Table 1.
Summary of predictive accuracy estimates for five models of interest. Lasso-Cox1: censoring weights are estimated from a Cox PH model using the selected variables based on a Lasso-Coxph model. Lasso-Cox2: censoring weights are estimated directly from a Lasso-Cox model.
| Model |
|
|
|
|
|
|
||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tQ25=16(month) | tQ75=68(month) | tMAX=164(month) | ||||||||||
| Lasso-Cox1 | ||||||||||||
| Model I | 0.599(0.053) | 0.599(0.054) | 0.587(0.049) | 0.590(0.052) | 0.588(0.050) | 0.589(0.056) | ||||||
| Model II | 0.561(0.097) | 0.561(0.097) | 0.540(0.068) | 0.541(0.068) | 0.539(0.065) | 0.543(0.068) | ||||||
| Model III | 0.723(0.072) | 0.723(0.071) | 0.705(0.056) | 0.707(0.057) | 0.704(0.055) | 0.710(0.058) | ||||||
| Model IV | 0.683(0.070) | 0.680(0.071) | 0.666(0.055) | 0.672(0.057) | 0.666(0.054) | 0.668(0.059) | ||||||
| Model V | 0.670(0.075) | 0.665(0.076) | 0.638(0.058) | 0.638(0.060) | 0.641(0.057) | 0.638(0.061) | ||||||
| Lasso-Cox2 | ||||||||||||
| Model I | 0.599(0.053) | 0.577(0.103) | 0.587(0.049) | 0.545(0.084) | 0.588(0.050) | 0.546(0.084) | ||||||
| Model II | 0.561(0.097) | 0.550(0.124) | 0.540(0.068) | 0.528(0.098) | 0.539(0.065) | 0.528(0.098) | ||||||
| Model III | 0.723(0.072) | 0.726(0.095) | 0.705(0.056) | 0.715(0.081) | 0.704(0.055) | 0.715(0.081) | ||||||
| Model IV | 0.683(0.070) | 0.669(0.101) | 0.666(0.055) | 0.663(0.080) | 0.666(0.054) | 0.663(0.080) | ||||||
| Model V | 0.670(0.075) | 0.600(0.116) | 0.638(0.058) | 0.579(0.089) | 0.641(0.057) | 0.580(0.088) | ||||||
Model I: only PSA and Gleason;
Model II: PSA, Gleason and biomarkers 2,4,8,11,14,16,22,31,46,52,63 based on Long et al. (2011);
Model III: PSA, Gleason and biomarkers 2,3,5,6,7,13,15,26,32,43,56,83 from all 1536 biomarkers;
Model IV: PSA, Gleason and biomarkers 2,5,6,7,10,13,15 from the top 25 biomarkers;
Model V: PSA, Gleason and biomarkers 2,5,6,7,10 from the top 10 biomarkers;