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Abstract

In rodents and humans, testicular cells, similar to other mammalian cells, are supported by actin-, 

microtubule (MT)- and intermediate filament-based cytoskeletons to regulate spermatogenesis 

during the epithelial cycle. However, most of the published findings in the literature are limited to 

studies that visualize these cytoskeletons in the seminiferous epithelium during spermatogenesis. 

Few are focus on the underlying molecular mechanism that regulates their organization in the 

epithelium in response to changes in the stages of the epithelial cycle remains largely explored. 

Functional studies in the last decade have begun to focus on the role of binding proteins that 

regulate these cytoskeletons, and some interesting data have been rapidly emerging in the field. 

Since the actin- and intermediate-based cytoskeletons have been recently reviewed, herein we 

focus on the MT-based cytoskeleton for two reasons. First, besides serving as a structural support 

cytoskeleton, MT is known to serve as the track to support and facilitate the transport of germ 

cells, such as preleptotene spermatocytes connected in clones and elongating/elongated spermatids 

during spermiogenesis across the blood-testis barrier (BTB) and the adluminal compartment, 

respectively, during spermatogenesis. While these cellular events are crucial to the completion of 

spermatogenesis, they have been largely ignored in the past. Second, MT-based cytoskeleton is 

working in concert with the actin-based cytoskeleton to provide structural support to the transport 

of intracellular organelles across the cell cytosol, such as endosome-based vesicles, and residual 

bodies, phagosomes in Sertoli cells, to maintain the cellular homeostasis in the seminiferous 

epithelium. We critically evaluate some recent published findings herein to support a hypothesis 

regarding the role of MT in conferring germ cell transport in the seminiferous epithelium.
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Introduction

Spermatogenesis is the biological process through which undifferentiated germ cells develop 

into haploid sperm. It takes place in the seminiferous epithelium of the seminiferous tubules 

which are the functional unit in the mammalian testis that produces an upward of 200 

million spermatozoa per day in a human male from puberty at ~12 years of age [1, 2]. This 

enormous cellular output thus illustrates there are extensive but tightly coordinated cellular 

events that take place in the seminiferous tubules. The seminiferous epithelium is physically 

divided into two compartments, basal and adluminal (apical), by the blood-testis-barrier 

(BTB). The BTB is one of the many blood-tissue barriers in the mammalian body that 

creates an exclusive microenvironment in the seminiferous epithelium, namely the adluminal 

compartment wherein meiosis I/II and post-meiotic spermatid development take place, 

segregating these events from systemic circulation [3]. Undifferentiated spermatogonia, and 

differentiated spermatogonia, such as type A and type B, reside in the basal compartment. 

This is where type B spermatogonia differentiate into preleptotene spermatocytes, which are 

the germ cells that must be transported across the BTB at stage VII–VIII of the epithelial 

cycle in rodents to enter the adluminal compartment to further differentiate and develop into 

late stage spermatocytes to prepare for meiosis I/II during spermatogenesis [4]. Since germ 

cells are immotile cells, lacking locomotive apparatus such as filopodia and lamellipodia 

found in fibroblasts and macrophages, they cannot independently move across the 

seminiferous epithelium, and rely solely on the Sertoli cell for their transport across the BTB 

and the adluminal compartment to prepare for their eventual release into the tubule lumen 

during spermiation.

The seminiferous epithelium is comprised of only two cell types, Sertoli cells and germ 

cells, unless infiltrated by macrophages in the basal and/or adluminal compartment of the 

seminiferous tubules during pathological conditions such as inflammation induced by 

orchitis [5,6] or following exposure to environmental toxicants (e.g., MEHP) [7]. Due to the 

unique association between Sertoli cells and germ cells at specific stages of their 

development in the seminiferous epithelium during spermatogenesis, the epithelium can be 

divided into stages I–XII, I–XIV, and I–VI in the mouse, rat and human testis respectively, 

known as the epithelial cycle of spermatogenesis [2, 8, 9]. The epithelial cycle of the mouse 

testis consists of stages I–XII and is shown in Figure 1 [10]. As noted in Figure 1, the germ 

cell types that associate with the Sertoli cell in each stage are different. Sertoli cells, also 

known as nurse cells, are in continuous contact with germ cells, providing structural and 

nutritional support throughout the seminiferous epithelial cycle of spermatogenesis [11]. 

When cultured in vitro, Sertoli cells are motile cells, as they are capable of traversing the 

nitrocellulose or polyester filters of transwell bicameral units [12], analogous to fibroblasts, 

macrophages and metastatic tumor cells. However, Sertoli cells in vivo are relatively static 

and polarized as evidenced by the location of the nuclei close to the basement membrane 

throughout the epithelial cycle. During the cycle, each Sertoli cell remains in close contact 

with ~30–50 germ cells [13] by sending its cytoplasmic processes to engulf germ cells at 

different stages of their development across the entire seminiferous epithelium so that these 

cells remain in close contacts with one another. The Sertoli cell is able to provide germ cells 

structural and nutritional support via an extensive and dynamic cytoskeletal network [14]. 
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Similar to other mammalian cell types, Sertoli cells have a cytoskeletal network made up of 

actin microfilaments, intermediate filaments, and microtubules. While the actin-based 

cytoskeleton in the seminiferous epithelium is the best studied structural component, the 

molecular mechanism(s) by which actin microfilaments is regulated to confer their plasticity 

remains unknown, and how the actin network interacts with microtubules and intermediate 

filaments to confer cytoskeletal dynamics during the epithelial cycle remains virtually 

unexplored.

There are two conditions that are necessary to support germ cell development, namely 

structural and nutritional support of germ cells by the Sertoli cell, and the presence of a 

functional BTB to create a unique microenvironment in the adluminal compartment to allow 

the occurrence of meiosis I/II and the subsequent post-meiotic spermatid development. In 

the testis, the ectoplasmic specialization (ES) is a unique actin-rich anchoring junction found 

in between the Sertoli-Sertoli cell interface (called the basal ES) at the BTB, and in between 

the Sertolispermatid (steps 8–16 or steps 8–19 spermatids in the mouse or rat testes) 

interface (called the apical ES) [15]. The ES is comprised of F-actin bundles in between the 

Sertoli cell plasma membrane and cisternae of the endoplasmic reticulum. Unlike most other 

mammalian cell junctions, the ES is not a static structure as it undergoes dynamic changes to 

accommodate spermatid movement across the seminiferous epithelium. F-actin dynamics at 

the ES has been extensively studied, and to date a host of actin regulatory proteins has been 

uncovered which are implicated in regulating ES dynamics [16]. Despite these findings, it is 

still unclear how germ cells are physically transported across the epithelium. It has been 

proposed that F-actin at the apical ES serves as the vehicle to transport germ cells [17]. 

Earlier studies on the microtubule cytoskeleton in the seminiferous epithelium propose that 

microtubules serve as the tracks for germ cells to be transported and involving microtubule-

specific motor proteins such as kinesin [18–21], analogous to the function of microtubules to 

serve as the tracks in other mammalian epithelia [22]. Herein, we discuss the roles of the 

microtubule cytoskeleton in germ cell development and transport. We also introduce new 

concepts which may serve as a basis for future studies.

Structure and function of microtubules (MT)

Microtubules (MTs) are dynamic polymers composed of protofilaments of α- and β-tubulin 

[23]. A single protofilament is made up of α- and β-tubulin heterodimers arranged in a head 

to tail manner, leading to the intrinsically polar nature of MTs, with α-tubulin located at 

what is designated the minus end and β-tubulin at the plus end (Figure 2A, B) [24, 25]. 

While polymerization of MTs can occur at both ends, the rate of growth differs in which the 

plus end is the site of fast growth whereas the minus end is the site of slow growth. A major 

reason why slow growth occurs at the minus end is because it is the end that anchors the MT, 

namely in the microtubule organizing center (MTOC) [26]. The centrosome is the main 

MTOC found in the cell and is localized near the nucleus. MTs grow out from the 

centrosome towards the plasma membrane; and in non-dividing cells, MT distribution in the 

cytoplasm radiates out from the centrosome providing an organized MT-based network for 

the cell [27].
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A unique property of MTs is dynamic instability, which is a term that describes their 

polymerization and depolymerization behavior whereby they can rapidly alternate between 

phases of growth and shrinkage [28, 29]. The α- and β-tubulins in a heterodimer are each 

bound to a GTP (Figure 2A). The GTP bound to β-tubulin can be hydrolyzed to GDP as 

additional GTP bound dimers are added to a growing MT (Figure 2A) [25]. However, 

depending on the dynamic state of the MT it is possible that the rate of GTP hydroysis may 

lag behind the rate at which GTP bound tubulin is added to the growing end. Thus resulting 

in an accumulation of GTP bound tubulin at the growing end, which is referred to as the 

GTP-tubulin cap. This cap functions to protect the growing end from immediate 

depolymerization, since GDP tubulin readily dissociates [30, 31]. When a MT 

depolymerizes, its rate of hydrolysis supersedes the rate of GTP tubulin addition to the 

growing end; this switch from growth to shrinkage is called catastrophe [28]. Tightly 

controlled regulation of dynamic MTs is required for numerous processes in the cell. For 

example, MTs are essential for structural support of the cell, vesicle and organelle transport, 

chromosome segregation, intracellular trafficking, cell motility, and cell polarity [32]. 

Additionally MT dysfunction/dysregulation is involved in human diseases, such as cancer 

and neurodegenerative disorders like Alzheimer’s disease, and can potentially lead to cell 

death [33, 34].

Regulation of microtubules

Microtubules are dynamic structures involved in a diverse array of cellular functions and 

must be tightly regulated for proper function in the cell such as MTs found in Sertoli cells 

(Figure 3). One way MTs are regulated is via posttranslational modifications (PTMs), which 

are referred to as changes in the functional property of a protein. Generally, PTMs are 

modifications that occur on MTs, after polymerization, and rarely on free tubulin monomers 

[35]. Some of the most common MT PTMs are: acetylation (a marker of MT stability/age), 

phosphorylation (regulation of polymerization), and tyrosination/detyrosination (a marker of 

dynamic state of MTs) [36, 37]. Another way they can be regulated is through MT 

regulatory proteins such as microtubule-associate proteins (MAPs) and plus-end tracking 

proteins (+TIPs), as well as motor proteins [38].

End-binding protein 1 (EB1)

EB1 is a highly conserved MT plus-end tracking protein (+TIP) (Figure 2B) known to 

regulate plus-end dynamics during cellular processes such as, mitosis and intracellular 

transport [39]. This ~30 kDa protein is one of 3 members of the EB family, EB2 and EB3 

being the other members and was first discovered in a yeast two-hybrid system as an 

interacting protein of adenomatous polyposis coli (APC) protein, a product of the APC gene 

which when altered is involved in colorectal tumorigenesis [40–42]. EB1, like EB2 and EB3, 

is a dimeric protein containing two monomers that are dimerized via their coiled-coil 

domains at the C-terminus [43], and each polypeptide contains a calponin homology (CH) 

domain at the N-terminus conferring its ability to bind to MTs [43, 44]. Interestingly, 

calponin, which is a calcium binding protein, and the associated CH domain found in many 

proteins, are known to interact with actin and not MTs; EB1 was the first example of a 

protein containing a CH domain responsible for its binding to MTs [45, 46]. EB1 is one of 

Tang et al. Page 4

Semin Cell Dev Biol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the most widely studied +TIPs since it is a functionally diverse regulatory protein. As a 

+TIP, EB1 is predominantly localized to the plus-end of MTs, but can also be found along 

the length of MTs and at the centrosome [47]. Its location at the distal ends of MTs positions 

it at an ideal location to communicate at the cell cortex and interact with other regulatory 

proteins. In the testis, EB1 colocalizes with seminiferous epithelial microtubules and is 

found at both the apical and basal ES. A recent study using a Sertoli cell in vitro system 

revealed that EB1 plays a critical role in regulation of not only MT dynamics, but also actin 

dynamics in Sertoli cells [48], suggesting that EB1 may be a protein that induces cross-talk 

and coordination between actin- and MT-based cytoskeletons in the testis. In this study, EB1 

was silenced through the use of siRNA, causing BTB disruption, decrease in MT 

polymerization, and disorganization of MT and actin microfilament cytoskeletons [48]. 

Sertoli cells treated with EB1 siRNA exhibited a MT distribution different from control cells 

(Figure 2B). Unlike in control cells, where MTs are distributed throughout the cytosol 

extending to the cell periphery, MTs of EB1 knockdown cells retracted from the cell cortex/

edge and preferentially surrounded the cell nuclei. This observation suggests that EB1 is 

required for proper MT distribution in the Sertoli cell. In vivo, Sertoli cells are in continuous 

contact with differentiating germ cells (GC), and must therefore be able to undergo changes 

in its shape to adapt to changes in GC throughout the epithelial cycle. MTs are dynamic 

polymers, which in part are responsible for changes in Sertoli cell morphology. In addition 

to providing structural support for the cell, MTs also serve roles in intracellular trafficking. 

Since knockdown of EB1 caused MTs to retract from the cell edge, it is likely that the 

knockdown of EB1 would affect delivery of essential nutrients and other regulatory proteins 

that are required to maintain cell function at the cell cortex. This possibility is indeed 

supported by the observation that a knockdown of EB1 in Sertoli cell epithelium with a 

functional TJ-barrier led to internalization of TJ- (e.g., CAR, ZO-1) and basal ES- (e.g., N-

cadherin, ß-catenin) proteins from the cell-cell interface into the cell cytosol [48].

Interestingly, loss of EB1 in Sertoli cells also led to changes in F-actin dynamics (Figure 

2B). Knockdown caused alteration in F-actin organization as actin microfilaments were no 

longer found distributed across the cell cytosol and became truncated [48]. Distribution of 

adhesion proteins that use actin microfilaments for attachment, such as CAR and N-cadherin 

were mislocalized at the Sertoli cell-cell interface as noted above, this thus further de-

stabilized the Sertoli cell TJ-barrier, leading to its disruption [48]. These results suggest that 

EB1 plays a critical role in the regulation of Sertoli cell dynamics via both the MT and actin 

networks, confirming findings in other epithelia that EB1 serves as a point of crosstalk 

between the two cytoskeletons [39, 49]. Based on these findings, it is likely that EB1 plays a 

major role in regulating spermatogenesis, however further studies using an in vivo approach 

are necessary to further elucidate the role of EB1.

Formins

Formins are a family of proteins that promote actin polymerization, enabling the cell to carry 

out a variety of cellular functions that depend on a dynamic cytoskeletal network. This 

family of proteins is a diverse one as eukaryotes have numerous formin genes; for example, 

mammalian formins alone are encoded by 15 different genes [50, 51]. Formins are large 

dimeric multi-domain proteins, and are characterized by their formin homology 1 and 2 
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(FH1 and FH2) domains located at the C-terminus, both of which interact with actin [51]. 

The FH2 domain is the most conserved formin domain and functions in mediating actin 

nucleation by binding to the barbed end (fast growing end) of an actin filament [52, 53]. 

FH2 association with the barbed end of an actin filament promotes the addition of actin 

subunits, thus resulting in elongation of an actin microfilament [51–53]. In epithelia, formins 

are involved in cell migration, cytokinesis, endocytosis, morphogenesis, and cell adhesion 

[54, 55]. A recent study uncovered the function of formin family member, formin 1, in the 

testis [56]. In this study, formin 1 knockdown was achieved via siRNA both in vitro and in 
vivo. First, the in vitro model was used to study formin 1 function in the regulation of Sertoli 

cell dynamics. Results from in vitro silencing of formin 1 revealed that this protein is crucial 

to maintain actin dynamics as evidenced by decreases in both actin bundling and actin 

polymerization capability of Sertoli cells. Additionally, in vitro knockdown caused a 

disruption in the TJ-barrier as basal ES proteins were mislocalized. Based on these findings, 

an in vivo model was then used to further study formin 1 function in the testis. Knockdown 

of formin 1 in the testis further confirmed that its absence causes the mislocalization of basal 

ES proteins, and also, disruption of the F-actin network both at the basal and apical ES. 

Disruption of F-actin network at the apical ES led to defects in polarity and transport of 

spermatids with mis-oriented spermatids trapped inside the seminiferous epithelium. This 

study reveals that formin 1 is necessary for regulation of the BTB and apical ES, as loss of 

the protein resulted in disruption of BTB, spermatid polarity, and spermiation.

In addition to actin dynamics, formins can also regulate MT dynamics. Dia, the mammalian 

homolog of the Drosophila gene diaphanous, is a type of formin first discovered as a Rho 

effector; and studies have shown that it plays numerous roles in the mammalian cells 

including actin stress fiber formation, regulation of MTs, phagocytosis, formation of 

adherens junctions, and others [57, 58]. Two Dia isoforms, Dia1 and Dia2, are present in the 

testis and play a role maintaining structure of both Sertoli and germ cells during 

spermatogenesis [59]. In other epithelia it has been shown that Dia1 forms a complex with 

EB1 to promote MT stabilization [60,61]. Since both Dia1 and EB1 are present in the testis, 

it is conceivable that these two regulatory proteins act similarly to regulate spermatogenesis. 

Though both Dia1 and EB1 regulate actin and MT networks, their effects on one 

cytoskeleton may not necessarily depend on the other. For example, it has been shown that 

MT regulation by Dia is independent of its role in regulation of the actin cytoskeleton [62].

MAP/Microtubule affinity-regulating kinases (MARKs)

MARKs are functionally diverse MT regulating proteins, serving a number of different roles 

in the cell including: cell polarization, stabilization, cell cycle regulation, intracellular 

signaling and others [63–65]. There are four MARK isoforms known to date, namely 

MARK1, 2, 3, and 4, found in mammalian cells displaying similar sequence homology with 

MARK4 being the least similar [65]. MARKs are Par-1 family proteins and in addition to 

regulating MT dynamics, they are also implicated in regulation of cell polarity by working in 

concert with polarity proteins [63, 66, 67]. MARKs were recently reviewed and will not be 

discussed in detail here [68]. However it is important to note that MARK4 protein in the 

testis plays a role in the regulation of spermatogenesis [69]. This isoform is present at the 

BTB and may regulate desomosome at this site since coimmunoprecipitation results revealed 
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that MARK4 structurally interacts with desmosomal armadillo protein plakophillin-2 

(PKP2) in the testis [69]. In addition, an overexpression study of MARK4 in human 

fibroblasts revealed that overexpressed MARK4 co-localized with vimentin, suggesting that 

MARK4 may also regulate the intermediate filament network [70]. MARK4 is also present 

at the apical ES and is likely to facilitate protein trafficking events at the apical ES, where 

endocytic vesicle-mediated ES protein trafficking occurs since MTs are tightly associated 

with endosomal functions [22]. In addition, it is proposed that MARK4 may also regulate 

cross communication between the actin filaments and MTs at the apical ES. Recently, 

MARK4 in Drosophila and mammalian cells has been shown to be a negative regulator of 

mammalian target of rapamycin complex 1 (mTORC1) [71]. This complex is especially 

important for the modulation of protein synthesis, and has recently shown to be a regulator 

of the BTB [72, 73]. As kinases, MARKs are regulated by downstream effectors such as 

LKB1 (liver kinase B1) which is a Ser/Thr kinase known to regulate cell polarity and 

junctional complexes [74]. A recent study using a Sertoli cell specific LKB1 mutant mouse 

model revealed that loss of LKB1 led to defects in spermatogenesis, such as loss of SC 

polarity and dysregulation of junctional complexes [75]. These defects were attributed to 

downregulation of MARK and upregulation of mTOR signaling [75]. Collectively, these 

findings suggest that MARK4 in the testis may also function as a negative regulator of 

mTORC1 via its effects on F-actin and also MTs at the BTB.

Microtubule-based transport

Microtubule-based transport in neurons is one of the most widely studied intracellular 

transport mechanisms [22, 76]. This is due to the extensive polarized MT arrays of neuronal 

axons, which makes neurons a convenient model for studying transport. Sertoli cell MT 

arrays have been described as resembling neuronal MTs since they are polarized and 

arranged in dense bundles [77, 78] (Figure 3). Cargo transport in neurons is carried out via 

motor proteins on both the actin and MT cytoskeletons. Motor proteins are especially 

important for intracellular transport in neurons due to the unique shape of nerve cells. 

Neurons consist of three main parts: cell body, dendrites (structures that arise from the cell 

body), and axon (a long extension of the cell body, reaching up to a meter long in humans) 

[79, 80]. The majority of the proteins that are essential for neuron function originate from 

the cell body and thus depend on a highly controlled and differential transport system to 

ensure proper delivery to often distant and large sites [81]. Dynein and kinesin are the MT 

motor proteins involved in neuronal transport, and since both are present in the testis, 

understanding transport mechanisms in neurons and other cell types will aid in uncovering 

the transport functions of the MT cytoskeleton in the seminiferous epithelium.

Kinesin superfamily proteins (KIFs)

KIFs comprise a group of motor proteins that typically generate plus end directed movement 

along MTs, powered by ATP hydrolysis [82]. Conventionally, native state KIFs are 

composed of 2 heavy chains and 2 light chains, totaling in ~360–380 kDa [83, 84]. They 

have a conserved catalytic motor domain and the location of the motor domain within the 

molecule determines the preference for movement towards either MT plus or minus end [85, 

86]. These enzymes are implicated in a whole range of biological processes, such as 
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transport of organelles like endoplasmic reticulum (ER) and vesicles, mitosis, meiosis, and 

MT depolymerization [84, 85, 87]. KIFs are essential for directional transport of organelles 

and proteins in neurons during development, and in the adult brain [88].

During spermatogenesis, developing spermatids are moved from the apical to the basal 

region during stages IV–V of the epithelial cycle in the rat, and then transported back to the 

apical region at stages VI–VII until they line up near the luminal edge of the tubule lumen 

before spermiation at stage VIII [9]. The purpose and mechanism of this up-down-up 

movement of spermatids is still unclear. As previously stated, ER is a component of the ES 

and has been proposed to be a site of attachment between motor proteins, such as kinesin, 

along SC MTs to carry out translocation of adjacent spermatids [19]. Interestingly, KIF 

protein has been detected at the ES and was suspected to be an isoform of KIF20 [20]. Since 

that study in 2007, two testis-specific isoforms of KIF have been identified: KIF3A and 

KIF3B [89]. It has been proposed that KIF is responsible for transport of spermatids towards 

the basal region, where the plus-ends of SC MTs are located [90]. In Figure 3, an electron 

micrograph of cultured SCs, MTs can be seen arranged parallel to SC-SC interface. The 

localization of MTs along cell-cell interface further supports the idea of MTs serving as the 

track for translocation of spermatids and other organelles (e.g., endosomes, phagosomes). As 

described earlier, the apical ES consists of F-actin bundles sandwiched in between SC 

plasma membrane and cisternae of membrane-bound organelle, endoplasmic reticulum 

(ER). It is known that ER is pulled along MTs to be properly positioned within the 

eukaryotic cell [27]. Since ER is a component of the apical ES, it is likely that the ER 

present at this cell-cell junction is supported by the presence of MTs.

Cytoplasmic dynein

Cytoplasmic dynein is a minus end directed MT motor protein complex of high molecular 

weight, ranging from 1000–2000 kDa [91, 92]. Dynein is a member of the AAA+ (ATPases 

associated with diverse activities) superfamily, which is a protein family that exerts activity 

by re-configuring and translocating macromolecules [93, 94]. Similar to KIFs, dynein is also 

powered by ATP hydrolysis, but is not structurally related to them. This mechanoenzyme is 

used for intracellular transport and in axons generates retrograde transport [79, 88]. Before 

kinesin was discovered at the ES in the testis, cytoplasmic dynein had already been found to 

associate with ER and co-localize with actin at that site [95, 96]. Since dynein is a minus end 

directed motor protein, it has been hypothesized that it may be responsible for the 

translocation of spermatids along the SC MT tracks, especially during stages VI–VIII when 

spermatids are brought back to the apical region prior to their release at spermiation.

If this holds true, then much more work is needed to elucidate the mechanism by which 

spermatids are translocated through the epithelium by these motor proteins. In general, the 

information available regarding motor proteins presents their function in intracellular 

transport, via transport of vesicles and organelles. However, can this model apply to the 

translocation of entire cells, such as developing germ cells which are much larger in size 

than organelles, during spermatogenesis? An in vitro study in which spermatids with 

attached ES were isolated from the seminiferous epithelium of the rat testis provided 

additional evidence that MTs are involved in spermatid translocation [19]. In this study, 
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isolated spermatids and attached ES were assayed for their ability to translocate 

fluorescently labeled MTs; and indeed, it was found that MTs could be moved along the ES 

[19]. However, it has been just over 15 years since that study and we still do not fully 

understand the mechanism of spermatid transport and how exactly motor proteins and the 

ES are involved. And if motor proteins work to translocate spermatids across the epithelium, 

do KIFs and dynein work independently or together as a team? Currently testis specific KIFs 

are plus end directed motors, but there is still the possibility that there may be other KIFs 

present which may operate in minus end directed transport. Since spermatids are 

translocated both apically and basally, do the respective motor proteins only associate with 

the ES when they are required to move the spermatid in the corresponding direction, or are 

they always present at the ES and by some mechanism are activated to overpower the other 

to change spermatid migration? Furthermore, what are the signaling proteins that direct the 

association with kinesins or dyneins to induce plus- or minus-end directed MT-mediated 

transport?

MT studies in the rat testis

Toxicological studies

To date, the mechanisms by which developing germ cells are transported across the 

seminiferous epithelium have not been fully elucidated. Currently, it is believed that the MT-

based cytoskeleton of the Sertoli cell serves as the primary means for transporting 

developing germ cells due to its close association with spermatids at the apical ES and 

prominence at the Sertoli cell stalk. Interestingly, toxicology studies in the testes have 

revealed that a number of chemical agents that target MTs exerted their effects in the 

seminiferous epithelium to disrupt spermatogenesis. A recent review discusses the different 

histopathologies associated with Sertoli cell MT disruption [97]. Germ cell and epithelium 

sloughing, spermatid and residual body retention, and vacuolization are a few of the 

histopathologies observed in these studies. Sloughing of the epithelium is when the apical 

cytoplasm of the epithelium, which contains cohorts of germ cells, is shed into the lumen, 

and is oftentimes caused by MT depolymerizing agents, such as colchicine and carbendazim 

[98–100]. Another pathology, spermatid retention, describes the impaired movement of 

elongate spermatids due to disruption of Sertoli cell MTs caused by chemicals like 

colchicine, paclitaxel (Taxol), 2,5-hexandione and others [101]. Residual body retention is 

another result of MT disruption in the seminiferous epithelium [102]. Microtubules are 

involved in phagocytosis, which is the mechanism used by macrophages and neutrophils to 

remove pathogens. In the testis, phagocytosis also occurs in the seminiferous epithelium, but 

is executed by the Sertoli cells since macrophages are usually excluded from the 

seminiferous epithelium. Phagocytosis is an important “self-cleaning” process in which the 

Sertoli cell engulfs the residual body, or excess cytoplasm of a mature spermatid, from the 

apical region and transported that down to the basal region where it is degraded via the 

lysosomal pathway [103, 104]. Without MTs, the residual bodies will accumulate in the 

apical region as they can no longer be transported to the basal region. Vacuolization is 

another characteristic pathology due to MT disruption in the seminiferous epithelium [98, 

105, 106]. The vacuoles are enlarged Sertoli cell endoplasmic reticulum, but how MT 

disruption causes this occurrence is unclear.
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There are several types of cellular junctions present in the seminiferous epithelium, all of 

which are dependent on the Sertoli cell cytoskeleton. Tight junctions and basal ectoplasmic 

specialization (ES) between Sertoli cells at the BTB, and apical ES between spermatids 

(steps 8–16 or 8–19 in mouse or rat testes) and Sertoli cells, as well as tubulobulbar complex 

(TBC) at the BTB and also between Sertolilate spermatids are all junction types that 

comprise the seminiferous epithelium. These junction types involve interaction with actin 

microfilaments and microtubules to facilitate the movement of developing germ cells across 

the epithelium. In order to study transport of developing germ cells, one must first 

understand how cell junctions are regulated in the seminiferous epithelium. Studies using 

toxicant models, such as bisphenol A (BPA), cadmium, and perfluorooctanesulfonate 

(PFOS), have revealed that these environmental toxicants can target cell junctions in the 

testis to affect reproductive function [107–109]. In addition to environmental toxicants, some 

male contraceptives under development also have been shown to target cell junctions in the 

testis. One male contraceptive in particular, adjudin, has been studied extensively to describe 

the mechanisms by which it temporally disrupts spermatogenesis. This drug targets the actin 

cytoskeleton and affects adhesion between Sertoli and germ cells, leading to premature 

spermiation of mostly elongate/elongating spermatids [110]. Additionally, some non-specific 

effects of this drug are reported, such as: sloughing and vacuolization, which are both 

pathologies caused by the previously discussed MT targeting agents, and germ cell 

degeneration [97, 111]. There is reason to believe that adjudin may also target MTs. Figure 4 

shows the staining of α-tubulin in tubules of adult male rats treated with adjudin (50 mg/kg 

b.w., by oral gavage) vs. control normal rat testes. In a side by side comparison, it is clear 

that the arrangement of tubulin across the seminiferous epithelium is disrupted 4 days after 

treatment with adjudin. By 4 days, MT bundles are no longer columnar in shape extending 

apically along the Sertoli cell stalks as noted in control testes. The MTs appear to have 

collapsed, possibly due to the absence of elongate/elongating spermatids and germ cells 

(Figure 4). Figure 5 is a schematic diagram illustrating the disruption of the MT and actin-

based cytoskeletal networks following adjudin treatment that leads to defects in spermatid 

adhesion and also spermatid transport. It is already known that actin is a molecular target of 

adjudin [112], but whether MT bundle collapse occurs because tubulin is a direct target of 

adjudin, or is a consequence of the absence of germ cells and spermatids remains to be 

determined. However, sloughing of germ cells in particular elongating/elongated spermatids 

is likely the result of an actin-based cytoskeletal collapse since adhesion proteins utilize 

actin filaments for their attachment. If actin filaments remain intact, it is unlikely that 

spermatid sloughing would occur.

Microtubules and disease

The tight regulation of MTs is essential for maintenance of axonal transport and cell 

division. However when regulation of the two aforementioned MT related processes is 

compromised, it can lead to the development of neurodegenerative disease, such as 

Alzheimer’s disease (AD), and cancer, respectively. We briefly review some of these 

findings since these data provide insight into designing future experiments to unravel the 

role of MTs in spermatogenesis.
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Alzheimer’s disease is a progressive and debilitating neurodegenerative disease that afflicts 

millions of people worldwide. According to the 2009 World Alzheimer Report, this number 

is predicted to triple by 2050 (www.alz.org). Currently, scientists are focused on 

investigating structural hallmarks of the AD brain such as, plaques (amyloid-β (Aβ) protein 

aggregates that accumulate in between nerve cells) and neurofibrillary tangles 

(hyperphosphorylated tau protein filament aggregates) [113–115]. Those with advanced 

stage AD can be identified by symptoms such as memory loss, behavioral and mood 

changes, confusion, and others (www.alz.org). It was believed that these symptoms were due 

to the accumulation of plaques and neurofibrillary tangles which interfere with proper 

neuronal communication and transport. However, amyloid-ß accumulations have also been 

found in the brains of cognitively healthy older individuals [116], suggesting that amyloid-ß 

accumulation is not the cause of AD. In fact, with the recent advances in medicine and brain 

imaging, there is no reliable method to diagnose, prevent or treat AD in humans. Tau is a 

MT-associated protein (MAP) which binds and stabilizes MTs. Physiologically, tau 

associates with MTs; however, in the AD brain, tau is hyperphosphorylated causing it to 

disengage from axonal MTs [114, 117]. When disengaged from axonal MTs, they aggregate 

and form neurofibrillary tangles resulting in destabilized axonal MTs [118]. Almost two 

decades earlier, MARK family proteins were discovered to be responsible for 

phosphorylation of tau [119–121]. Of the 4 human MARK isoforms, MARK4 expression 

was the highest and was found to co-localize with MTs mostly in the axon. A screening of 

MARK4 expression in different tissue types revealed that it is predominantly expressed in 

brain and testis [122]. Since MT stability is implicated in axonal/neuronal integrity, MT 

stabilizing agents may be a promising treatment for AD [118]. Thus, future studies should 

include better understanding of the MARKs in MT function, and their role in cross-talk with 

actin-based cytoskeleton. Furthermore, it is important to delineate the role of Tau in MT 

dynamics in Sertoli cell function.

The MT network also plays a pivotal role in cancer, a disease characterized by uncontrolled 

growth of cells. One major event of the cell cycle is mitosis, which is when chromosomes of 

a cell nucleus are separated into identical sets of chromosomes. Metaphase is a stage of 

mitosis when chromosomes are lined up at the cell equator and attach to spindle fibers made 

of MTs [123]. This stage is critical for the proper separation of chromosomes, to ensure that 

each daughter cell contains the identical chromosomes of the parent cell, and exemplifies 

just one of the complex roles MTs play in regulation of the cell cycle. However, when this 

regulation is upturned and cells begin to divide uncontrollably, cancer ensues. Because MTs 

play an insurmountable role in cell cycle regulation, they are used as a target in treatment of 

cancers. A number of drugs available target tubulin and are divided into two main classes: 

MT-stabilizing (i.e. taxanes) and MT-destabilizing (i.e. vinca alkaloids) drugs [124–126]. 

These drugs bind to tubulin (referred to as tubulin-binding agents, TBAs) and interfere with 

mitosis, which induces mitotic arrest and cell death [126, 127]. Microtubules are an 

attractive target for cancer therapies since they are tightly regulated dynamic structures 

involved in many cellular functions. As such, if a drug can be designed to specifically target 

the Sertoli cell MT network, it could be developed into a male contraceptive that would 

induce failure in organelle transport in Sertoli cells, impeding spermatogenesis. As noted 

earlier, actin is a cellular target of adjudin, but whether tubulin is as well remains to be 
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investigated. However, it is known that both the F-actin and MT-networks are disrupted by 

adjudin. A better understanding on the mechanism of how adjudin works can provide new 

insights in the regulation of MT and F-actin dynamics in the testis.

Future perspectives and concluding remarks

The transport of germ cells across the seminiferous epithelium, such as the transport of 

preleptotene spermatocytes connected in clones across the BTB, and elongating/elongated 

spermatids across the adluminal compartment during spermiogenesis, is an intricate and 

tightly coordinated process. Despite decades of research on the topic of spermatogenesis 

[104, 128], we still do not have a clear picture on how exactly germ cells are translocated in 

the seminiferous epithelium. It is suspected that motor proteins, such as kinesin and dynein, 

are responsible for the movement of non-motile germ cells. But how is it possible that these 

proteins, which are regularly employed by the cell to transport nutrients and organelles 

within the cell, can transport entire cells, such as preleptotene spermatocytes and 

spermatids? For years, it has been accepted that the MT network provides the tracks along 

which germ cells/spermatids travel, but not much progress has been made to elucidate the 

exact mechanisms by which this occurs. Currently researchers in this field are focusing on 

the players involved in regulating MT dynamics, but how spermatids move throughout the 

epithelium is a question still left unanswered. What are mechanical forces generated to move 

these non-motile cells? Are motor proteins the answer? The transport of germ cells is unlike 

any other cellular movement known to date. A closer look into how this occurs would 

greatly benefit the understanding of the regulation of spermatogenesis and current issues 

such as infertility and male contraceptive development.
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Figure 1. The seminiferous epithelial cycle of spermatogenesis in the mouse testis
(A) Normal mouse testis cross-sections were stained with hematoxylin and eosin (H&E) to 

visualize stages I–XII of the seminiferous epithelial cycle. Each stage depicts the unique 

cellular associations between germ cells and Sertoli cell as spermatogonial stem cells 

progressively develop into spermatids. Scale bar, 60 μm, which applies to other micrographs 

in the same panel. Each tubule has 4–5 layers of different germ cell types which are shown 

in (B) for each typical stage of the epithelial cycle. The duration (in hr) and frequency (in %) 

of each stage in a single spermatogenic (or epithelial) cycle (completion of stages I–XII in 

ascending order) is listed below the respective stages as earlier reported [10]. Rodents 

undergo the spermatogenic cycle 4.5 times to complete spermatogenesis which refers to the 

development of haploid sperm (i.e., fully developed elongated spermaitds) from 

undifferentiated spermatogonia; and so, the duration of spermatogenesis in the mouse is ~40 

days [8, 10, 129] and one epithelial (or spermatogenic cycle) is ~8.6 day (i.e., ~207 hr). Type 

A spermatogonia (A), intermediate spermatogonia (In), and type B (B) spermatogonia all 

undergo mitosis. Type B spermatogonia undergo mitosis to form preleptotene [72] 

spermatocyctes which are the only germ cells to be transported across the BTB. Preleptotene 
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spermatocytes progressively develop into diplotene (D) spermatocytes, which enter 

diakinesis of meiosis I [8], once secondary spermatocytes form, they quickly enter meiosis II 

to generate haploid spermatids. Spermatogonia (type A; In, Intermediate; type B); 

spermatocytes (Pl, preleptotene; L, leptotene; Z, zygotene; P, pachytene; D, diplotene; Mi, 

meiotic division); round spermatids (1–8); elongate spermatids (9–16).
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Figure 2. Microtubule dynamics
(A) Microtubules are essential for proper cellular function. This diagram depicts a side-view 

of a MT. MTs are comprised of protofilaments, which are polymers of α/β-tubulin 

heterodimers arranged in a head-to-tail manner. MTs are intrinsically polar and have 2 ends 

which are designated plus (fast growing) and minus (slow growing) end. The γ-tubulin ring 

complex is located at the minus end and it is responsible for catalyzing MT nucleation [26]. 

Though polymerization can occur at both ends, the rate of polymerization at the plus end 

exceeds that of the minus end. GTP-bound tubulin heterodimers are added to the growing 

end of a MT. When additional GTP-bound tubulin heterodimers are added, previously 

incorporated GTP-bound β-tubulin is hydrolyzed to GDP-β-tubulin. (B) MT dynamics is 

regulated by MT associated proteins (MAPs) such as EB1. Cultured Sertoli cells were 
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treated with siRNA duplexes targeting EB1 (siEB1) versus non-targeting negative control 

siRNA duplexes (siCtrl) that serve as the corresponding control. Normal EB1 (top left panel) 

and α-tubulin (top second panel) (green fluorescence or grayscale – micrographs in 

grayscale are the same images as the green fluorescence images to better depict changes in 

EB1 and α-tubulin organization in these Sertoli cells) distribution throughout Sertoli cells is 

seen in cells treated with non-targeting control siRNA (siCtrl). However, after EB1 

knockdown (siEB1) as visualized by diminished fluorescence (see left top panel vs. left 

bottom panel), α-tubulin organization in the Sertoli cells was disrupted (second panel). For 

instance, MTs were found to be retracted from the cell cortex and localized more intensely 

around the cell nucleus. These results show that EB1 is necessary for normal MT 

organization and dynamics in the Sertoli cell. Scale bar, 25 μm, which applies to the other 

image of the same panel.
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Figure 3. Basal ES and microtubules in cultured Sertoli cells with an established functional TJ-
permeability barrier
This is an electron micrograph showing the network of microtubules (MTs) near the 

interface between 2 Sertoli cells when these cells were cultured in vitro for 2 days with an 

established TJ-permeability barrier and prepared for electron microscopy. Black arrowheads 

illustrate the tight junctions (TJs), and the “kisses” typical of TJs are noted, whereas the 

yellow arrowheads illustrate the endoplasmic reticulum (ER) and some actin microfilament 

bundles (annotated by the green arrowhead that appear as dot-like structures because actin 

microfilaments lie perpendicular to the Sertoli cell plasma membrane) which are the basic 
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components of the basal ES. Both the TJ and basal ES are magnified and shown on the top 

right panel as an inset. Microtubules (MTs) are also present near the Sertoli cell-cell 

interface as indicated by white arrowheads, which are also magnified and shown on the 

lower right panel as an inset. Scale bar, 1 μm; 0.5 μm in inset.
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Figure 4. Microtubule disruption after treatment with adjudin
Rats were administered adjudin, a potential male contraceptive, at a dosage of 50 mg/kg b.w. 

via oral gavage. Rats were terminated after 4 days, testes removed, fixed, embedded and 

analyzed by IHC to observe morphological changes in cytoskeleton of seminiferous tubules. 

The image on the left is a cross section of a normal rat testis stained for α-tubulin. The 

arrangement of MTs at 0h in normal rat testes shows the typical spoke-like pattern in the 

Sertoli cell cytoplasm which thus serve as the track for the transport of spermatids and other 

organelles (e.g., phagosomes, endosomes). MTs lie at an almost 90° angle to the basement 

membrane of the tunica propria. However, 4 days after adjudin was administered, MT 

arrangement within the tubules is grossly disrupted, no longer displaying the typical spoke-

like pattern. The MT spokes collapsed in concurrence with the loss of spermatids/germ cells, 

instead of forming columnar structures perpendicular to the basement membrane, MTs had 

become diffused within the epithelium and many of them are laid in parallel to the basement 

membrane of the tunica propria. Scale bar, 120 μm, which applies to the other micrograph in 

this panel.
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Figure 5. Schematic diagram of effects of adjudin on Sertoli cell cytoskeleton in the seminiferous 
epithelium
In normal Sertoli cells of the seminiferous epithelium, MTs serve as the tracks for the 

transport of developing germ cells across the BTB and the seminiferous epithelium 

throughout spermatogenesis. Actin microfilaments are also present along these tracks, 

serving as the support and vehicle for germ cell transport across the epithelium. Using 

adjudin as a model to study germ cell transport, we have provided evidence that germ cell 

transport is disrupted due to the loss of MT track and actin support as briefly summarized 

herein.

Tang et al. Page 26

Semin Cell Dev Biol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Structure and function of microtubules (MT)
	Regulation of microtubules
	End-binding protein 1 (EB1)
	Formins
	MAP/Microtubule affinity-regulating kinases (MARKs)

	Microtubule-based transport
	Kinesin superfamily proteins (KIFs)
	Cytoplasmic dynein

	MT studies in the rat testis
	Toxicological studies

	Microtubules and disease
	Future perspectives and concluding remarks
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

