Skip to main content
. Author manuscript; available in PMC: 2016 Sep 7.
Published in final edited form as: Biometrics. 2016 Jan 12;72(3):897–906. doi: 10.1111/biom.12470

Table 4.

Simulation results for settings with p = 100 and t = 20. Z has an exchangeable correlation structure with ρ. Lasso-Cox1: censoring weights are estimated from a Cox PH model using the selected variables based on a Lasso Cox PH model; Lasso-Cox2: censoring weights are estimated directly from a Lasso Cox PH model; Elastic-Net-Cox1: censoring weights are estimated from a Cox PH model using the selected variables based on an Elastic-net Cox PH model; Elastic-Net-Cox2: censoring weights are estimated directly from an Elastic-net Cox PH model.

ρ ζ n 2
Δc^g1(SD)
Δc^g2(SD)
ctrue
0 0.3 50 Lasso-Cox1 0.059(0.092) 0.003(0.062) 0.860
Lasso-Cox2 0.107(0.085) 0.024(0.053)
100 Lasso-Cox1 0.037(0.064) 0.003(0.041)
Lasso-Cox2 0.099(0.054) 0.031(0.034)
0.8 50 Lasso-Cox1 0.014(0.035) 0.002(0.040) 0.847
Lasso-Cox2 0.046(0.090) 0.017(0.086)
100 Lasso-Cox1 0.007(0.023) 0.001(0.020)
Lasso-Cox2 0.042(0.063) 0.013(0.057)
0.8 0.3 50 Lasso-Cox1 0.009(0.049) 0.008(0.052) 0.915
Lasso-Cox2 0.018(0.054) 0.006(0.050)
Elastic-Net-Cox1 0.006(0.050) 0.003(0.053)
Elastic-Net-Cox2 0.018(0.054) 0.007(0.047)
100 Lasso-Cox1 0.012(0.033) 0.006(0.035)
Lasso-Cox2 0.016(0.034) 0.012(0.028)
Elastic-Net-Cox1 0.009(0.035) 0.002(0.037)
Elastic-Net-Cox2 0.016(0.034) 0.011(0.028)
0.8 50 Lasso-Cox1 0.004(0.027) 0.012(0.027) 0.903
Lasso-Cox2 0.010(0.033) 0.002(0.059)
Elastic-Net-Cox1 0.004(0.026) 0.002(0.030)
Elastic-Net-Cox2 0.010(0.028) 0.002(0.050)
100 Lasso-Cox1 0.003(0.018) 0.009(0.019)
Lasso-Cox2 0.009(0.019) 0.004(0.020)
Elastic-Net-Cox1 0.003(0.018) 0.003(0.019)
Elastic-Net-Cox2 0.009(0.019) 0.004(0.021)