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Abstract

 Introduction—Patients with mutations in C9orf72 can have amyotrophic lateral sclerosis 

(ALS), frontotemporal dementia (FTD), or ALS-FTD. The goals were to establish whether cortical 

hyperexcitability occurs in C9orf72 patients with different clinical presentations.

 Methods—Cortical thresholds and silent periods were measured in thenar muscles in 19 

participants with C9orf72 expansions and 21 healthy controls using transcranial magnetic 

stimulation (TMS). El Escorial and Rascovsky criteria were used to diagnose ALS and FTD. 

Fourteen participants with C9orf72 expansions were re-tested 6 months later. Correlations with 

finger-tapping speed, timed peg test, the ALS functional rating scale, and Dementia Rating Scale 

were examined.

 Results—Most participants with C9orf72 expansions had normal or low cortical thresholds. 

Among them, ALS patients had the lowest thresholds and significantly shorter silent periods. 

Thresholds correlated with timed peg-test scores. TMS did not correlate with the Dementia Rating 

Scale.

 Conclusion—TMS measures of cortical excitability may serve as non-invasive biomarkers of 

ALS disease activity.
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 INTRODUCTION

Cortical hyperexcitability has been measured in sporadic amyotrophic lateral sclerosis 

(ALS) using transcranial magnetic stimulation (TMS). TMS studies have shown reduced 

*Corresponding author. Mary Kay Floeter MD PhD, 10 Center Drive MSC 1404, Bethesda MD 20892-1404, Phone 301-496-9957, 
Fax 301-451-9805, floeterm@ninds.nih.gov. 
1Portions of this work were presented at the 67th Annual Meeting of the American Academy of Neurology, Washington DC, April 22, 
2015.

HHS Public Access
Author manuscript
Muscle Nerve. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:
Muscle Nerve. 2016 August ; 54(2): 264–269. doi:10.1002/mus.25047.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thresholds for eliciting motor evoked potential (MEPs) at rest, shortened cortical silent 

periods, and reduction of intracortical inhibition mediated by short and long intracortical 

circuits.1–5 The reductions in intracortical inhibition and the cortical silent period were most 

apparent in patients with shorter disease durations in cross-sectional6–9 and longitudinal 

studies.10–12 Later, as disease progresses, excitability declines, leading to lengthening of the 

silent period.13 These findings have been interpreted as showing impairment of intracortical 

inhibitory interneurons early in the ALS disease process. In contrast, cortical thresholds 

remained relatively stable over time6,7,12 possibly reflecting more prolonged integrity of the 

corticospinal-motor neuron connection. Cortical hyperexcitability is less certain in TMS 

studies of patients with sporadic frontotemporal dementia (FTD): cortical thresholds have 

been reported to be normal14,15 or increased.16 Short intracortical inhibition was reported to 

be normal in FTD patients14 or slightly reduced, primarily in those with the progressive 

aphasia variant, with a trend toward shortened cortical silent periods.15

Cortical hyperexcitability has been proposed as a therapeutic target in ALS, using TMS to 

identify the time window for treatment with drugs to reduce hyperexcitability.17 However, 

the transition from normal to hyperexcitability may happen over a short period of time. For 

example, asymptomatic carriers of mutations in the SOD1 gene for familial ALS had normal 

measures of cortical excitability, but patients with ALS had increased cortical excitability, as 

did 3 carriers who developed ALS symptoms shortly after the study.18,19 Expansion 

mutations in the gene C9orf72 are another cause of familial ALS. The same mutation in 

C9orf72 causes familial frontotemporal dementia (FTD).20,21 Patients with the C9orf72 
mutation exhibit a range of phenotypes, from classical ALS to the classical behavioral 

variant of FTD (bvFTD), to intermediate phenotypes with a variable degree of features of 

both disorders, even within the same pedigree.22,23 At autopsy, brains of patients with 

C9orf72 expansions have widespread neuronal inclusions containing TDP-43, regardless of 

whether the clinical phenotype is FTD or ALS.24,25 A recent threshold tracking study found 

evidence for reduced short intracortical inhibition in ALS patients with C9orf72 expansion 

mutations compared to asymptomatic carriers26, but it did not assess whether cortical 

hyperexcitability is associated with both ALS and FTD phenotypes with C9orf72 expansion 

mutations. Previous studies of cortical excitability in FTD variants, which mostly predated 

identification of the C9orf72 gene mutation, have varied findings.14,15,27 To examine the 

relationship between cortical excitability and clinical phenotype, we carried out TMS studies 

on patients with ALS, bvFTD, and ALS-FTD and on asymptomatic carriers with C9orf72 
expansion mutations.

 METHODS

 Subjects

Symptomatic and asymptomatic carriers with a repeat expansion in the C9orf72 gene were 

recruited nationwide for a natural history study (NCT01925196). All subjects gave written 

informed consent for the study, which was approved by the NIH Combined Neuroscience 

Institutional Review Board. Symptomatic patients also appointed a surrogate decision 

maker. An expansion mutation in C9orf72 (defined as > 44 repeats) confirmed in a CLIA-

certified laboratory, was required for inclusion in the study. Healthy controls gave written 
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informed consent for a separate study (NCT01517087) approved by the Institutional Review 

Board for physiological studies and clinical rating scales.

 Clinical Evaluation

A neurological examination, needle EMG, and cognitive testing were carried out to diagnose 

motor and cognitive impairment of participants with C9orf72 expansion mutations (hereafter 

referred to as “C9+” participants). C9+ participants were classified as C9+ ALS, C9+ 

bvFTD, C9+ ALS-FTD, or C9+ asymptomatic. The El Escorial criteria-revised28 were used 

for diagnosis of ALS, and the Rascovsky criteria were used for diagnosis of bvFTD.29 The 

ALS Functional Rating Scale-Revised (ALSFRS-R),30 finger tapping speed, and timed 

completion of the 9-hole peg test (9HPT) were measured to determine if physiological 

measures correlated with motor function. The Mattis Dementia Rating Scale, which provides 

a profile of cognition in FTD distinct from Alzheimer disease, was used as a measure of 

cognitive function for correlational analyses.31 It consists of multiple tasks to measure 

attention, initiation-perseveration, construction, conceptualization, and memory; a total score 

of 10 represents the mean for healthy subjects, adjusted for age and education.32 All healthy 

controls had normal neurological examinations and cognitive screening with the Montreal 

Cognitive Assessment (www.mocatest.org).

 Physiology

The motor cortex was stimulated using a Magstim 200 transcranial magnetic stimulator 

(TMS; Magstim, UK) with a hand-held 90-mm round coil. Surface EMG recordings were 

made from the abductor pollicis brevis (APB) muscles bilaterally using paired 9-mm surface 

electrodes. The optimal position for obtaining a motor-evoked potential (MEP) from thenar 

muscles was determined and marked on the scalp. The cortical threshold for each muscle 

was defined as the lowest intensity producing a motor evoked potential (MEP) of at least 50 

microvolts in 5 of 10 trials at rest. Thresholds are given as the percentage of stimulator 

output. MEPs were elicited using TMS intensities 130% of threshold during moderate 

contraction. Two sets of 5 MEPs were rectified and averaged. Cortical silent periods were 

measured from the stimulus artifact to the return of voluntary contraction in rectified traces. 

Central motor conduction times (CMCT) were calculated by subtracting the peripheral 

conduction time, estimated from the minimal F-wave latency,33 from the MEP latency.

 Statistics

The Shapiro-Wilk test was used to assess normality. t-tests were used to assess group 

differences between controls and C9+ participants for normally distributed data. A 1-way 

ANOVA was used to compare C9+ diagnostic subgroups. The average of the right and left 

silent periods and right and left cortical threshold were used for analysis of differences 

between C9+ subgroups, using the Tukey test for multiple comparisons, and for correlating 

with non-lateralized clinical measures. Paired t-tests and the Kruskal-Wallis test were used 

to compare baseline and follow-up of silent periods and thresholds from the same side. 

Pearson correlations were used to compare TMS measures from the corresponding 

hemisphere with lateralized clinical variables, such as finger tapping. A threshold of P < 

0.05 was used to determine significance, corrected for multiple comparisons.
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 RESULTS

 Demographics

The demographic and clinical data of all subjects at the baseline visit are shown in Table 1. 

There was no difference between the mean ages and gender ratios between the group of 19 

C9+ participants and 21 healthy controls. At baseline, 13 C9+ participants met criteria for 

possible, probable, or definite ALS, and 8 C9+ participants met criteria for possible, 

probable, or definite bvFTD. Of these, 5 C9+ participants met criteria for both ALS and 

bvFTD, with cognitive symptoms at onset in 3, and motor symptoms at onset in 2. Three 

C9+ participants were asymptomatic. Ten symptomatic C9+ participants were taking 

riluzole during the study. Seventeen C9+ participants returned for a follow-up examination 6 

months later. Two patients with definite C9+ ALS died before follow-up. One patient with 

C9+ ALS at the baseline visit met criteria for C9+ ALS-FTD at 6-month follow-up.

 Physiology

At baseline, APB MEPs were obtained from hands of all but 1 C9+ participant who had 

marked atrophy of the left APB muscle. The MEP/CMAP amplitude ratio did not differ 

between groups. Central motor conduction times were slightly longer in the C9+ group 

(Table 1). However, the CMCT was within the normal reference range of the laboratory for 

all but 2 hands. Most C9+ participants had normal or slightly low cortical thresholds, but the 

group mean did not differ from controls (Figure 1A). Patients with C9+ ALS who did not 

have bvFTD had the lowest mean thresholds among the C9+ subgroups, but the difference 

was not significant (Figure 1A). Cortical silent periods for the C9+ participant group did not 

differ from controls, but they differed among the C9+ diagnostic subgroups (F=7.279, P = 

0.0007). The shortest cortical silent periods occurred in the C9+ ALS subgroup (Figure 1B), 

and were significantly lower than the C9+ asymptomatic subgroup.

 Correlation with clinical measures

TMS measures were correlated with the 9HPT time and finger tapping speed in C9+ 

participants at baseline (Table 2). Lower cortical thresholds were associated with better 

motor function, with significantly shorter 9HPT times for both hands, and faster finger 

tapping speed for the left hand. Silent periods, however, were not correlated with these 

motor measures. Right and left TMS measures were averaged to assess correlations with 

disease duration, the ALSFRS-R score, and the Dementia Rating Scale score. Silent period 

durations and cortical thresholds were not correlated with age, disease duration, the 

ALSFRS-R, or the Dementia Rating Scale.

 Follow-up studies

APB MEPs were obtained from the hands of 16 C9+ participants, although 3 APB CMAP 

amplitudes were less than 1 mV with mildly prolonged distal latencies (4.5–6 ms). There 

were no significant changes in cortical thresholds (Figure 1C) or silent periods (Figure 1D) 

of each hand between the baseline and the 6-month follow-up evaluation for the C9+ 

participants group or in the subgroup with C9+ ALS. Silent periods at 6 months were 

correlated with silent periods measured at baseline (r = 0.71, P < 0.001), and thresholds 
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measured at 6 months were correlated with baseline threshold measurements (r = 0.75, P < 

0.001). The decline in the ALSFRS-R score was not correlated with the changes in the 

average of the right and left cortical thresholds or silent periods.

 DISCUSSION

In this study, we found evidence for cortical hyperexcitability in participants with C9orf72 
mutations with ALS that was not seen in C9+ participants with only bvFTD or ALS-FTD, or 

in asymptomatic carriers. Cortical hyperexcitability was evidenced by shortened silent 

periods following TMS-evoked potentials in hand muscles in patients with ALS, with 

normal or low cortical thresholds. The finding of a shortened silent period, particularly early 

in the course of disease, has been noted in some, although not all, previous studies of 

sporadic ALS patients,7,13,34 However, our finding that cortical hyperexcitability was 

associated with the clinical phenotype of ALS, but not with bvFTD or carriers, highlights the 

specificity of these TMS measures for detecting alterations of inhibition and excitation 

within the motor cortex. Shortened silent periods were found despite the fact that most of the 

patients with ALS and ALS-FTD were being treated with riluzole, a drug known to shorten 

intracortical inhibition in ALS without affecting silent periods.35 Even though 3 C9+ 

participants were symptomatic with cognitive impairment, these TMS measures were not 

different from controls. The lack of changes is notable, since pathological studies have 

shown widespread degeneration and accumulation of TDP-43 aggregates in projection 

neurons of layers II-III throughout the cortex and of Betz cells within the motor cortex36. 

Imaging studies also show global brain atrophy in C9+ FTD patients.37 Asymptomatic C9+ 

carriers had normal thresholds and silent periods, consistent with studies of asymptomatic 

carriers with familial ALS.18,19,26 The findings of cortical hyperexcitability, as detected by 

single pulse TMS of the motor cortex, coincided with clinical manifestations of upper motor 

neuron dysfunction.

Cortical hyperexcitability in ALS is hypothesized to involve a loss of input from cortical 

inhibitory interneurons onto corticospinal neurons, with subsequent alterations in the 

complement of post-synaptic receptors and channels on corticospinal neurons.2,3,5,38 This 

sequence – loss of synaptic input and changes in expression of ion channels – has been 

recapitulated in vitro with iPS-derived motor neurons from C9+ ALS patients.39,40 Loss of 

inhibitory synaptic inputs and postsynaptic receptors is followed by death of the iPS-derived 

motor neurons. Reduced expression of inhibitory receptors and ion channels may be directly 

related to impairment of RNA processing of transcripts caused by the expanded repeat.41,42 

The relative integrity of the corticomotoneuronal connection during the period of 

hyperexcitability has been postulated to permit anterograde spread of degeneration to 

homotopic lower motor neurons.17,43 In our data, the preservation of MEP/CMAP 

amplitudes and CMCT in the face of cortical hyperexcitability would be compatible with a 

relatively intact corticomotoneuronal connection that would be necessary for this proposed 

mechanism of the spread of degeneration.

The single pulse TMS techniques for measuring cortical thresholds, CMCTs, and silent 

periods used in this study are basic and were easily carried out in a clinical EMG laboratory 

with experience in this technique. Paired pulse TMS and threshold tracking techniques3 are 
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alternative methods for probing cortical excitability. They have the advantage of being 

independent of a patient’s ability to make a voluntary contraction but require additional 

equipment and software. We recognize that the relatively small sample size, particularly 

upon dividing the cohort into diagnostic subgroups, is a limitation of this study. These data 

emerged from an ongoing longitudinal study and will need to be confirmed as more subjects 

and longer time points are accrued. An important question to be answered is whether silent 

periods remain stable beyond 6 months or lengthen as disease progresses.13 However, given 

the rapid pace of therapeutic development for disease caused by C9orf72 expansion 

mutations,44,45 there is an urgent need for biomarkers of disease activity to serve as 

surrogate measures in clinical trials.46 We suggest that TMS measures of cortical excitability 

are candidates for a role as non-invasive biomarkers of disease activity in the motor cortex. 

Other measures, such as neuroimaging,37 may be better positioned to be biomarkers of 

disease activity that has not spread beyond non-motor areas, such as the frontal and temporal 

cortex.
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 ABBREVIATIONS

9HPT 9-hole peg test

ALS Amyotrophic lateral sclerosis

ALSFRS-R Amyotrophic lateral sclerosis functional rating scale-revised

ANOVA Analysis of Variance

APB Abductor pollicis brevis

bvFTD behavioral variant Frontotemporal dementia

C9+ person with expansion mutation in C9orf72

CLIA Clinical laboratory improvement amendment

CMAP Compound muscle action potential

CMCT Central motor conduction time

EMG Electromyography

FTD Frontotemporal dementia

MEP Motor evoked potential

SICI Short-interval intracortical inhibition
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TMS Transcranial magnetic stimulation
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Figure 1. 
Transcranial magnetic stimulation measures in C9+ participants. C9+ participants were 

diagnosed as having ALS or FTD according according to the El Escorial and Rascovsky 

criteria, with level of certainty as possible or greater. Right (squares) and left (circles) APB 

measures are plotted for each C9+ participant; dotted lines represent 2 SDs above and below 

the mean of the healthy control group. Baseline measures (A, B). A) Thresholds for eliciting 

a motor evoked potential in resting APB muscles with transcranial magnetic stimulation 

expressed as percent of stimulator output. B) Silent periods following an MEP in contracting 

APB muscles with TMS stimulation at 130% of threshold. Patients in the C9+ ALS 

subgroup had significantly shorter silent periods than controls and asymptomatic C9+ 

participants (asterisk - ANOVA P < 0.001; Tukey test, P < 0.05. Statistics were calculated on 

the average of the right and left side.) (C, D) Follow-up studies at 6 months show no 
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significant change of C) cortical thresholds and D) silent periods. (Mean and SD measures 

from right and left sides are combined.)
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