main cause of iron overload.

Other genetic hemolytic anemias also have increased marrow activity with little or no 

ineffective erythropoiesis, and hence no iron hyperabsorption. These patients may be 

intermittently transfused because of marrow suppression from virus or hyper-hemolytic 
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episodes, but they generally do not require chronic transfusion and therefore do not develop 

significant iron overload.

 Disorders with anemia and little or no erythropoiesis

Patients with marrow failure syndromes, such as Diamond-Blackfan anemia or aplastic 

anemia, are not molecular hemoglobin disorders. However, the clinical picture in these 

diseases is quite instructive with respect to the pathophysiology of iron overload and 

toxicity. Erythropoiesis is usually ineffective, and thus associated with hyperabsorption of 

iron. However, the major issue in marrow failure syndromes is the absence of any red cell or 

hemoglobin production. About 25 mg of iron are used daily to produce hemoglobin. If this 

iron is not used, it binds to transferrin and once transferrin is fully saturated, it is found in 

the plasma as free NTBI. The very high levels of NTBI in these patients can rapidly load the 

heart and endocrine organs. Blackfan-Diamond syndrome is a congenital pure red cell 

aplasia, with few if any red cell precursors in the marrow. About 20% of the patients will 

become transfusion-dependent [115, 116] and have early development of cardiac iron [75]. 

Myelodysplasia is a pre-malignant marrow failure syndrome that can occur at any age, but 

more commonly presents after the fourth or fifth decades of life. These patients have 

ineffective erythropoiesis and very low red cell production. They have failure of production 

of other cells lines as well and seem to develop cardiac iron more rapidly than expected 

[106, 117].

Patients treated with intense chemotherapy may also require transfusion, and represent an 

important, and at this point, under-recognized at-risk population for iron overload. Pediatric 

patients can require substantial transfusion support during very intense treatment regimens, 

and have developed significant cardiac iron overload with far less transfusion and much 

shorter periods of time than patients with thalassemia, presumably in part because of 

treatment and disease-induced shutoff of erythropoiesis (personal communication). The 

mechanism by which some of these patients become extremely iron loaded within a much 

shorter time than hemoglobinopathy patients is not known.

 Genetic disorders of iron absorption and transport

A number of mutations in the genes for iron regulatory proteins results in clinical iron 

overload. While not the topic of this review, the study of these mutations and the associated 

disorders has led to the discovery of important iron pathways, increasing our understanding 

of iron homeostasis. Hereditary hemochromatosis, due to the HFE mutation (hereditary 

hemochromatosis type 1) is present in the heterozygous state in 8–10% and in the 

homozygous state in about 0.5% of Northern European populations [118, 119]. The clinical 

expression of the disorder is quite variable. The other disorders are extremely rare. They are 

usually associated with iron overload. However, some have iron deficiency or anemia with 

iron overload. Further information can be found in several excellent recent reviews [4, 5, 36, 

46, 50, 120–123].
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 Transfusion-related iron overload

Individuals with ineffective erythropoiesis or genetic iron regulation disorders become iron 

overloaded due to 5 to 10 times the normal absorption of dietary iron [124]. Patients with 

thalassemia or sickle cell disease develop complications related to chronic hemolysis, 

elevated plasma hemoglobin and increased marrow activity. They may require regular 

transfusions in order to suppress marrow activity. Patients on chronic transfusion are given 

10-to-15 ml/kg body weight of packed red blood cells every three weeks. Packed red cells 

have a hematocrit of about 80%, compared to a whole blood hematocrit of about 45%. As 

every milliliter of packed red blood cells contains 1 mg of iron, and only about 2 mg iron per 

day is lost from gastrointestinal mucosal sloughing, transfused patients gain about 0.5 

mg/kg/day of iron [124] and rapidly become iron loaded. Marrow suppression from 

transfusion reduces dietary iron absorption to about 1–4 mg/day. However, if the patient is 

not sufficiently transfused to suppress marrow activity, this can rise to 3–4 mg/day [124]. Of 

course, while dietary absorption is decreased, transfusion is essentially infusion of iron, and 

total body iron content can be 20 to 30 times higher than normal within the first three years 

of life in the absence of therapy to remove excess iron [75]. Transferrin saturation, which 

correlates with NTBI rather than LIC [125], increases very early in thalassemia [126]. The 

relative hepcidin deficiency in transfusion-dependent thalassemia may exacerbate toxicity by 

redistributing iron to tissues where defenses against iron toxicity are less effective [18].

Most clinical knowledge about iron overload comes from experience with thalassemia. 

Chronically transfused thalassemia patients developed severe pan-endocrine failure, 

including diabetes, growth failure and puberty failure. They usually die within 6 months of 

developing clinical symptoms of iron-induced heart failure and arrhythmia, rarely surviving 

past the second decade of life [127]. Serum ferritin and transferrin saturation were the 

mainstays of iron monitoring, and survival could be predicted based on ferritin levels in 

thalassemia [128]. Liver iron concentration (LIC) obtained by biopsy is linearly correlated 

with total body iron (r=0.98, p < .001) and is the best measure of total body iron loading 

[129]. Ferritin levels are easy to obtain and have been used clinically to estimate total body 

iron. The correlation between LIC and ferritin is between 0.7 and 0.8 in large populations of 

patients [130]. However, variance is so large that ferritin cannot be used to accurately predict 

total iron or change in iron in individual patients. In fact, in about 30% of the time, ferritin 

increases when total iron is not changing or is going down [29].

 Measurement of tissue iron by MRI

The development of MRI techniques to non-invasively measure LIC [131–133] and iron in 

other organs [134–137] has been the major advance of the last decades in clinical practice, 

and has greatly enhanced our understanding of iron loading in humans. When Pennell and 

colleagues demonstrated that MRI could be used to directly measure cardiac iron, it became 

very clear that iron loading in the heart was quite different from that in the liver [138], and 

was not directly related to total body iron reported by LIC measurements. MRI is now 

routinely used for liver and cardiac iron quantitation [131, 133]. These measurements can be 

made on standard MRI devices, though special software and MRI sequences are required 

and careful calibration is needed to ensure accurate quantification. Furthermore, cardiac iron 
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content predicts development of clinical heart failure [139]. Pancreatic as well as pituitary 

iron quantification can also be accomplished non-invasively by MRI, and has been shown to 

predict glucose tolerance and pituitary volume and function [134, 140–142]. MRI 

quantification of liver iron as a measure of total body iron burden and cardiac iron are now 

considered standard state-of-the-art measures at most major thalassemia centers and are 

credited in part for the 70% reduction in deaths from cardiac iron overload in the past decade 

[2].

MRI uses the principles of nuclear magnetic resonance to produce images in humans and 

animals. Signals are produced by aligning protons in a strong magnetic field, usually 1.5 or 3 

tesla, and exciting protons with a superimposed oscillating magnetic field. Protons emit a 

signal when they return to the equilibrium state after a certain “echo time”, and the image 

appears to get darker with increasing time. The time for the tissue to get twice as dark is 

called T2* (“T-two-star”) relaxation, expressed in millisecond (ms), and is a function of the 

molecular environment of the protons. T2* is shortened by the presence of iron. Radio 

frequency waves can also be used to excite the protons. In that case, the time to a darker 

image is called T2 relaxation. The rates of change in the echo times can also be measured, 

and are called R2* and R2, respectively, expressed in hertz (Hz). R2* and R2 are linearly 

related to tissue iron and are equal to 1000/T2* and 1000/T2 whereas T2* and T2 are 

inversely and non-linearly related to iron (reviewed in [143]). The relation of the MRI signal 

to actual tissue iron levels in milligram iron per gram dry weight tissue has been confirmed 

in liver (r2 > .96, p < .001) [131, 133], human heart [144], and gerbil heart [145]. 

Mathematical models of MRI signals from first principles have validated these relations 

[146]. The measurement error for iron liver by MRI is about 5%. This is much better than 

for liver biopsy, which is affected by the presence of cirrhosis and sampling errors [147]. 

The iron estimates by R2* and R2 do diverge at high iron concentrations because of 

differences in iron particle size. R2* is primarily sensitive to hemosiderin whereas R2 is also 

sensitive to intracellular ferritin [148]. Errors can occur with MRI measures related to 

motion artifact, selection of regions of measurement over large blood vessels, and edge 

effects especially near bone. However, there is significant experience now with over ten 

years of use and the errors are quite small in experienced MRI centers [143].

The ability to serially monitor iron uptake and release in the liver, pancreas, and heart in 

different hematological disorders made it rapidly clear that organ loading in various 

transfusion-dependent disorders is not the same as in thalassemia, nor is organ-specific iron 

toxicity. There are few data on organ loading in the absence of chelation in the MRI era 

because chelation therapy is usually started within a year or two of chronic transfusion. 

However, the median and 90%ile LIC in β-thalassemia major, sickle cell disease and 

Diamond-Blackfan anemia were similar at the first MRI measurement for children less than 

10 years of age [75]. This indicates that the rate of liver iron increase is directly related to 

the rate of transfusion, and is probably independent of the underlying disease process. 

Pancreatic and cardiac iron loading, which are almost exclusively related to NTBI/LPI, 

occurs after Tf is saturated and LIC is high (Figure 3). It also occurs sooner in disorders 

associated with ineffective erythropoiesis and marrow failure. Fifty percent of young 

children with DBA, and 25% of subjects with CDA or thalassemia had pancreatic R2* > 100 

Hz compared to only 2.5% of children with SCD [75, 149]. Pancreatic R2* greater than 27 
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Hz indicates significant iron loading, while R2* greater than 100 HZ suggests sufficient iron 

loading to cause pancreatic islet cell dysfunction [142]. Furthermore, 5% of thalassemia and 

16% of DBA patients had evidence of cardiac iron at some time during their first 10 years of 

life (Figure 4), compared to none of the SCD subjects [75]. The fact that cardiac and 

pancreatic iron are significantly lower in SCD than in thalassemia patients with similar total 

body iron further supports the concept that ineffective erythropoiesis and higher NTBI/LPI 

levels are associated with pancreatic and cardiac iron loading [149]. Serial MRI studies 

show that pancreatic iron loading precedes cardiac loading (Figure 3), and clearly 

establishes the temporal sequence of organ loading during transfusion where liver loading is 

followed by pancreas and last by cardiac loading [134].

Serial monitoring of tissue iron during chelation treatment revealed that the rate of 

unloading is also not the same in all tissues. The time to remove half the iron from the liver 

is between 4 and 6 months, whereas it takes about 17 months in the heart [150]. Again, there 

is a sequence for unloading where liver empties first, followed within several months by 

decrease in cardiac and pancreatic iron [134]. In part because of these great differences in 

rate of unloading, measurement of LIC correlates very poorly with cardiac unloading, unless 

a large lag time is introduced between cardiac iron measurement and LIC determination 

[134].

These loading/unloading patterns are quite important for clinical decision-making, as 

illustrated in the sequential MRI images in Figure 5. In panel A, the liver is black, indicating 

high iron, while the myocardium is light grey, indicating no iron. The next MRI (not shown) 

had significant cardiac iron. A year after intensive chelation and improved adherence to 

treatment (panel B), the liver is light grey indicating normal iron, but there is still significant 

iron in the heart. If chelation were to be stopped at panel B based on LIC alone, oxidant 

damage to the heart from the residual iron would continue. This sequence of events points 

out another clinical observation: when patients find out they have cardiac iron, their 

adherence to chelation significantly improves, for a while at least.

Observations of sequential changes in organ iron in patients provide some insight, and 

perhaps validation of iron transport mechanisms shown in murine models. Iron levels rise 

extremely quickly in the liver, an organ that can load iron via TfR-mediated processes, and 

that can also load rapidly by non-transferrin mediated mechanisms once transferrin becomes 

saturated and NTBI rises [70, 72, 73]. Furthermore, while TfR1-mediated loading is 

downregulated as transferrin becomes saturated, neither TfR2-mediated nor NTBI uptake are 

downregulated by high iron [77]. In murine models, the same temporal order of organ 

loading as in humans has been observed [75, 134], with plasma NTBI rapidly entering the 

liver, and to a lesser extent the pancreas, followed by the heart [9, 151, 152]. The more rapid 

loading of pancreas by NTBI is consistent with the fact that human pancreas has the highest 

ratio of non-IRE/IRE splice variants for DMT1, making NTBI entry insensitive to high 

NTBI levels [10]. ZIP14 is also not downregulated by high iron and contributes to pancreatic 

loading [9, 30, 74]. The rate of NTBI uptake in heart cells is 300 times that of transferrin-

bound iron, and is increased by intracellular iron loading [86]. This is consistent with the 

fact that humans do not load the heart until after fairly long exposure to conditions of high 

NTBI/LPI, about 10 years in thalassemia, but then load very rapidly [153]. Furthermore, the 
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incidence of cardiac iron loading is high in TM and disorders with high NTBI/LPI and rare 

in SCD, which has lower levels of NTBI/LPI [154, 155]. SCD is associated with higher 

inflammation compared to thalassemia, resulting in higher hepcidin levels, which may 

account in part for lower NTBI/LPI as iron release into plasma would be blocked [155, 156].

During iron removal, the liver empties very quickly and the heart and pancreas take much 

more time. While we cannot prove mechanism, it is interesting to note that the hepatocytes 

contain FPN in their membrane, while the pancreas and the heart express much less FPN 

[39, 74]. Furthermore, at least in the iron loaded state and in the presence of chelators, 

substantial amounts of iron can be removed from the liver by excretion into the bile and 

removed from the body in feces [84].

 Iron Toxicity

Significant differences in the degree of iron-induced organ toxicity exist amongst various 

diseases and between individual patients with the same disease and the same degree of total 

body iron, indicating that several factors must be at play.

Based on our clinical experience with chronic iron overload, iron toxicity can be thought of 

in terms of the following relation:

Taken at face value, iron toxicity is a very non-linear function. As both the “Tissue iron 

concentration” and the “Environmental factors” are a function of time, it is clear that the 

relation is not only non-linear, but very complex. A few things are apparent from this 

framework: 1) there is a different relation for different tissues; 2) tissue toxicity sums (Σ) 

over time (ΔTime); and 3) it will likely never be possible to accurately predict toxicity from 

individual component factors.

Tissue iron concentration is the most obvious part of the toxicity equation. Cardiac T2* < 6 

ms indicates severe iron overload and predicts that over 50% of subjects will have clinical 

heart failure within a year, whereas a T2* > 10 ms suggest very little risk of heart failure 

[139]. Although not as clear as in the case of cardiac iron, pancreatic iron content measured 

by MRI predicts glucose intolerance and risk of diabetes [142], pituitary iron and volume are 

related to pituitary dysfunction [141], liver iron levels predict future ability to clear cardiac 

iron [157, 158], changes in LIC are correlated with change in cardiac iron [158] and 

normalization of liver iron predicts return to normal endocrine function [159]. The variance 

within all of these measures is too great to make accurate predictions. However, serial 

changes do tell clinicians whether the chelation treatment is working, offer some help with 

regard to dosage, and identify dangerous levels of loading that require more frequent 

monitoring or more intensive therapy.

The “Genetics” variable encompasses the multitude of genetic differences in individuals 

with respect to their antioxidant defense mechanisms, differences in iron transport and the 

marrow pathology of the underlying hemoglobinopathy. For example, when a group of 
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transfused β-thalassemia patients were compared to a group of SCD patients of similar age 

and equal mean total body iron loading (LIC), 20 to 30% of the thalassemia patients had 

cardiac dysfunction, gonadal failure, and growth delay whereas essentially none of the SCD 

patients had these problems [160]. This may be related to the lower levels of LPI [154] and 

relatively high hepcidin levels in SCD [161, 162].

Mutations in iron regulatory genes modulate iron loading in humans with thalassemia 

syndromes [100, 163–168], while mutations in oxidant protective pathways modulate the 

clinical expression of hemoglobinopathies [169–173] and have been associated with other 

disorders, including propensity to malignancy [174–177]. The FOXO3 family of 

transcription factors plays a major role in the regulation of oxidative stress, is essential for 

red cell survival and its absence results in early red cell maturation arrest that can be partly 

rescued by antioxidant treatment [95, 178, 179]. FOXO3 nuclear activity coordinates 

erythroid maturation [180]. FOXO3 modulates ROS accumulation in erythroid precursors, 

probably through its transcriptional regulation of superoxide dismutase (SOD) 1 and 2, 

catalase, and glutathione peroxidase-1. There is also evidence that ROS may be an important 

regulator of hematopoiesis in stem cells. Based on experiments with the ataxia telangiectasia 

mutated gene (ATM), it appears that low levels of ATM result in ROS-mediated depletion of 

the stem cell pool, and overexpression of ATM restores levels of antioxidant transcripts in 

FOXO3-null primitive hematopoietic stem cells [179]. Thus, whether through these 

mechanisms, or through induction of erythrocyte apoptosis [181], as discussed earlier, there 

is ample opportunity for the “Genetics” part of our equation to modulate toxicity. Certainly, 

polymorphisms of any of the iron regulatory proteins or anti-oxidant systems may modulate 

the degree of iron toxicity seen in hemoglobinopathy patients. Co-inheritance of the 

common HFE mutation, for example, clearly increases the degree of iron overload in 

thalassemia intermedia, but not in thalassemia trait [165–167, 182]. TMPRSS6 and HFE 

mutations are known to modulate iron loading in murine models [100, 101]. Polymorphisms 

of TMPRSS6 are now being reported that impart varying degrees of iron absorption and 

might be expected to modulate iron loading, especially in thalassemia intemedia [183–185]. 

The possibilities for epigenetic modulation here are myriad.

The “Environmental Factors” in the equation encompasses nutritional status, blood 

transfusions, drugs that may modulate iron toxicity and administration of chelating agents to 

remove iron. Significant micronutrient deficiencies are found in iron-overloaded patients 

[186], many of which would have a clear effect on antioxidant pathways. Thiamine 

deficiency, which is severe in 38% of iron loaded thalassemia patients [186] is a known 

cause of left ventricular dysfunction [187], and vitamin D deficiency may be related to 

cardiac function and transport of iron into the heart, possibly through its effects on iron 

transport through L-type calcium channels [78, 188, 189]. Selenium is low in over 75% of 

iron loaded thalassemia and sickle cell patients [186].

Some medications, such as those used to treat cancer, may affect iron loading as we have 

observed cardiac iron loading within one year of onset of treatment for leukemia. This is 

dramatically faster and with less blood transfusion than seen in any hemoglobinopathy, 

suggesting than certain medications, disease states, or perhaps severe inflammation are 

secondary factors that can significantly affect iron loading and toxicity.
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The last part of the toxicity equation is time. In general, it takes about ten years of exposure 

to high levels of iron to see significant evidence of organ failure as seen for hepatic and 

cardiac failure. While elevation in transaminases is common when the transferrin saturation 

exceeds 60 to 70% [190, 191] in the setting of chronic iron overload, it is reversible with 

chelation. Cardiac dysfunction is almost always reversible, but the ability to reverse 

endocrine dysfunction is very hard to predict. The pituitary gland loads with iron quickly 

and so far, it has not been possible to predict the level of iron and amount of time that will 

cause irreversible damage to the endocrine system.

The toxicity from iron overload is mediated through production of ROS, either through 

direct effects or through ROS signaling, and is due to NTBI/LPI and LCI. The relationship 

between NTBI and toxicity is very evident in the clinical setting of acute iron toxicity 

associated with iron infusion. When patients receive intravenous iron preparations, 

transferrin saturation increases within minutes of starting the infusion, and NTBI increases 

correlate with transferrin saturation (r=0.78, p< .001) [65]. If the infusion rate is too high 

and the transferrin saturation exceeds 100%, NTBI levels markedly increase, oxidized lipids 

can be detected [65], and the patients develop tachycardia, facial flushing, and finally, 

hypotension. These symptoms rapidly reverse when the rate of infusion is decreased.

There is also evidence from clinical observations that oxidative stress shortens the survival 

of mature red cells and induces apoptosis of red cell progenitors [192–196]. The red cell half 

life in iron-deficient patients with SCD is reduced from 15.9 days to 5.2 days when the iron 

deficiency is treated [197], a finding that was later corroborated by inducing iron deficiency 

in patients with SCD and showing increased survival, increased hemoglobin and decreased 

hemolysis [198]. It is possible that this effect is related to iron-mediated oxidant damage on 

the red cell membrane and ion transporters [199–202]. There is also evidence from the 

clinical arena supporting the idea that toxic iron inhibits erythropoiesis and myelopoiesis. 

Correction of iron overload by chelation therapy was associated with a decrease in 

transfusion requirement in 64%, increase in pre-transfusion hemoglobin levels in 73%, 

development of transfusion independence in 45%, and increase in platelets and neutrophils 

in 78% of patients with myelodysplastic syndrome [203, 204]. Similar improvements in 

marrow function have been seen in other patients with myelodysplastic syndrome [205–

210], with aplastic anemia [211, 212] and dyserythropoietic anemia [213]. These effects 

have been attributed to oxidant-mediated damage to marrow precursors [179, 207, 214–217]. 

At least in some patients, the improvement in marrow function started within two months of 

initiating chelation therapy [205], well before the ferritin starts to drop. In as much as ferritin 

reflects iron load, this suggests improvement in marrow function before iron levels drop, 

consistent with the notion that chelator protects against oxidative stress that is responsible 

for the marrow dysfunction.

The oxidative damage from iron comes mainly from the interaction of Fe2+ with H2O2 to 

produce hydroxyl radical (HO•; Fenton reaction). HO• is a potent oxidant that can react 

rapidly with most molecules, including DNA, thereby permanently altering genetic material. 

Normally, Fe2+ is bound to transferrin or stored in ferritin and is not able to react with H2O2. 

NTBI is weakly bound to citrate as Fe3+ and does not seem to generate HO•in vivo. 

However, LPI or LCI, the latter thought to be primarily Fe2+-glutathione [68], easily react to 
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form HO•. In conditions of iron overload, when NTBI and thus LPI/LCI levels are high, and 

particularly in the face of inflammation, severe oxidant damage can occur (reviewed in 

[218]). Iron can also interact with nitric oxide (NO•). NO• has a very high affinity for Fe2+ 

and ferrous heme. These interactions are thought to be critical in the pathophysiology of 

hemolytic anemias because of the strong binding of NO• to free hemoglobin [219]. This 

results in NO• depletion and vasoconstriction of certain vascular beds.

There are many complex interactions of oxidants including NO• with iron and iron 

regulatory proteins. Oxidants can also affect the interactions of IRP1 and IRP2 with mRNA 

and alter the transcription of iron regulatory proteins. NO• can activate the mRNA binding 

ability of IRP1 and modulate the transcription of iron regulatory proteins, increasing 

transcription of ferritin and FPN. These interactions have recently been reviewed in detail 

[218].

 Iron toxicity and chelation therapy

Transferrin is the primary extracellular iron binding protein and binds two molecules of 

Fe3+. Binding of iron causes the molecule to undergo a conformational change such that the 

iron is sequestered deep into the molecule in the holo state, keeping the iron soluble, but 

unable to undergo toxic redox reactions [5]. Under normal conditions, essentially all the iron 

in the circulation is bound to transferrin, occupying about 30% of the available iron binding 

sites. Thus, one of the most important functions of transferrin is to protect tissues from the 

oxidant damage due to free iron. This is also the primary function of iron chelating drugs. 

These medications are commonly thought of as being mainly used for the removal of iron 

from the body. While true, chelators also immediately bind to the free iron or so-called 

“chelate-able pool”, and thereby protect from oxidant damage. Blood levels of NTBI and 

LPI drop along with plasma oxidant activity almost immediately as soon as a chelator enters 

the circulation, and return to previous levels when it is out of the circulation [67, 220, 221]. 

Furthermore, symptoms such as cardiac arrhythmia and heart failure can substantially 

improve with continual chelation therapy within several weeks, whereas it takes many 

months for substantial reduction in heart iron levels, confirming the toxic effects of free iron 

[222]. This suggests that removal of toxic LPI, which starts almost immediately after onset 

of chelation [217, 220, 223], is critical for reducing oxidant stress. This ability to clear LPI 

has very practical and important clinical implications, particularly in the case of iron 

cardiomyopathy. Cardiomyocytes that contain iron will load NTBI much faster than those 

that do not. Thus, the heart is rapidly reloading iron every minute that a chelator is not in the 

circulation. Clinically, patients clear their hearts of iron more rapidly if the same total 

weekly dose of chelation is given daily instead of four days a week.

Currently, three chelators are in clinical use for the treatment of chronic iron overload: 

deferoxamine, deferiprone, and deferasirox. Deferoxamine (Desferal™) has a half-life of 

about 30 minutes and is given subcutaneously or intravenously by continuous infusion. 

Deferiprone (Ferriprox™) has a half-life of about 8 hours and is given orally three times a 

day. Deferasirox (Exjade™) has a half-life of 14 hours, is also an oral preparation, and is 

given once or twice daily. Further details about these medications can be found in [224].
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Most organ function can improve with removal of iron. Cardiac dysfunction can be reversed 

almost every time if effective treatment is started before the patient is in clinical heart failure 

or has serious arrhythmias. Even then, the clinical status can often be turned around as long 

as the health of the patient does not deteriorate within 4 to 8 weeks of proper therapies being 

started. Reversal of endocrine function is much less predictable. However, recent data 

suggest that significant improvement in diabetes, hypogonadism and hypothyroidism can be 

achieved in 30 to 50% of patients, if total body iron loads are reduced to normal levels [159]. 

Nevertheless, the longer the patient is exposed to high levels of iron, the less likely reversal 

to normal endocrine functions can occur. All three chelators are effective at clearing LPI and 

removing iron from tissues. However, deferiprone is the most effective at removing cardiac 

iron and improving cardiac function [225–228].

 Iron and cancer

Cancer is a well-recognized complication of iron toxicity [229, 230], as evidenced by the 

increased incidence of liver cancer in patients with hereditary hemochromatosis [231, 232]. 

While there has been some controversy, particularly regarding factors that may modulate the 

effect of iron on cancer incidence, the preponderance of the evidence supports a role for iron 

overload as a cause of hepatocellular carcinoma as well as other malignancies [229, 230, 

233, 234]. Now that β-thalassemia patients are surviving much longer, hepatocellular 

carcinoma is emerging as a late complication. The mean age at diagnosis of hepatocellular 

carcinoma in βthalassemia major is around 45 years and the incidence is 3.6 per 100,000, 

compared to 1.03 for men and 0.28 for women in the general population [235].

Children treated for cancer receive volumes of transfused blood that would be expected to 

lead to iron overload [236], although actual incidence of iron overload has not been clearly 

documented yet. Perhaps more concerning is the very high incidence of late onset secondary 

disorders known in other settings to be associated with iron-related oxidant damage [66, 

237]. The estimated prevalence at age 50 years in patients who are survivors of childhood 

cancer is 50% for cardiomyopathy, 86.5% for pituitary dysfunction, and 31% for primary 

ovarian failure, though the relation to iron has not been addressed [238]. The ratio of 

observed to expected second malignancies of digestive organs in survivors of childhood 

cancer was 9.1, if they had received chemotherapy alone and 29 if they received 

chemotherapy and radiation [239]. Given that a reduction in ferritin from 120 to 80, levels 

that are both in the normal range and an order of magnitude less than those seen in 

transfusion patients, resulted in a 30% reduction in new cancers and a 60% reduction in 

death from cancer in men who were prospectively randomized to phlebotomy [233], it 

would seem that iron toxicity should be considered as a possible cause of long term 

complications of childhood cancer and removal of excess iron should be done as soon as 

feasible.

 Conclusion

Many advances in the understanding of iron homeostasis in humans and animals as well in 

the development of noninvasive monitoring of tissue iron have occurred over the past two 

decades. It is interesting that clinically observed changes in tissue iron are in close 
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agreement with the organ specific iron homeostasis described in murine models, although 

direct inferences of cause and effect must be made with caution. Three good iron chelators 

are now available, with more in the pipeline. In addition, exciting new therapies are being 

developed based on new molecular understanding of iron homeostasis. The area of 

transfusional iron overload in β-thalassemia is perhaps one of the most gratifying because 

substantial improvements in survival are now recorded as a result of these advances. As 

usual, the development of effective clinical monitoring methods, effective treatments, and 

new basic understanding of biochemistry has led investigators to apply this new found 

knowledge to new, seemingly unrelated areas of medicine and biology. Perhaps the most 

immediately attainable opportunity is related to the toxicity of iron in survivors of cancer in 

general and pediatric cancer in particular. Pediatric survivors of cancer who are iron loaded 

have a long lifetime of exposure to excess oxidant stress. At the moment, the topic of iron 

toxicity is almost completely ignored by the oncology community, though this is beginning 

to change. The role of iron and oxidant damage in neurologic diseases is another extremely 

exciting area. Treatment with deferiprone, the drug developed for thalassemia, has brought 

about clinical improvement in patients with neurodegenerative diseases [240–243]. The 

current increased focus on the toxic effects of iron holds great promise for further 

improvement in the lives of individuals affected by iron overload.
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 Abbreviations

BMP-6 Bone morphogenetic protein-6

DMT1 Divalent metal transporter-1

CDA Congenital dyserythropoietic anemia

CSA Congenital sideroblastic anemia

EPO Erythropoietin

FPN Ferroportin

GDF-15 Growth differentiation factor-15

HbS Hemoglobin S

HFE Human hematochromatosis protein

HIF Hypoxia inducible factor

HJV Hemojuvelin

OH• Hydroxyl radical

IRP Iron regulatory protein

IRE Iron responsive element
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LPI Labile plasma iron

LCI Labile cellular iron

LIC Liver iron concentration

MRI Magnetic resonance imaging

NO• Nitric oxide

NTBI Non-transferrin bound iron

RBC Red blood cell(s)

ROS Reactive oxygen species

SCD Sickle cell disease

TBI Transferrin-bound iron

Tf Transferrin

TfR Transferrin receptor

TWSG1 Twisted gastrulation-1

ZIP14 ZRT/IRT-like protein14
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Figure 1. 
Iron homeostasis in transfusional iron overload. Red cells (RBC), phagocytosed by 

reticuloendothelial macrophages, the hemoglobin is degraded by heme oxygenase (HOX-1) 

and Fe is exported via ferroportin (FPN) and binds to transferrin (Tf). When Tf becomes 

saturated, non-transferrin bound iron (NTBI) and labile plasma iron (LPI) can enter organs 

through the divalent metal transported (DMT1), ZIP14, and L-type calcium channels (LCC). 

LPI and labile cellular iron (LCI) are highly reactive species of NTBI that are able to cause 

direct oxidant damage. Diferric transferrin enters the marrow and liver through the 

transferrin receptors 1 & 2. Heme and ferric iron enter the gut and are exported by FPN. 

Hepcidin (HEP) blocks export of Fe through FPN.
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Figure 2. 
Regulation of hepcidin production. Bone morphogenetic protein-6 (BMP6) activates 

transcription of the hepcidin gene (hepcidin antimicrobial peptide; HAMP) via the SMAD 

pathway. Hemojuvelin (HJV) enhances the activity of BMP receptor (BMP-R) and this 

activity is suppressed by cleavage of HJV by TMPRSS6. Diferric Tf displaces the 

hemochromatosis protein (HFE) from the high affinity transferrin receptor, TfR1. It 

associates with TfR2 and this complex enhances signalling via BMP-R. In response to 

inflammation, activin-A can enhance BMP-R signaling or interleukin-6 acting through it 

receptor (IL6-R) can activate HAMP transcription. Twisted gastrulation-1 (TWSG1), grown 

differentiation factor 15 (GDF-15), erythroferrone (E-ferrone), estrogen, erythropoietin 

(EPO) and hypoxia reduce HAMP transcription.
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Figure 3. 
Sequence of iron loading secondary to transfusion in the liver (LIC), pancreas, and heart in a 

single hemoglobinopathy patient. Solid arrows on the Y-axes mark upper normal levels. 

Pancreas begins to load at age 17 (vertical dotted line) and reaches very high levels by age 

18.2 years. Cardiac loading does not reach clinically significant levels until age 21.5 yrs.
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Figure 4. 
Iron loading (log scale) in transfused children with congenital dyserythropoietic anemia 

(CDA), Diamond-Blackfan anemia (DBA), pyruvate kinase deficiency (PK), sickle cell 

disease (SCD) and thalassemia major (TM). Children with ineffective erythropoiesis (black 

symbols) and those with effective (red symbols) erythropoiesis have similar iron loading of 

the liver at an early age. Children with ineffective or markedly decreased erythropoiesis 

(TM, CDA, DBA) have comparatively more loading of their pancreas and heart, consistent 

with NTBI-mediated loading. Dashed lines indicate upper limit of normal ranges.
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Figure 5. 
Magnetic resonance images (MRI) of the chest showing very black liver indicating high iron 

and grey left ventricular wall indicating little iron (A). Two years later (B), the myocardium 

had loaded significantly and is black. The patient had become compliant with his chelation 

when he learned his heart was loaded with iron. The liver was cleared by chelation, but the 

heart was not. (Images courtesy of Dr. John Wood)
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Table 1

Characteristics of hemoglobin related disorders.

Disorder Anemia Transfusion
dependent

Main transfusion
indication

Pathology

Thalassemia Major Severe Yes Suppress extramedullary
erythropoiesis, block bony
changes and growth
failure, delivers O2 to tissue

Ineffective erythropoiesis
Unable to make heme,
globin or disordered RBC
production.

Thalassemia intermedia Moderate Variable

Congenital
dyserythropoietic anemia

Variable Variable Suppress extramedullary
erythropoiesis, O2 delivery

Congenital sideroblastic
anemia

Variable
Moderate

Variable

Sickle cell anemia Moderate 25% Suppress HbS production
Suppress hemolysis

Effective erythropoiesis
destruction of mature RBC

Congenital hemolytic
anemias

Variable Intermittent

Blackfan-Diamond
anemia

Severe 20% O2 delivery to tissue
Alleviate symptoms of
anemia

Variable ineffective
erythropoiesis,
Little or no RBC
production in some.Marrow failure/

myelodysplasia
Severe
Variable

Often

Chemotherapy/marrow
transplant

Moderate/
Severe

Intermittent

Hereditary iron
absorption/transport

None
Mild

No Rarely required Defects in iron regulatory
genes
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