Skip to main content
. Author manuscript; available in PMC: 2016 Sep 7.
Published in final edited form as: Biometrics. 2016 Jan 12;72(3):897–906. doi: 10.1111/biom.12470

Table 2.

Simulation results for the settings with p = 3 and t = 50.

1 ζ n 2
Δc^s1(SD)
Δc^s2(SD)
Δc^g1(SD)
Δc^g2(SD)
ctrue
Cox 0.3 50 Cox 0.076(0.072) 0.020(0.049) 0.062(0.092) 0.000(0.062) 0.834
AFT 0.069(0.075) 0.003(0.050)
500 Cox 0.068(0.020) 0.027(0.014) 0.040(0.040) 0.003(0.015)
AFT 0.054(0.019) 0.011(0.013)
0.6 50 Cox 0.035(0.042) 0.010(0.035) 0.023(0.045) 0.001(0.034) 0.830
AFT 0.029(0.042) 0.002(0.034)
500 Cox 0.031(0.012) 0.013(0.010) 0.010(0.016) 0.001(0.010)
AFT 0.020(0.012) 0.000(0.010)
AFT 0.3 50 Cox 0.076(0.072) 0.020(0.049) 0.063(0.092) 0.000(0.061) 0.834
AFT 0.069(0.076) 0.003(0.050)
500 Cox 0.068(0.020) 0.027(0.014) 0.041(0.040) 0.003(0.027)
AFT 0.055(0.020) 0.010(0.009)
0.6 50 Cox 0.035(0.042) 0.010(0.034) 0.024(0.046) 0.001(0.034) 0.830
AFT 0.029(0.042) 0.002(0.033)
500 Cox 0.031(0.012) 0.013(0.011) 0.010(0.016) 0.001(0.010)
AFT 0.020(0.012) 0.000(0.010)

Note that both true underlying models for survival time and censoring time are Cox PH models; Δc^s1(SD) and Δc^s2(SD)

are the same when ℳ2 is Cox or AFT because they do not require the estimation of censoring weights.

Mis-specifying the model for survival time as an AFT model with the log-logistic distribution.

Mis-specifying the model for censoring time as an AFT model with the log-logistic distribution.