Table 3.
Simulation results for the settings with p = 10 and t = 20. Cox: censoring weights are estimated from a Cox PH model. Lasso-Cox1: censoring weights are estimated from a Cox PH model using the selected variables based on a Lasso Cox PH model. Lasso-Cox2: censoring weights are estimated directly from a Lasso Cox PH model.
| ζ | n | ℳ2 |
|
|
|
|
ctrue | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.3 | 50 | Cox | 0.088(0.074) | 0.021(0.046) | 0.055(0.095) | 0.002(0.056) | 0.858 | ||||
| Lasso-Cox1 | 0.051(0.093) | 0.002(0.054) | |||||||||
| Lasso-Cox2 | 0.102(0.082) | 0.029(0.050) | |||||||||
| 100 | Cox | 0.082(0.046) | 0.024(0.029) | 0.034(0.064) | 0.005(0.035) | ||||||
| Lasso-Cox1 | 0.029(0.062) | 0.006(0.032) | |||||||||
| Lasso-Cox2 | 0.097(0.052) | 0.032(0.033) | |||||||||
| 500 | Cox | 0.077(0.020) | 0.027(0.013) | 0.016(0.031) | 0.006(0.015) | ||||||
| Lasso-Cox1 | 0.013(0.031) | 0.008(0.014) | |||||||||
| Lasso-Cox2 | 0.092(0.022) | 0.036(0.014) | |||||||||
| 0.8 | 50 | Cox | 0.026(0.034) | 0.005(0.029) | 0.013(0.036) | 0.002(0.029) | 0.846 | ||||
| Lasso-Cox1 | 0.009(0.033) | 0.002(0.028) | |||||||||
| Lasso-Cox2 | 0.040(0.048) | 0.010(0.049) | |||||||||
| 100 | Cox | 0.024(0.023) | 0.007(0.021) | 0.004(0.022) | 0.000(0.019) | ||||||
| Lasso-Cox1 | 0.004(0.023) | 0.001(0.020) | |||||||||
| Lasso-Cox2 | 0.036(0.028) | 0.011(0.036) | |||||||||
| 500 | Cox | 0.022(0.010) | 0.008(0.009) | 0.002(0.010) | 0.000(0.008) | ||||||
| Lasso-Cox1 | 0.003(0.010) | 0.001(0.008) | |||||||||
| Lasso-Cox2 | 0.033(0.011) | 0.013(0.009) |
Note that and are the same for Cox, Lasso-Cox1 and Lasso-Cox2 becasue they do not require the estimation of censoring weights.