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Abstract

 Introduction—The potential of gender to affect unloading-induced neuromuscular adaptations 

was investigated.

 Methods—Twenty male and 20 female rats were assigned to control (CTL), or unloaded (UL) 

conditions. After 2 weeks of unloading, soleus muscles were removed, and neuromuscular 

function was assessed during a train of alternating indirect (neural) and direct (muscle) stimuli.

 Results—In rested muscle, strength showed significant (P ≤ 0.05) main effects for gender 

(male > female) and treatment (CTL > UL). By the end of the testing protocol, when muscles 

showed fatigue, gender-related and treatment-related differences in strength had disappeared. 

Neuromuscular transmission efficiency and strength suffered a greater decline during the testing 

protocol in males than females. Unloaded male muscles displayed greater contractile velocity than 

female muscles both when rested and fatigued.

 Discussion—Gender did affect unloading-induced neuromuscular adaptations. The greater 

strength of rested male muscles was due to greater muscle mass and neuromuscular transmission 

efficiency.
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 INTRODUCTION

Muscle unloading has been shown to elicit a number of detrimental effects on the 

neuromuscular system. These maladaptations include strength decrement1,2, decline in 

power3, altered muscle fatigability4, decreased motor drive to contracting muscle tissue5,6, 

and atrophy of the whole muscle and its constituent myofibers.7,8 More recently, it has been 

reported that gender may play a role in the susceptibility of the neuromuscular system to 

unloading-related remodeling.9,10
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Although the impact of unloading is manifested in the muscle and its myofibers in terms of 

strength and power decrements, the actual mechanism involved may reside further upstream 

of the muscle tissue displaying alterations. More specifically, it is possible that muscle 

performance is impaired following unloading due to alterations in neuromuscular 

transmission efficiency, i.e., dampened communication between motor nerve terminals and 

the myofibers that they innervate. Indeed, it has been demonstrated that during a train of 

stimuli, neuromuscular transmission can be compromised resulting in decrements in muscle 

endurance, or ability to sustain contractile force over time.11,12 How muscle unloading may 

influence neuromuscular transmission efficiency is not fully understood at this time, nor is 

the impact of gender on synaptic function of the neuromuscular system. This is an important 

variable to consider, since it has been reported that in humans, women suffer greater strength 

decrements than men as a result of muscle unloading10,13, and spaceflight crews (who are 

exposed to muscle unloading) are increasingly comprised of women.14 Thus, the aim of this 

investigation was 2-fold: 1) to determine the effects of gender on unloading-induced changes 

in neuromuscular function, and 2) to assess the role of neuromuscular transmission 

efficiency in unloading-related alterations in muscle performance. We studied an animal 

model of unloading and performance assessment along with an isolated muscle arrangement 

to determine neuromuscular function. The main benefit of testing isolated muscles in an ex 
vivo setting was that the potentially confounding effects of motivation and pain tolerance 

were eliminated during contractions so that physiological properties solely determined 

neuromuscular performance.

 MATERIALS AND METHODS

 Subjects

Twenty male and 20 female Wistar rats (6 mo old) purchased from Charles River 

Laboratories (Wilmington, MA, USA) were assigned randomly to either control (CTL) or 

unloaded (UL) treatment groups, resulting in 4 groups of 10 rats each (Male-CTL, Male-UL, 

Female-CTL, Female-UL). Animals assigned to the UL groups were subjected to a 2-week 

period of hindlimb suspension as previously described.15 The 2-week intervention periods 

for male and female rats did not occur simultaneously, but rather occurred in subsequent 

months. Previous work has shown that 2 weeks of hindlimb suspension produces significant 

alterations in muscle performance and muscle fiber atrophy.16,17 During the unloading 

intervention, the animal’s hindlimbs were elevated from contact with the floor, thus 

preventing weight-bearing and ambulatory activity, using an adhesive strip placed along the 

length of the tail and attached to a clip. The clip was then secured into a swivel device 

suspended above the rat to allow it to move in a 360° arc using its forelimbs, which remain 

in contact with the floor. Animals remain in this condition of hindlimb suspension 24 h a 

day. To facilitate eating in an attempt to maintain body mass, food pellets are fractured into 

smaller pieces by being placed in an ice crusher. In contrast, rats assigned to the CTL groups 

were placed in tubs lined with wood shavings and allowed free ambulatory and weight 

bearing activities. All animals, regardless of treatment group, were provided standard rat 

chow and water ad libitum. All rats were housed in a 21–22° C environment on a 12-hour 

light-dark cycle. All experimental procedures were approved by the institution’s animal care 
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and use committee which operates in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals.

 Neuromuscular Performance

Following the 2 week intervention period, neuromuscular performance of the soleus muscle 

was quantified with an ex vivo muscle stimulation and recording device (system 1205A, 

Aurora Scientific Inc., Aurora, ON, Canada) as depicted in Figure 1. The soleus was chosen 

for study, because it functions as the main postural muscle18 and the model of unloading 

employed here causes severe disruption of its normal pattern of neuromuscular activity. In 

preparation for performance analysis, muscles were removed surgically from living, 

anesthetized rats (ketamine/xylazine cocktail of 50/10 mg/kg body mass). Following a 15 

min incubation in Ringer solution (137 mM NaCl, 4.7 mM KCl, 3.4 mM CaCl2, 1.2 MM 

MgSO4, 1mM NaH2PO4, 112 D-glucose, pH = 7.4) that was vigorously aerated with gas 

(95% oxygen, 5% carbon dioxide) and maintained at 21–22° C. The muscle was then 

subjected to an electrical stimulation protocol that first established optimal muscle length in 

order to determine peak isometric force. The stimulation procedures utilized emulated those 

of Lomo and Rosenthal19 by alternating indirect and direct stimulation to quantify 

neuromuscular transmission efficiency. The stimulation parameters consisted of a series of 

sets featuring 9 pulses at a constant 37 V and ~25 Hz for a duration of 0.2 msec (indirect or 

neural stimulation via nerve terminal endings) followed by a single 2 msec duration pulse 

(direct muscle stimulation) so that the duration of each set was 30 sec. Sets were repeated 

continuously for a total protocol duration of 5 min. Contractile recordings were collected 

with the software accompanying the stimulation/recording system, and recordings were later 

analyzed using the same software. Contractile variables quantified were peak tension 

(highest single measures from indirect and direct stimulation), specific tension (tension/

whole muscle wet weight), and time to peak tension (onset of force development determined 

manually). Each of these parameters was quantified during both indirect (nerve) and direct 

(muscle) stimulation. Finally, neuromuscular transmission efficiency was assessed by 

dividing peak tension produced during indirect (neural) stimulation by that generated during 

direct (muscle) stimulation of the soleus and multiplying by 100 to be expressed as a 

percentage.

 Statistical analysis

A 3-way analysis of variance (ANOVA) with main effects of treatment (CTL vs. UL), 

gender (male vs. female), and time (start vs. conclusion of protocol) was used to analyze 

data from each stimulation type (indirect and direct). Of primary concern, however, was 

evidence of significant interactive effects. In the event of a significant F-ratio, post-hoc 
assessments were employed to identify significant pairwise differences. In all analyses, 

significance was set at P ≤ 0.05. All data are reported as mean ± SD. The statistical package 

StatView (SAS Institute, Inc, Rockville, MD) was used in all analyses.
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 RESULTS

 Body mass and muscle wet weight

In examining body mass data collected prior to the 2 week intervention period, statistical 

analysis failed to reveal significant interaction, or a main effect for treatment, while a 

significant main effect for gender (males > females) was detected. At the conclusion of the 2 

week unloading period, there was again an absence of significant interaction, although main 

effects for both gender (males > females) and treatment (CTL > UL) were evident. When 

statistical analyses were performed on wet weights of soleus muscles collected at the 

conclusion of the 2 week intervention, a significant interactive effect was discovered; the 

post-hoc results indicated that the muscles of male rats had undergone significantly more 

unloading-related atrophy than those of female rats. These data can be found in Table 1.

 Neuromuscular performance

 Peak torque—Strength, or peak tension, was assessed at the very beginning (Initial) and 

end (Final) of the 5 min train of stimuli, both by indirect (nerve) and direct (muscle) 

stimulation. ANOVA results showed that in the Initial time period, no significant interaction 

between gender and treatment occurred, but a main effect for gender (males > females) was 

evident along with a main effect for treatment (CTL > UL) during indirect stimulation. At 

the end of the stimulation session no evidence of interaction between gender and treatment 

was detected nor were there main effects. When examining interactive effects among gender 

and time, however, a significant main effect was found which showed that males lost more 

strength during the stimulation protocol than females. Moreover, significant interaction was 

established between treatment and time whereby CTL animals suffered greater declines in 

peak torque during the stimulation protocol than UL ones.

With direct muscle stimulation, however, ANOVA results failed to reveal a significant 

interactive effect between gender and treatment or a main effect for gender, although a main 

effect for treatment (CTL > UL) was identified. Analyses of the peak tension recordings at 

the end of the 5 min train of stimuli failed to reveal significant interactive or main effects. 

When examining changes in strength during the stimulation protocol, however, significant 

interaction was revealed between gender and time. Specifically, although both male and 

female muscles lost significant amounts of strength during the stimulation protocol, males 

lost significantly more than females. Significant interaction was also noted between 

treatment and time such that CTL muscles suffered more severe declines in force production 

than UL ones during the train of stimulation. Because of these interactive effects both male 

and female, as well as CTL and UL soleus muscles produced similar amounts of strength by 

the end of the testing protocol with both direct and indirect muscle stimulation. Data 

concerning peak tension are presented in Table 2.

 Specific tension—Data collected on specific tension, or peak tension relative to whole 

muscle wet weight20,21, were also analyzed. With indirect stimulation, no significant 

interaction between gender and treatment occurred either at the beginning or the end of the 

stimulation session nor were there significant main effects for those 2 variables at either the 

Initial or Final stages of the stimulation protocol. But as with peak tension, there was a main 
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effect for the variable of time, which suggests significant declines in specific tension during 

the indirect stimulation protocol.

Specific tension with direct muscle stimulation, however, produced 1 result that differed 

from those observed during indirect stimulation. With post-hoc analysis of the significant 

interaction between time and treatment, CTL muscles exhibited a greater loss of maximal 

force production than UL muscles. Once again the strongest muscles suffered the most 

during a fatigue-inducing train of electrical stimuli. Results for specific tension can be found 

in Table 3.

 Time to peak force—As a measure of contractile velocity, time to peak force was also 

examined. ANOVA results showed an absence of interaction between gender and treatment, 

and there was no main effect for treatment. This was true whether the muscle was stimulated 

indirectly or directly. However, there was a significant main effect for gender in that male 

muscles contracted more quickly than female ones; this was true whether muscles were 

stimulated indirectly or directly. ANOVA results also showed a lack of interaction between 

the factor of time with either gender or treatment. However, there was a main effect of time, 

which indicated that over the course of the 5 min testing protocol the contractile velocity of 

soleus muscles became significantly slower. This was the case during both indirect and 

direct stimulation. Post-hoc procedures revealed that at the Initial time point, when muscles 

were well rested, male UL muscles took less time to reach peak force than female UL and 

CTL muscles, but by the Final time interval, when muscles were experiencing fatigue, those 

differences were no longer observed. Interestingly, these post-hoc results appeared during 

indirect stimulation only. When we examined post-hoc results from direct muscle 

stimulation, we found instead that it was at the Final time period, not the Initial one, where 

specific between group differences were exposed. Again, male UL muscles contracted at a 

faster velocity than female CTL and UL muscles. Table 4 presents data on time to peak 

tension.

 Neuromuscular transmission efficiency—We quantified neuromuscular 

transmission efficiency to assess the locus of fatigue, i.e., motor nerves or muscle fibers, 

during repetitive maximal muscle contractions. ANOVA showed significant interaction 

between gender and time (i.e., Initial to Final interval changes), but not between time and 

treatment. Post-hoc analysis indicated that for all 4 treatment groups, neuromuscular 

transmission efficiency was significantly attenuated during the stimulation protocol. This 

suggests that motor nerves, rather than muscle fibers, were mainly responsible for the 

degradation of muscle force. Moreover, post-hoc findings indicated that at the outset of the 

testing protocol gender-related differences in neuromuscular transmission efficiency were 

apparent (male > female). By the end of the protocol, nerve to muscle communication was 

no longer different between male and female muscles, which indicates a sharper decline in 

neuromuscular transmission efficiency during the 5 min contractile challenge in males 

compared to females. Data concerning neuromuscular transmission efficacy are presented in 

Table 5.
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 DISCUSSION

The deleterious effects of muscle unloading have been well described and reviewed.22,23,24 

These effects include muscle atrophy, along with functional impairments such as 

compromised strength, muscle power, and neural drive to contracting muscles. More 

recently it has been reported that in humans subjected to brief periods of muscle unloading, 

women experience greater decrements in muscle strength and that this could not be ascribed 

to gender-specific unloading-related declines in muscle mass, or myofiber size.10 Rather, it 

was demonstrated that women experienced more pronounced reductions in neural drive to 

maximally contracting muscle tissue as a result of unloading than men and that it was this 

difference in neural drive that accounted for the greater declines in strength noted among 

women following muscle unloading.5,13 To further pursue this line of investigation, we 

decided to use an animal model of muscle unloading, hindlimb suspension, along with an ex 
vivo procedure for assessing the innate functional capacity of the neuromuscular system 

without the potentially confounding variable of maximal voluntary effort that can occur in 

human studies of neuromuscular performance.

 Body and muscle mass

In this study female and male rats of the same age (6 mo) were assigned either to control or 

hindlimb suspension conditions for a period of 2 weeks before ex vivo neuromuscular 

capacity was quantified. Unsurprisingly, it was determined that young adult male rats had 

significantly greater body mass than young adult females both before and after the 2-week 

intervention period; this was true whether they were members of the CTL group or the UL 

groups. Further, we found that hindlimb suspension resulted in significant, but similar, 

declines in body mass in males and females (~11% and ~9%, respectively). More germane 

to the objectives of this project, we also determined that unloading resulted in reductions of 

whole muscle wet weight of both male and female soleus muscles. However, the unloading-

induced muscle atrophy detected in males (~36%) was significantly greater than it was in 

females (~21%). Surprisingly, this did not translate to greater strength declines in males, as 

their unloading-induced decrement in peak tension was less than that of females. These 

findings served as an early indication of the vital role played by neuromuscular transmission 

efficiency in establishing a muscle’s capacity for peak tension development.

 Peak tension

The gender-related difference in strength displayed by soleus muscles (males > females) was 

noted only among rested muscles, i.e., at the Initial interval of the 5-min testing protocol 

when neuromuscular transmission efficiency was also higher in males than females. In 

contrast, when muscles were fatigued by the Final stage of the 5-min train of stimuli, no 

differences in peak tension, or neuromuscular efficiency, were noted between any of the 4 

treatment groups. This shows that male muscles suffered a more severe decline in peak 

tension during the course of the 5 min testing protocol than did female muscles. It was 

obvious then, that males displayed more fatigue during the 5-min testing protocol than 

females and that this difference between male and female muscles was directly attributed to 

similar gender-specific declines in neuromuscular transmission efficiency. Similarly, these 

pre- to post-stimulation protocol results showed that CTL muscles of both genders, which 
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were stronger than UL muscles at the start of the testing procedure, suffered greater fatigue 

relative to UL muscles, as strength between the CTL and UL groups no longer differed by 

the conclusion of the train of stimuli. Moreover, post-hoc results revealed that resistance to 

fatigue during the 5-min testing protocol was significantly greater in female UL muscles 

than in any of the other 3 treatment groups, and this was true regardless of stimulation mode 

employed. Most likely this stems from the fact that those same muscles (female UL) were 

also the weakest of the 4 experimental groups at the onset of the testing regimen and thus 

had less strength to lose.

 Neuromuscular transmission efficiency

In attempting to identify potential mechanisms for these differences in loss of peak tension 

during the 5-min testing protocol, our results from the assessment of neuromuscular 

transmission efficiency, or the difference between force produced by direct muscle 

stimulation as opposed to indirect nerve stimulation, were very informative. More 

specifically, similar to peak tension, we found that although neuromuscular transmission 

efficiency was significantly greater in males at the initial stage of contractile activity, by the 

end of the testing protocol no gender-related differences were evident. Thus, it appears that 

in a rested state when neuromuscular transmission efficiency was greater in males than 

females, so was strength. However, when fatigued male and female muscles displayed 

similar impairment of neuromuscular transmission, strength also was similar in the 

neuromuscular systems of the 2 genders. The impact of enhanced neuromuscular 

impairment during a fatiguing train of stimuli to the concurrent loss of muscle strength has 

been noted elsewhere.12,25,26

 Specific tension

In addition to our inquiry into neuromuscular transmission efficiency in attempting to 

explain gender differences in strength as well as those between rested and fatigued muscles, 

we also examined specific tension, or the amount of force produced relative to muscle mass. 

Those results revealed that muscle quality, as assessed by specific tension, was resistant to 

the effects of gender and treatment, as well as their interaction. That is, both male and 

female fatigued solei, whether participating in CTL or UL treatment groups, exhibited equal 

amounts of force production relative to muscle mass as they did while they were well rested. 

Muscles from all 4 treatment groups, however, demonstrated significant yet similar 

reductions in peak tension over the course of the 5-min testing regimen. This was apparent 

with both indirect and direct stimulation. These findings show that specific tension could not 

explain gender-specific or treatment-specific differences in strength that were described 

above. Rather, this supports the critical role of neuromuscular transmission efficacy in 

determining contractile force.

 Time to peak force

To gain a more comprehensive view of the impact of gender on unloading-evoked alterations 

in neuromuscular function, we examined time to peak force as a measure of contractile 

velocity. We found that gender did play a role, albeit a somewhat confusing, or at least 

inconsistent one. More specifically, we found that upon male muscles contracted at a faster 

velocity than female muscles with indirect stimulation. But post-hoc analysis showed that in 
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fact, only unloaded male muscles reached peak force faster than female muscles. Moreover, 

this gender-related difference was manifested only among rested muscles; by the end of the 

stimulation protocol gender differences could no longer be identified. Conversely, with 

direct stimulation, no differences between the contractile velocities of rested (i.e., early 

during stimulation protocol) male and female muscles were identified. Instead, it was at the 

final stage of the 5-min train of stimuli, that fatigued male-UL muscles contracted more 

rapidly than both Female-CTL and Female-UL muscles. It has previously been reported that 

muscle unloading promotes a faster contractile velocity in muscle and that such a change is 

associated with fiber type conversion with a decline in the proportion of slow-twitch (Type I) 

muscle fibers and an increase in the expression of fast-twitch (Type II) fibers.27,28

Gender-related differences in contractile velocity during rested vs. fatigued conditions, as 

well as during indirect vs. direct stimulation, likely were linked to changes in neuromuscular 

efficiency. Recall that male muscles subjected to hindlimb suspension exhibited no evidence 

of neuromuscular transmission blockage during the early stages of the 5 min testing protocol 

thus enabling stimuli delivered to motor neurons to drive unloaded muscle to its fastest rate 

of contraction. By the end of the stimulating protocol, however, impairment of 

neuromuscular transmission had become apparent, particularly in male UL muscles thus 

bringing them to parity with muscles from the other treatment groups in terms of rapidity of 

stimulation and contractile velocity. Accordingly, by the end of the stimulating protocol 

direct stimulation of muscles elicited differences in time to peak tension between male UL 

muscles and female muscles of both treatment categories (CTL and UL). It is presumed that 

at this time point and with direct stimulation which does not incorporate synaptic 

transmission, it would be the previously mentioned increased expression of fast-twitch 

muscle fibers typically observed in unloaded muscle that would account for elevated rate to 

peak tension. However, quantification of muscle fiber type profile was not featured in this 

study.

 Overview

The results of this investigation differ from those we have previously reported which have 

indicated that females suffer more severe unloading-induced decrements in neuromuscular 

function than men.5,13 Besides the obvious difference in species tested (humans vs. rats), we 

found in our earlier investigation that a more pronounced decline in motor drive produced by 

the central nervous system during maximal voluntary contractions explained the greater 

reduction in strength among unloaded female muscles compared to unloaded muscles in 

men.5,13 But in this study, which used isolated muscles in an ex vivo testing procedure, 

central drive and/or maximal voluntary effort did not contribute to the expression of 

strength, although the peripheral nervous system (i.e., motor nerve terminals) did play a part 

when muscles were stimulated indirectly. Indeed, these findings suggest that when skeletal 

muscle is rested, neuromuscular transmission is more effective in males and females, but as 

fatigue sets in during the course of the 5-min testing protocol, nerve-to-muscle 

communication becomes an important determinant of strength and is compromised more in 

males than females.
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In conclusion, these results show that gender plays a significant role in determining 

functional neuromuscular adaptations to muscle unloading. In rested muscle, before 

neuromuscular fatigue sets it, the greater strength expressed by male muscle can be 

explained by a larger muscle mass and more effective neuromuscular transmission; this is 

true regardless of treatment group assignment (i.e., CTL or UL). The importance of size in 

determining peak force production in rested muscle is confirmed by the fact that specific 

tension was not found to vary between genders or treatment groups in either rested or 

fatigued muscles, although it was diminished over the course of the 5-min testing due to the 

effects of fatigue. These findings also suggest that gender-related differences in the 

impairment of neuromuscular transmission that occur during the testing protocol (males > 

females) alter muscle strength such that although it is initially greater among male muscles, 

it no longer differs from female muscles when fatigue sets in. In short, it appears that 

neuromuscular synaptic communication in males is more susceptible to fatigue than it is in 

females. It remains to be determined whether an intervention such as exercise training would 

mitigate or exacerbate the gender-related differences in muscle fatigability and contractile 

velocity detected here. Such findings could have important applied consequences with 

respect to rehabilitation following periods of muscle unloading that accompany post-surgical 

recovery (i.e., crutch-assisted ambulation), bed rest, immobilization, or even exposure to the 

microgravity of spaceflight.

 Acknowledgments

Grant support: This work was made possible by grant support from National Institute of Arthritis and 
Musculoskeletal and Skin Diseases (R15 AR060637-03) and The Foundation for Aging Studies and Exercise 
Science Research.

 ABBREVIATIONS

CTL control

UL unloaded

REFERENCES

1. Adams GR, Hather BM, Dudley GA. Effect of short-term unweighting on human skeletal muscle 
strength and size. Aviat Space Environ Med. 1994; 65:1116–1121. [PubMed: 7872913] 

2. Cook SB, Kanaley JA, Ploutz-Snyder LL. Neuromuscular function following muscular unloading 
and blood flow restricted exercise. Eur J Appl Physiol. 2014; 114:1357–1365. [PubMed: 24643427] 

3. Rejc E, di Prampero PE, Lazzer S, Grassi B, Simunic B, Pisot R, et al. Maximal explosive power of 
the lower limbs before and after 35 days of bed rest under different diet energy intake. Eur J Appl 
Physiol. 2015; 115:429–436. [PubMed: 25344798] 

4. Mulder ER, Kuebler WM, Gerrits KH, Rittweger J, Felsenberg D, Stegeman DF, et al. Knee 
extensor fatigability after bed rest for 8 weeks with and without countermeasure. Muscle Nerve. 
2007; 36:798–806. [PubMed: 17661376] 

5. Deschenes MR, McCoy RW, Holdren AN, Eason MK. Gender influences neuromuscular 
adaptations to muscle unloading. Eur J Appl Physiol. 2009; 105:889–897. [PubMed: 19125276] 

6. Schulze K, Gallagher P, Trappe S. Resistance training preserves skeletal muscle function during 
unloading in humans. Med Sci Sports Exerc. 2002; 34:303–313. [PubMed: 11828241] 

Deschenes and Leathrum Page 9

Muscle Nerve. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Berg HE, Dudley GA, Hather B, Tesch PA. Work capacity and metabolic and morphologic 
characteristics of the human quadriceps muscle in response to unloading. Clin Physiol. 1993; 
13:337–347. [PubMed: 8370234] 

8. Hather BM, Adams GR, Tesch PA, Dudley GA. Skeletal muscle responses to lower limb suspension 
in humans. J Appl Physiol. 1992; 72:1493–1498. [PubMed: 1534323] 

9. Ploutz-Snyder L, Bloomfield S, Smith SM, Hunter SK, Templeton K, Bemben D. Effects of sex and 
gender on adaptation to space: musculoskeletal health. J Womens Health (Larchmt). 2014; 23:963–
966. [PubMed: 25401942] 

10. Yasuda N, Glover EI, Phillips SM, Isfort RJ, Tarnopolsky MA. Sex-based differences in skeletal 
muscle function and morphology with short-term limb immobilization. J Appl Physiol. 2005; 
99:1085–1092. [PubMed: 15860685] 

11. Bigland-Ritchie B, Furbush F, Woods JJ. Fatigue of intermittent submaximal voluntary 
contractions: central and peripheral factors. J Appl Physiol. 1986; 61:421–429. [PubMed: 
3745035] 

12. Pagala MK, Namba T, Grob D. Failure of neuromuscular transmission and contractility during 
muscle fatigue. Muscle Nerve. 1984; 7:454–464. [PubMed: 6100452] 

13. Deschenes MR, McCoy RW, Mangis KA. Factors relating to gender specificity of unloading-
induced declines in strength. Muscle Nerve. 2012; 46:210–217. [PubMed: 22806370] 

14. Hunton CL. Opening doors for women in space: a perspective from the National Aeronautics and 
Space Administration. Ann N Y Acad Sci. 1999; 869:204–206. [PubMed: 11536902] 

15. Morey ER, Sabelman EE, Turner RT, Baylink DJ. A new rat model simulating some aspects of 
space flight. Physiologist. 1979; 22:S23–S24. [PubMed: 545372] 

16. Always SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL. Green tea 
extract attenuates muscle loss and improves muscle function during disuse, but fails to improve 
muscle recovery following unloading in aged rats. J Appl Physiol. 2015; 118:319–330. [PubMed: 
25414242] 

17. Deschenes MR, Sherman EG, Glass EK. The effects of pre-habilitative conditioning on unloading-
induced adaptations in young and aged neuromuscular systems. Exp Gerontol. 2012; 47:687–694. 
[PubMed: 22750484] 

18. Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR. EMG patterns of rat ankle 
extensors and flexors during treadmill locomotion and swimming. J Appl Physiol. 1991; 70:2522–
2529. [PubMed: 1885445] 

19. Lomo T, Rosenthal J. Control of ACh sensitivity by muscle activity in the rat. J Physiol. 1972; 
221:493–513. [PubMed: 4336524] 

20. Alway SE, Bennett BT, Wilson JC, Edens NK, Pereira SL. Epigallocatechin-3-gallate improves 
plantaris muscle recovery after disuse in aged rats. Exp Gerontol. 2014; 50:82–94. [PubMed: 
24316035] 

21. Brown M, Hasser EM. Complexity of age-related change in skeletal muscle. J Gerontol A Biol Sci 
Med Sci. 1996; 51:B117–B123. [PubMed: 8612095] 

22. Adams GR, Caiozzo VJ, Baldwin KM. Skeletal muscle unweighting: spaceflight and ground-based 
models. J Appl Physiol. 2003; 95:2185–2201. [PubMed: 14600160] 

23. Bodine SC. Disuse-induced muscle wasting. Int J Biochem Cell Biol. 2013; 45:2200–2208. 
[PubMed: 23800384] 

24. Hackney KJ, Ploutz-Snyder LL. Unilateral lower limb suspension: integrative physiological 
knowledge from the past 20 years (1991–2011). Eur J Appl Physiol. 2012; 112:9–22. [PubMed: 
21533809] 

25. Aldrich TK, Shander A, Chaudhry I, Nagashima H. Fatigue of isolated rat diaphragm: role of 
impaired neuromuscular transmission. J Appl Physiol. 1986; 61:1077–1083. [PubMed: 3019989] 

26. Kopman AF. Can conventional peripheral nerve stimulators induce direct muscle depolarization? 
Anesth Analg. 2006; 102:1905. [PubMed: 16717354] 

27. Basco D, Nicchia GP, Desaphy JF, Camerino DC, Frigeri A, Svelto M. Analysis by two-
dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after 
hindlimb unloading. Eur J Appl Physiol. 2010; 110:1215–1224. [PubMed: 20734059] 

Deschenes and Leathrum Page 10

Muscle Nerve. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Bennett BT, Mohamed JS, Alway SE. Effects of resveratrol on the recovery of muscle mass 
following disuse in the plantaris muscle of aged rats. PLoS One. 2013; 8:e83518. [PubMed: 
24349525] 

Deschenes and Leathrum Page 11

Muscle Nerve. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Depiction of ex vivo muscle stimulation and recording system to collect data on 

neuromuscular function. Note stimulating electrodes on either side of suspended muscle 

bathed in Ringer solution.
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Table 1

Body mass (g) before (Pre) and after (Post) the 2 wk experimental period and soleus whole muscle wet weight 

(mg) after the 2 wk intervention.

Pre, body mass Post, body mass Soleus wet weight

Male CTL 358.7 ± 10.9* 382.2 ± 18.3‡ 186.1 ± 28.1‡

Male UL 362.3 ± 13.4* 340.8 ± 23.1† 119.6 ± 30.1

Female CTL 221.4 ± 7.6 231.7 ± 14.4# 117.0 ± 14.9

Female UL 216.6 ± 9.1 211.7 ± 21.5 91.9 ± 18.1‡

Values are mean ± SD, N=10 for all groups except Female CTL, where N=9.

*
significant (P≤0.05) difference from Female CTL and Female UL groups at that time point (Pre).

‡
significant (P≤0.05) difference from all other groups at that time point (Post).

†
significant (P≤0.05) difference from Female CTL and Female UL groups at that time point (Post).

#
significant (P≤0.05) difference from Female UL group at that time point (Post).
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Table 2

Effects of Gender and Unloading on Peak Tension (N) at Beginning (Initial) and Conclusion (Final) of 5 min 

Train of indirect (nerve) or direct (muscle) stimulation.

Initial** Final

Indirect stimulation Direct stimulation Indirect stimulation Direct stimulation

Male CTL 45.1 ± 19.8* 48.6 ± 19.6† 12.1 ± 8.3 21.9 ± 9.5

Male UL 29.5 ± 15.5 30.1 ± 15.9 9.0 ± 7.9 15.0 ± 9.6

Female CTL 31.8 ± 11.3 38.2 ± 12.8# 10.5 ± 6.5 19.3 ± 6.7

Female UL 14.8 ± 6.9‡ 20.6 ± 9.4 6.8 ± 2.6 14.8 ± 7.0

Values are mean ± SD, N=10 for all groups except Female CTL, where N=9.

**
significant main effect of time (change from Initial to Final) for both Indirect (P<0.0001) and Direct (P<0.0001) stimulation.

*
significant (P≤0.05) difference from all other groups with indirect stimulation at the same time point (Initial).

‡
significant (P≤0.05) difference from Female CTL and Female UL groups with indirect stimulation at same time point (Initial).

†
significant (P≤0.05) difference from Male UL and Female UL groups with direct stimulation at same time point (Initial).

#
significant (P≤0.05) difference from Female UL with direct stimulation at same time point (Initial).
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Table 3

Effects of Gender and Unloading on Specific Tension at Beginning (Initial) and Conclusion (Final) of 5 min 

Train of Indirect (nerve) or Direct (muscle) stimulation.

Initial** Final

Indirect stimulation Direct stimulation Indirect stimulation Direct stimulation

Male CTL 24.2 ± 10.5 26.3 ± 10.5 6.4 ± 4.2 12.0 ± 5.6

Male UL 24.0 ± 10.5 24.4 ± 10.3 7.3 ± 5.3 12.4 ± 7.8

Female CTL 27.6 ± 11.9 33.1 ± 13.6 10.1 ± 5.3 17.1 ± 7.3

Female UL 17.0 ± 9.8 22.4 ± 28.2 7.5 ± 2.8 15.3 ± 5.2

Values are mean ± SD, N=10 for all groups except Female CTL, where N=9.
Specific tension calculated as peak tension (N)/muscle wet weight (mg) × 100.

**
significant main effect of time (change from Initial to Final) for both Indirect (P<0.0001) and Direct (P<0.0001) stimulation.
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Table 4

Effects of Gender and Unloading on Time to Peak Tension (sec) at Beginning (Initial) and Conclusion (Final) 

of 5 min train of Indirect (nerve) or Direct (muscle) stimulation.

Initial** Final

Indirect stimulation Direct stimulation Indirect stimulation Direct stimulation

Male CTL 0.754 ± 0.123 0.751 ± 0.109 0.802 ± 0.040 0.817 ± 0.023

Male UL 0.634 ± 0.267* 0.754 ± 0.160 0.782 ± 0.086 0.792 ± 0.046‡

Female CTL 0.802 ± 0.007 0.816 ± 0.012 0.829 ± 0.041 0.838 ± 0.038

Female UL 0.780 ± 0.067 0.804 ± 0.068 0.804 ± 0.024 0.818 ± 0.019

Values are mean ± SD, N=10 for all groups except Female CTL, where N=9.

**
significant main effect of time (change from Initial to Final) for both Indirect (P=0.0039) and Direct (P=0.0208) stimulation.

*
significant (P≤0.05) difference from Female CTL and Female UL groups.

Muscle Nerve. Author manuscript; available in PMC 2017 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Deschenes and Leathrum Page 17

Table 5

Effects of Gender and Unloading on Neuromuscular Transmission Efficacy (%) at Beginning (Initial) and 

Conclusion (Final) of 5 min train of Indirect (nerve) or Direct (muscle) stimulation.

Initial** Final

Male CTL 92.8 ± 36.8‡ 55.3 ± 18.8

Male UL 98.0 ± 21.6* 60.0 ± 25.2

Female CTL 83.2 ± 11.7 54.4 ± 17.1

Female UL 71.8 ± 27.3 45.9 ± 23.7

Values are mean ± SD, N=10 for all groups except Female CTL, where N=9.
Neuromuscular Efficacy calculated as indirect Peak Tension/Direct Peak Tension × 100.

**
significant (P<0.0001) main effect of time (change from Initial to Final).

*
significant (P≤0.05) difference from Female UL group at same time point (Initial).

‡
trend (P=0.08) for difference from Female UL group at same time point (Initial).
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