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Cholinergic and perfusion brain networks
in Parkinson disease dementia

ABSTRACT

Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia
(PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12
weeks of treatment with donepezil.

Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and
99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis,
producing a series of PC images of patterns of interrelated voxels across individuals. Linear
regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs).

Results:We found anM1/M4 SCP of relative decreased binding in basal forebrain, temporal, stria-
tum, insula, and anterior cingulate (F1,47 5 31.9, p , 0.001) in cholinesterase inhibitor–naive
patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corre-
sponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal
and prefrontal areas (F1,47 5 177.5, p , 0.001) and nodes of the frontoparietal and default
mode networks (DMN). TheM1/M4 pattern that correlated with an improvement in MMSE (r5 0.58,
p 5 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior
cingulate areas coinciding with the DMN and frontoparietal networks.

Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated
with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may
be prerequisite for cognitive remediation following cholinergic treatment in this condition.
Neurology® 2016;87:178–185

GLOSSARY
AIC 5 Akaike information criterion; CAMCOG 5 Cambridge Cognitive Examination; CAMCOGexec 5 Cambridge Cognitive
Examination executive function subscale; CAMCOGmemory 5 Cambridge Cognitive Examination memory subscale; ChEI 5
cholinesterase inhibitor; DLB 5 dementia with Lewy bodies; DMN 5 default mode network; MMSE 5 Mini-Mental State Exam-
ination; NBM 5 nuclear basalis of Meynert; NPI 5 Neuropsychiatric Inventory; PC 5 principal component; PD 5 Parkinson
disease; PDD 5 Parkinson disease dementia; rCBF 5 regional cerebral blood flow; SCP 5 spatial covariance pattern; SN 5
salience network; SSF 5 subject scaling factor.

In Parkinson disease (PD), development of dementia (PDD) occurs in up to 80% of people 15–20
years after PD diagnosis,1 with 50% developing cognitive impairment within 6 years.2 In PDD,
cholinergic dysfunction is strongly implicated in cognitive deficits, fluctuating cognition, and
visual hallucinations.3 Reductions in choline acetyltransferase are marked in PDD compared to
Alzheimer disease and PD,4 while clinically, cholinesterase inhibitors (ChEIs) can ameliorate
cognition and visual hallucinations. However, response is variable with some efficacy.5

Since the brain is a networked entity, pathologic change in one area may influence other
topographically distant regions. Indeed, distributed network dysfunction is now considered
a key contributor to symptoms that manifest in neurodegenerative dementias.6 In PDD,
theoretical models of dysfunctional neural networks have been proposed. In particular,
several cholinergic networks arising from the nuclear basalis of Meynert (NBM) projecting to
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specific brain regions are thought to affect major
cognitive domains, e.g., attention (NBM /
neocortex), visuoperceptual (NBM / parieto-
occipital, parahippocampal-fusiform), and
memory (NBM / medial temporal).7 One
way to examine functional brain connectivity
is by spatial covariance analysis.

We applied spatial covariance to (R, R) 123I-
QNB SPECT data,8 acquired in ChEI-naive
patients with PDD, to investigate disease-
associated M1/M4 cholinergic networks. Also,
as cholinergic network dysfunction is implicated
in cognitive impairment and amelioration of
cholinergic function is an important aspect of
treatment, we derived an M1/M4 covariance
pattern that correlated with a change in Mini-
Mental State Examination (MMSE) score, after
12 weeks of treatment with the ChEI (donepe-
zil), to probe the clinical significance of these
networks.

METHODS Standard protocol approvals, registrations,
and patient consents. Study approval was from the UK

Department of Health’s Administration of Radioactive Substan-

ces Advisory Committee and Newcastle, North Tyneside, and

Northumberland research ethics committees. All participants or

nearest relatives gave written informed consent for the study

including treatment.

Participants. The study comprised 49 individuals (25 PDD and

24 similarly aged controls). Patients were recruited from outpa-

tient movement disorder clinics in Newcastle-upon-Tyne and

Gateshead, while healthy controls were from patient spouses

and friends in this and other studies. Participants had physical,

neurologic, and neuropsychiatric assessments, including mental

state, history, physical examination, and, for patients, blood screen

with B12 and folate levels. The study battery administered included

the MMSE,9 Neuropsychiatric Inventory (NPI),10 and Cambridge

Cognitive Examination (CAMCOG)11 with memory and executive

function subscales (CAMCOGmemory, CAMCOGexec).

Diagnosis was carried out consensually between 2 clinicians

using the diagnostic criteria for PDD.12 Patients with PDD were

on levodopa and carbidopa or benserazide combination therapy

and were naive to ChEI treatment at the time of QNB imaging.

Participants on any of the following medications were excluded

from the study: antipsychotics, cholinergics, anticholinergics,

and antidepressant medications. Clinicopathologic diagnosis was

established for 11 cases (2 controls, 9 PDD).

Radiochemistry. Using the technique of Lee et al.,13 (R, R) 123I-

QNB radiosynthesis was conducted, the specifics of which are

described elsewhere.14

Acquisition. Participants were scanned with a triple-head

gamma camera (Picker 3000XP; Philips, Best, the Netherlands)

5 hours postinjection of (R, R) 123I-QNB using a previously

reported imaging protocol.8 Within 4 weeks of the (R, R) 123I-

QNB scan, individuals underwent 99mTc-exametazime regional

cerebral blood flow (rCBF) SPECT imaging in accordance with

a past scanning procedure.8

Spatial preprocessing. All SPECT scans were registered to match,

where applicable, a 123I-QNB or 99mTc-exametazime SPECT template

in standard stereotactic Montreal Neurological Institute space using

linear image registration software (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

flirt/). Generation of specific template images have been described.14,15

The spatially transformed images were then smoothed with a 10-mm

full width at half maximum 3D Gaussian filter.

Multivariate spatial covariance analysis. Principal compo-

nent (PC) analysis was applied on a voxel basis to all processed
123I-QNB SPECT images using covariance analysis software

(http://www.nitrc.org/projects/gcva_pca/),16 producing a series of

PC images. For each PC image, voxels had either positive or

negative weights that represent the sign and strength of covariance

between voxels. In this study, voxels with positive and negative

weights were viewed as concurrently preserved/increased and

decreased M1/M4 binding, respectively. The extent to which an

individual expressed the PC image was by way of a subject scaling

factor (SSF) for that PC, calculated by superimposing the PC image

onto an individual’s processed QNB scan by computation of a dot

product, which involves image multiplication on a voxel basis

followed by summation of the products generating a score. Higher

SSF scores for an individual for that PC image represents greater

increased binding in voxels with positive weights and greater

concurrent decreased binding in voxels with negative weights. To

identify the QNB spatial covariance pattern (SCP) that distinguished

PDD from controls, each individual SSF was entered into

a linear regression model as explanatory variables with group

as the dependent parameter. Akaike information criteria (AICs)

determined how many PCs should be included to reach optimal

bias-variance tradeoff.17 The set of PCs yielding the lowest AIC

value was used to derive the SCPQNB. The degree to which each

participant expressed the SCPQNB was by the SSFQNB.

The same approach was applied to the 99mTc-exametazime

SPECT images. Therefore, positive and negative weights were

interpreted as concurrent increased and decreased rCBF,

respectively. The analysis produced the SCPrCBF that best sep-

arated PDD from controls, while each participant expressed the

SCPrCBF by his or her SSFrCBF.

Following their 123I-QNB scan, the majority of patients (n 5

18) were then treated with the ChEI donepezil titrated up to the

standard daily clinical dose of 10 mg. After a period of 12 weeks,

patients underwent repeated MMSE assessments. We derived

a ChEI-naive M1/M4 SCP that correlated with ΔMMSErel_b,

which described the percentage change in MMSE relative to base-

line. This involved conducting a separate analysis, generating a series

of PCs expressed by each participant by the SSFs, which in turn

were introduced into a regression model as predictor variables

with ΔMMSErel_b as the response parameter. The resulting linear

combination with the smallest AIC value generated the SCPΔMMSE

(R2 5 0.34, p 5 0.005), where each individual expressed the

pattern by the SSFΔMMSE.

Stability and reliability of the SCPs were assessed by bootstrap

resampling (1,000 iterations) to identify areas that contributed to

the patterns with high confidence. This transforms the voxel

weights of each SCP into Z maps, computed as the ratio of voxel

weight and bootstrap SD. The Z-statistic follows roughly a stan-
dard normal distribution where a one-tailed p # 0.05 infers

a threshold of jZj $ 1.64.18

Statistical analyses. Continuous variables were tested for normality

using visual inspection of histograms and Shapiro-Wilk test.

Demographic, clinical, and imaging measures were assessed, where

applicable, using parametric (analysis of variance) and nonparametric

x2 tests. Correlations were performed using Pearson r coefficients.
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Statistical tests were interpreted as significant if p# 0.05. Data analysis

used the Statistical Package for Social Sciences (Chicago, IL) software

(SPSS version 22.0; http://www-01.ibm.com/software/analytics/spss/

products/statistics/).

RESULTS Demographics and clinical characteristics.

Table 1 shows demographic and clinical character-
istics of the study sample. Groups were similar in
age and sex, while as expected, all other variables
differed (p , 0.001).

Spatial covariance analysis. The SCPQNB that distin-
guished PDD from controls is shown in figure 1, A
and B. SSFQNB scores were higher in PDD than con-
trols (mean 6 SD; controls 5 1.5 6 2.5, PDD 5

6.2 6 3.3, F1,47 5 31.9, p , 0.001; figure 1C). The
pattern was mainly characterized by concomitant de-
creases in M1/M4 binding (blue regions) in basal fore-
brain, temporal, striatal, insula, and anterior cingulate
together with concomitant preserved or increases (red
regions) in frontal and parieto-occipital areas. Table e-1
on the Neurology® Web site at Neurology.org presents
detailed description of specific regions contributing to
the M1/M4 disease-related pattern.

The associated SCPrCBF that differentiated PDD
from controls is illustrated in figure 2, A and B , where
SSFrCBF scores differed between groups (controls 5
0.4 6 0.9, PDD 5 6.2 6 1.9, F1,47 5 177.5, p ,

0.001; figure 2C). The pattern mainly comprised rel-
ative decreased rCBF (blue) in temporoparietal and

Table 1 Participant characteristics

Controls PDD Statistic, p value

No. 24 25

M:F 15:9 17:8 x2 5 0.2, 0.7

Age, y 74.1 6 5.1 72.0 6 5.0 F1,47 5 2.0, 0.2

MMSE 28.3 6 1.5 18.8 6 4.9 F1,47 5 82.3, ,0.001

CAMCOG 95.0 6 3.9 63.0 6 14.2 F1,47 5 113.8, ,0.001

CAMCOGmemory 22.1 6 1.9 16.1 6 4.7 F1,47 5 32.6, ,0.001

CAMCOGexec 20.8 6 4.2 8.5 6 3.1 F1,47 5 135.2, ,0.001

NPI 1.3 6 2.3 19.7 6 17.8 U 5 73.0, 0.002

NPIhall NA 3.5 6 2.5

UPDRS III 0.9 6 1.5 38.5 6 11.6 U 5 600.0, ,0.001

Abbreviations: CAMCOG 5 Cambridge Cognitive Examination; CAMCOGexec 5 Cambridge
Cognitive Examination executive function subscale; CAMCOGmemory 5 Cambridge Cogni-
tive Examination memory subscale; MMSE 5 Mini-Mental State Examination; NA 5 not
applicable; NPIhall 5 Neuropsychiatric Inventory hallucinations subscale; PDD 5 Parkinson
disease dementia; UPDRS 5 Unified Parkinson’s Disease Rating Scale.
Values denote mean 6 1 SD.

Figure 1 Muscarinic M1/M4 spatial covariance pattern in Parkinson disease dementia (PDD)

Disease-related M1/M4 spatial covariance pattern in PDD projected onto orthogonal (A) and rendered (B) displays of the QNB tem-
plate. Distribution of subject scaling factor (SSFQNB) scores across groups (C). Ant 5 anterior; Pos 5 posterior; Sup 5 superior.
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prefrontal areas with relative increases (red) in cer-
ebellum, brainstem, striatothalamic, and motor
regions. Detailed description of specific regions partici-
pating in the rCBF disease-related pattern is provided
(table e-2).

Relationships between SCP expressions and age,
MMSE, CAMCOG, CAMCOGmemory, CAMCO-
Gexec, total NPI, NPI hallucinations subscale, and
Unified Parkinson’s Disease Rating Scale III were
investigated in PDD. No correlations were found
between SSFQNB and these measures (jrj # 0.23,
p $ 0.14). For the rCBF pattern expression, total
NPI correlated with SSFrCBF (r 5 0.62, p 5

0.006), which was not observed for the other variables
(jrj # 0.28, p $ 0.09). An exploratory examination
of NPI subscores did not yield any specific relation-
ships with SCP expressions.

Summary data for the donepezil-treated group are
shown (table 2). During the observation period, dif-
ferences in MMSE were identified between baseline
and 12-week scores (p , 0.001). The resultant
SCPΔMMSE is presented in figure 3, A and B, while
figure 3C depicts SSFΔMMSE plotted as a function of

ΔMMSErel_b. The pattern consists of concurrent
decreases in M1/M4 binding (blue) in fusiform,
anterior cingulate, lingual gyrus, and precentral areas with
concurrent preserved or increases (red) in pre/medial/
orbitofrontal, parietal, and posterior cingulate regions.

Figure 2 Regional cerebral blood flow (rCBF) spatial covariance pattern in Parkinson disease dementia (PDD)

Disease-related rCBF spatial covariance pattern in PDD projected onto orthogonal (A) and rendered (B) displays of the
rCBF template. Distribution of subject scaling factor (SSFrCBF) scores across groups (C). Ant 5 anterior; Pos 5

posterior; Sup 5 superior.

Table 2 Summary data of patients with PDD
treated with donepezil

PDDdonepezil Statistic, p value

No. 18

M:F 11:7

Age 71.6 6 4.6

MMSEb 18.1 6 4.3

MMSE12w 22.4 6 4.7

jMMSE12w 2 MMSEbj 4.3 6 3.8 t17 5 4.8, ,0.001

ΔMMSErel_b, % 26.8 6 24.6

Abbreviations: 12w 5 at 12 weeks; b 5 at baseline; MMSE 5

Mini-Mental State Examination; PDD 5 Parkinson disease
dementia.
Values denote mean 6 1 SD.
ΔMMSErel_b (%)5 {(MMSE12w 2MMSEb)/MMSEb}3 100%.
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Details of specific regions participating in the pattern
are supplied (table e-3).

DISCUSSION We undertook a multivariate network
perspective of (R, R) 123I-QNB SPECT, aM1/M4 recep-
tor ligand in ChEI-naive patients with PDD.We derived
a disease-related M1/M4 pattern of spatial covariance
that appears largely distinct from rCBF, which implies
the presence of several dysfunctional cholinergic networks
in PDD. We also identified a clear M1/M4 covariance
pattern that was associated with an improvement in
MMSE; this network had distinctive spatial elements
suggesting certain cortical regions and their associated
cholinergic innervation may have a more preeminent
role in cognitive amelioration by cholinergic treatments.
Relevant to the present study, this spatial covariance
technique has extensively and successfully been utilized
in perfusion SPECT and glucose metabolism PET
data for the investigation of disease progression and
symptomatology in PD.19–22

We derived a voxel cholinergic SCP from
123I-QNB images that differentiated PDD from con-
trols. The disease-related pattern comprised decreased

and preserved/increased M1/M4 uptake in a number
of concomitant brain regions or networks. The covar-
iant negative-weighted pattern mainly converged on
limbic/paralimbic regions. Notably, this cholinergic
receptor network mapped onto previously described
resting-state networks, including anterior insula and
the anterior cingulate, key nodes of the salience net-
work (SN), which is important for initiation of cognitive
control and switching between networks to aid access to
working memory and attention resources.23,24 Networks
involving the insula have also been shown to play a role
in episodic memory,25 while hippocampus, parahippo-
campus, and amygdala are known to be involved in
memory storage and retrieval.26 As such, this pattern
would align with a cognitive network deficit implicating
the basal forebrain and these structures, i.e., a cholinergic
limbic-paralimbic/SN dysfunction. The disease-related
pattern also encompassed regions implicated in dorsal
(occipital / parietal) and ventral (occipital / tempo-
ral / limbic) visual streams,27 providing indirect evi-
dence for the role of distinct cholinergic networks in
visual function in PDD, which would be in keeping
with known visuoperceptual deficits and predisposition

Figure 3 M1/M4 spatial covariance pattern (SCP) Δ Mini-Mental State Examination (MMSE) in Parkinson
disease dementia (PDD) (n 5 18)

(A–C) M1/M4 SCP in PDD (n 5 18) that correlated with ΔMMSErel_b.
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to visual hallucinations, symptoms that both show good
response to cholinesterase inhibitors.28,29

The associated rCBF pattern largely comprised
relative decreases in temporoparietal and prefrontal
areas along with relative increases in cerebellum,
brainstem, striatothalamic, and motor regions that
implicate a number of functional networks in PDD.
Regions that were concomitantly reduced appear to
involve hubs of the frontoparietal attention (inferior
parietal, dorsolateral prefrontal cortex)30 and default
mode networks (DMNs) (medial prefrontal, posterior
cingulate, ventral precuneus, inferior parietal),31,32

which is of interest since, respectively, attention def-
icits are one of the most disabling cognitive symptoms
in PDD,33 while network theories have strongly
implicated the DMN in contributing to cognitive
decline.34 Our previous studies revealed modulation
of the frontoparietal network in PDD that was similar
to patients with dementia with Lewy bodies (DLB),35

while also demonstrating, albeit in DLB, its relation-
ship with severity and frequency of cognitive fluctua-
tions.36 Other investigations have reported decreases
in DMN connectivity in PDD37 and its association
with cognitive dysfunction in PD.38 These and our
rCBF findings appear to provide further evidence that
implicate the DMN and frontoparietal networks in
the pathogenesis of symptoms in PDD, in particular
cognitive. Moreover, perhaps not unexpectedly, the
rCBF pattern seemed to represent an extended topog-
raphy of the PD-related motor and cognitive patterns,
which have been previously reported from 18F-FDG
PET studies using similar network approaches,21,39

thus indirectly validating the analytic methodology
used in the present study.

We failed to detect any correlations between the
M1/M4 pattern expressions and neuropsychological
and neuropsychiatric measures in PDD. For rCBF
pattern expression, only total NPI score was found
to correlate. Thus, patients with more global severe
neuropsychiatric symptoms, a marker of greater disease
severity, were more likely to express the perfusion SCP
characteristic of PDD. The lack of correlations may be
explained by either the notion that each spatial covari-
ance pattern is likely to characterize a number of over-
lapping and convergent brain networks and thus fails to
project on specific cognitive and clinical parameters or
that patterns derived from combined (control–demen-
tia) cohorts are less sensitive. Isolating key networks
from these patterns could increase sensitivity, but this
is methodologically challenging.

We found a clear M1/M4 covariance pattern that
correlated with a change in MMSE that could indicate
a positive treatment response. This pattern showed
relative decreases in fusiform, striatum, anterior cingu-
late, lingual gyrus, and precentral areas with relative
preservation or increase in pre/medial/orbitofrontal,

parietal, and posterior cingulate regions. From a net-
work perspective, there was covariant preservation/
upregulation in regions overlapping key nodes of
the DMN and frontoparietal networks that could imply
that a relative cholinergic maintenance of these net-
works is prerequisite for ChEI treatment response in
PDD, and more generally may point toward the poten-
tial relevance of these networks and their cholinergic
innervation and its associated cognitive symptoms.
Notably, a recent study showed that cholinergic and
serotonergic antagonists can impair DMN-like network
in mice similarly, suggesting that both neurotransmitter
systems are involved in maintaining the integrity of the
DMN-like networks.40 Hence, this pattern appears to
provide some evidence that supports the cholinergic
DMN maintenance hypothesis, and its potential sig-
nificance as a predictor of positive treatment response
in PDD and perhaps in other neurodegenerative
disorders.

Modest sample sizes and uncertainty regarding
which receptor subtype is affected (that is, M1 vs
M4) are limitations of the study. Another limitation
was the use of MMSE rather than Montreal Cogni-
tive Assessment to assess cognitive function in these
patients, reflecting the fact that our data were col-
lected before the widespread use of the latter scale.
Replication of this study with neuropsychological
assessments that align more with the cognitive deficit
profile of PDD may provide a more nuanced cholin-
ergic response network pattern. Strengths were scan-
ning and clinically assessing patients with PDD free
from cholinergic medications with perfusion and
muscarinic SPECT images available for all partici-
pants. We also had, in a sizeable minority, autopsy
confirmation of diagnoses.

Our findings imply several dysfunctional choliner-
gic and perfusion networks in PDD. The relevance
of these networks may be important in terms of their
contribution to cognitive and, in particular, attentional
deficits of this condition. The use of ChEIs could
improve such deficits, but there is marked heterogene-
ity in response to these agents and it is not possible to
reliably predict on clinical grounds who might respond
to these drugs. Although tentative, we observed a SCP
that suggests that those with cholinergic maintenance
of DMN and frontoparietal networks could experience
cognitive improvement with ChEI treatment. These
findings provide further neurobiological insights into
therapies targeted at improving cholinergic neurotrans-
mission and treatment outcomes in PDD.
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