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ABSTRACT Understanding the mechanisms behind translation and its rate-limiting steps is crucial for both the development of
drug targets and improvement of heterologous protein productionwithmany biotechnological applications, such as in pharmaceu-
tical and biofuel industries. Despite many advances in the knowledge of the ribosome structure and function, there is still much
discussion around the determinants of translation elongation with experiments and computational studies pointing in different
directions. Here, we use a stochastic framework to simulate the process of translation in the context of an Escherichia coli cell
by gathering the available biochemical data into a ribosome kinetics description. Our results from the study of translation in
E. coli at different growth rates contradict the increase of mean elongation rate with growth rate established in the literature.
We show that both the level of tRNA competition and the type of cognate binding interaction contribute to the modulation of elon-
gation rate, and that optimizationof aheterologous transcript for faster elongation rate is achievedbycombining the two.Wederive
an equation that can accurately predict codon elongation rates based on the abundances of free tRNA in the cell, and can be used
to assist transcript design. Finally, we show that non-cognate tRNA-ribosome binding has an important weight in translation, and
plays an active role in the modulation of mean elongation rate as shown by our amino-acid starvation/surplus studies.
INTRODUCTION
Protein synthesis plays an important role in biological sys-
tems because its products constitute most of the molecular
machinery required for cell regulation, growth, and func-
tionality. Studies involving synonymous codon substitution
of rare codons have shown that these codons are associ-
ated with ribosome pausing. Their replacement by more
frequent ones was observed to decrease protein specific ac-
tivity (1,2), which can be associated with protein misfold-
ing, as different structural domains require different speeds
to be formed (3). A better understanding of the determi-
nants of translation elongation can contribute to the design
of drugs to target translation deficiencies and it could
improve the yield of recombinant proteins in host cells
through the optimization of DNA sequences for faster
translation.

Despite the advances in the knowledge of ribosome ki-
netics (such as the unveiling of the structure and function
of several ribosomal domains with cryo-electron micro-
scopy and x-ray crystallography (4,5) or the development
of bulk rapid-mixing kinetics and single-molecule experi-
ments for the study of ribosome reaction kinetics and the dy-
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namics of translation events (6–8)), the dynamics of the
translation process and its rate-limiting steps are still not
completely understood. The availability of cognate tRNA
for a codon is generally accepted as the determinant of
translation elongation rate. However, studies of computa-
tional or experimental character that attempt to identify
the rate-limiting steps of translation have not been able to
provide a consensus on this matter. A computational study
of translation using a mechanistic model has found that
the competition among cognate tRNAs and the nonspecific
binding tRNAs (near-cognate (nc) and noncognate (non)
tRNAs) is the rate-limiting step in translation (9). Another
computational study has identified specifically the competi-
tion between cognate and near-cognate tRNAs as the deter-
minant in translation rates (10). More recently, in a
computational model that does not take competition into
account, the concentration of ternary complex aa-tRNA:
GTP:EF-Tu was found to limit elongation rate (11). In
two recent experimental studies involving synonymous
codon replacements, the key factor in translation elongation
rate was attributed to the tRNA availability in somewhat
different ways. Spencer et al. (12) showed that the determi-
nant of codon translation modulation is the availability of
cognate tRNA with Watson-Crick versus wobble interac-
tions, whereas Rosenblum et al. (13) suggested that cognate
tRNA abundance is the key factor.
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Translation Elongation Dynamics
Recent stochastic models enable the study of the transla-
tion dynamics for an organism’s representative set of mRNA
sequences (14,15), which allows for the study of more com-
plex dynamics such as ribosome crowding effects and the
dynamics of tRNA availability in a whole-cell context.
This is more difficult to address with deterministic models.
These stochastic models take into account the fluctuations
on the availability of tRNA and ribosomal resources, but
despite their complexity, they do not provide a complete ki-
netics for competition. Using a stochastic framework, we
simulate the translation process based on the available ribo-
some kinetics as determined in the literature (16–19), which
describes fully the tRNA competition and differentiates be-
tween a cognate Watson-Crick (WC) and a cognate wobble
(WB) tRNA binding interaction. We simulate the simulta-
neous translation of a representative pool of Escherichia
coli mRNA sequences under a range of different growth
rates for which the number of ribosomes and the concentra-
tions of each tRNA species are known. We show that two
distinct mechanisms modulate the speed at which each
codon is translated: (1) the amount of competitor tRNA
and (2) the type of cognate binding interaction (WC versus
WB), which, combined, optimize elongation rate of a heter-
ologous transcript added to the cell. Formulating the trans-
lation process deterministically by extending previous
work (9), we derive an equation that estimates the codon
elongation rates based on the amount of free competitor
and cognate (WC, WB) tRNAs. We compare the predictions
of this equation with the ones from our stochastic model,
and we show its potential to assist with the design of opti-
mized heterologous transcripts by synonymous codon
substitution.
MATERIALS AND METHODS

Stochastic model of E. coli translation machinery

The ribosome kinetics for translation elongation cycle of each codon of an

mRNA sequence was obtained from in vitro experiments detailed in Table

S1 in the Supporting Material and is represented schematically in Fig. 1.

The four different kinetic pathways (cognate Watson-Crick (WC), cognate

wobble (WB), near-cognate (nc), and non-cognate (non)) represent the

different types of tRNA binding to the mRNA-ribosome complex (see Sup-

porting Materials and Methods S1). The ribosome kinetics for WC, nc, and

non are obtained from Wohlgemuth et al. (16) at 20�C. The ribosome ki-

netics for WB was obtained from Kothe and Rodnina (19) at 20�C, where
cells not expressing tRNA-Ala2 had their matching codon GCC decoded

by the isoacceptor tRNA-Ala1B via a wobble binding interaction. Based

on these biochemical assays, the translation elongation cycle is divided

into two stages where the codon-anticodon match is evaluated, resulting

in the possibility of rejecting the tRNA: the initial selection stage (states

1–3) and the proofreading stage (states 5–1). After the tRNA accommoda-

tion and peptide bond formation from states 5 to 6, the ribosome kinetics for

the mRNA-tRNA translocation between states 6 and 11 is a combination of

rate-limiting steps from Pan et al. (18) at 25�C and the remaining steps are

from Peske et al. (17) at 37�C (fast rate constants that do not limit the sys-

tem). During the step at which the translated codon and tRNA are shifted to

the P-site (states 9–10), the next codon of the mRNA sequence is placed at

the A-site for decoding and at the same time the deacylated-tRNA that was
previously at the P-site is translocated to the E-site. In our model we assume

that: (1) the ribosome kinetics forWB binding interaction is the same inde-

pendently of the type of wobble mismatch and codon involved; and (2) the

translocation kinetics is common to the WC, WB, and nc binding interac-

tions, as the kinetic steps no longer depend on the codon-anticodon interac-

tion. Furthermore, the kinetics of the tRNA charging with an amino acid

and binding with EF-Tu, mediated by EF-Ts, is not taken into account in

the model. We instead assume that the tRNA is instantaneously recharged

after leaving the ribosome E-site and that the finalized ternary complex

aa-tRNA:GTP:EF-Tu is readily available for binding with the ribosome,

and hence not limiting translation. This assumption is consistent with the

observation that 90% of EF-Tu is estimated to be present in the form of

the ternary complex (20). We also note that at steady state the rates of un-

charged tRNA degradation (>120 min in Mohanty et al. (21)) and aa-tRNA

degradation (100–1000 h in Hentzen et al. (22)) occur on a much longer

timescale than the timescale for the cycle of elongation until the tRNA is

released from the E-site (see Table 1). This leads to the rate of tRNA

charging being equal to the rate of tRNA release from the E-site and to

the rate of aa-tRNA binding to the A-site. For simplicity, tRNA throughout

the text denotes the finalized ternary complex aa-tRNA:GTP:EF-Tu ready

to bind to the mRNA-ribosome complex.

We simulated the dynamics of translation with an exact continuous-time

stochastic algorithm (23) based on previous work (24), which allows study-

ing the dynamics of the simultaneous translation of different mRNA species

assuming a fixed total amount of tRNA and ribosomal resources (tRNAT,

RT). The algorithm accounts (1) for the need of ribosome binding space

on the beginning of the decoding region for translation initiation to take

place; (2) for the ‘‘traffic jam effect’’ due to ribosome queuing when slower

codons are being translated; (3) for the fluctuations between active and free

ribosomes (Ra, Rf); and (4) it was here further improved to account for fluc-

tuations between active and free tRNA molecule abundances (tRNAa,

tRNAf) by allowing the dynamic tracking of the position of the tRNA mol-

ecules inside the ribosome during translation. A list with the tRNA-codon

binding interactions is presented in Tables S2 and S3. From the possible

tRNA choices, we selected the species that will participate in the binding

reaction based on a distribution that takes into account the amount of avail-

able molecules for each species at the time of the binding. Once a tRNA

species is selected for binding with the mRNA-ribosome complex, its

amount decreases by one unit. Rejection of the tRNA molecule during

initial selection stage (states 1–3 or A-site OFF) or proofreading stage

(states 5–1 or A-site PROOF), or simple deacylated-tRNA release from

the ribosomal E-site (states 11–1 or E-site OFF) will result in the increase

of the respective tRNA species amount by one unit.
Translational resources and mRNA cell
composition

The concentrations of each tRNA species in E. coli at growth rates 0.4, 0.7,

1.07, and 1.6 h�1 were obtained from the experiments reported in Dong

et al. (25). We estimated the total number of tRNA molecules (tRNAT)

and ribosomes (RT) per cell at each growth rate from the values reported

in Bremer and Dennis (26). The tRNAT was used with the total tRNA con-

centration ([tRNAT]) to compute the respective cell volumes at the given

growth rates. The values obtained for the cell volumes were inside the range

determined for E. coli in Kubitschek and Friske (27) (see Supporting Ma-

terials and Methods S2 and Fig. S1 in the Supporting Material for further

details on this estimation and Table S4 for values). Finally, the number of

tRNA molecules for each of the tRNA species at each growth rate was

computed from their respective concentrations and the cell volume.

We computed the average number of mRNA copies per E. coli cell at

each growth rate from the mRNA synthesis rate per cell in the function

of growth rate as reported in Bremer and Dennis ((26); and see Supporting

Materials and Methods S3 and Fig. S2 for further details on this estimation

and Table S4 for values). Because we lack data on the mRNA sequences and

respective copy numbers expressed at each of the growth rates under study
Biophysical Journal 110, 2120–2131, May 10, 2016 2121



FIGURE 1 Schematic representation of the ribosome kinetics of the translation elongation cycle during which a polypeptide is synthesized following the

decoding of its corresponding mRNA sequence. The four pathways represent the different types of codon-anticodon interaction (WC,WB, nc, and non). After

the tRNA accommodation and peptide bond formation from state 5 to state 6, the subsequent kinetic pathway is assumed to be common for the different types

of binding interactions, as the kinetic steps no longer depend on the codon-anticodon recognition. T
ðf Þ
WC, T

ðf Þ
WB, T

ðf Þ
nc , and T

ðf Þ
non are the concentration of free

cognate WC, cognate WB, and near-cognate and non-cognate tRNAs, respectively, for the codon being translated. A-site OFF, A-site PROOF, and E-site

OFF correspond to the positions where tRNA is released from the mRNA-ribosome complex and P-site ON corresponds to the position where ribosome

translocation to the next codon occurs and hence the tRNA in the A-site is placed in the P-site and the one in P-site is placed in the E-site. To see this figure

in color, go online.
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(for which we do have available tRNA concentration data), we constructed

the mRNA pools of the cell at each condition by formulating a homogeneity

criterion based on the fact that E. coli expresses mRNA in low copy number

(28). This criterion assumes that the mRNA pools are qualitatively similar

across the four growth rates and enforces them to approximate both the

average mRNA length and the codon usage frequency (CU) of E. coli.

The CUj is a measure of the fraction of each codon j present in the genome

of an organism, and thus is a measure independent of growth rate. The val-

idity of this assumption was shown by comparing the mRNA expression in

E. coli at low (29) and high (30) growth rates (Table S5). The complete

formulation of the homogeneity criterion is explained in Supporting Mate-

rials and Methods S3. Briefly, from the list of E. colimRNA species encod-

ing proteins only and excluding pseudogenes obtained from the E. coli K12

strain in EcoGene 3.0 (31), we selected, based on the criterion, a subset of

the listed mRNA species with 52% of the sequences in this subset classified

as essential genes. Although the identity of the mRNA species was pre-

served in the cell at the different four growth rates, the individual copy

numbers were varied to match the estimated average number of mRNA se-

quences per cell. The E. coli K12 CUwas obtained from the Genomic tRNA

database (32). To differentiate between the CU based on the genome and
2122 Biophysical Journal 110, 2120–2131, May 10, 2016
that of the CU frequency based purely on the set of mRNA copies present

in a cell, we defined the mRNA codon usage frequency (mCU) as a measure

of the fraction of each codon j (mCUj) present in the mRNA pools at

each growth rate. Such values were enforced to approximate the ones of

E. coli CU (see Fig. S3 for a comparison between CU and mCU at each

growth rate).

The concept of interaction-based mRNA codon usage frequency

(IBmCUtRNAi
) is introduced here to quantify the frequency of codons in

the system that interact with tRNA species i and are classified under a

certain basepair binding interaction. The IBmCUbi
tRNAi

is computed with

the following expression:

IBmCUbi
tRNAi

¼
X

codonj with bi for tRNAi

mCUj; (1)
species i with the binding interaction bi. As mentioned above, there are

four possible binding interactions (WC, WB, nc, and non) and we further
where mCUj is summed over all codon species j that bind to the tRNA

defined a fifth one to account for all cognate binding interactions:

IBmCUcogn
tRNAi

¼ IBmCUWC
tRNAi

þ IBmCUWB
tRNAi

.



TABLE 1 Statistics on Mean Ribosome Occupancy Time

Lags and Total Number of Events per Decoding Stage and

Binding Type

WC WB nc non

Dt
A-OFF
bi [� 10�2 s] 0.36 (0.006) 0.48 (0.009) 3.9 (0.009) 1.2 (0.0008)

NA-OFF
bi 70,961 86,665 4,651,313 15,757,894

%a 30.92 31.8 98.9 100

Dt
A-PROOF
bi ½s� 0.16 (0.003) 0.51 (0.01) 0.31 (0.001) —

NA-PROOF
bi 790 75,871 50,877 —

%a 0.34 27.85 1.08 —

Dt
P-ON
bi ½s� 0.70 (0.01) 1.00 (0.02) 0.83 (0.002) —

Dt
E-OFF
bi ½s� 3.09 (0.05) 3.41 (0.07) 3.29 (0.008) —

N
P-ON=E-OFF
bi 157,731 109,924 843 —

%a 68.74 40.35 0.02 —

tbicodon½s=aa� 1.82 1.54 0.74 0.69

Values in parentheses are standard deviations.
aFraction of bi events (WC, WB, nc, and non) per decoding stage (A-site

OFF, A-site PROOF, and P-site ON/E-site OFF).

Translation Elongation Dynamics
Codon elongation rate

We derived an expression for the codon elongation rate (keff ) in function of

the free cognate (WC and WB), near-cognate (nc), and non-cognate (non)

tRNA concentrations and the ribosome kinetic parameters. This derivation

was based on a deterministic model of translation (9), which was extended

to account for the differentiation between two types of cognate binding in-

teractions, for the possibility of ncmisincorporation and for tRNA rejection

at the proofreading stage (see Supporting Materials and Methods S4). In-

serting the values of the kinetic rate constants from Table S1 we obtained

an expression to compute kjeff for each codon j
k j
eff ¼ Tf

WC;j þ 0:5884 � Tf
WB;j þ 2:6233 � 10�4 � Tf

nc;j

0:0104þ 0:4556 � Tf
WC;j þ 0:6864 � Tf

WB;j þ 0:0613 � Tf
nc;j þ 0:0171 � Tf

non;j

; (2)
where the variables are the free WC, WB, near-cognate, and non-cognate

tRNA concentrations to codon j.
Simulation of translation in E. coli cell

The cell composition at 37�C and ribosome kinetics described above was

used to simulate the translation dynamics for an E. coli cell. The translation

initiation rate constants (kI) for each mRNA species were calibrated such

that the system reached a 80% ribosome activity in each simulated pool

as estimated in Bremer and Dennis (26) (see Supporting Materials and

Methods S5). The termination rate constants (kT) values were kept high

so that it was not a rate-limiting step in translation, as had been observed

in Racle et al. (33) and Arava et al. (34). Simulations were performed for

E. coli at growth rates 0.4, 0.7, 1.07, and 1.6 h�1 and for the translation

of seven synonymous Firefly Luciferase transcripts in an E. coli cell

growing at 1.07 h�1. Simulations were performed individually for each

transcript and only one copy of the transcript was added to the pool of

mRNA copies in a cell at 1.07 h�1. The design of the transcripts was based

on synonymous codon substitution that yields the same Luciferase amino-

acid sequence (see Supporting Materials and Methods S6 and Table S6 for

mRNA sequences). The data was extracted from the simulations during a

time interval for which the system was at steady state (see example for
1.07 h�1 in Figs. S4 and S5). All simulation results were averaged over a

large number of repetitions of the same simulation.
RESULTS AND DISCUSSION

General translation properties of the cell in
function of growth rate

We studied the distribution of the protein synthesis rate (Vp)
for each growth rate (Fig. 2 a). The mean Vp among the
mRNA species is observed to increase with the growth
rate, along with the increase in translation resources (see Ta-
ble S2). Interestingly, the mean elongation rate (yr) (Eq. S6
and Supporting Materials and Methods S7) is observed first
to increase and then decrease with growth rate, which is
accompanied by a respective decrease and increase in the
mean ribosomal density (r) (Eq. S7 and Supporting Mate-
rials and Methods S7), contrary to the estimations in Bremer
and Dennis (26) where it increases with growth rate
(Fig. 2 b). Despite this difference, we found good agreement
with the mean distance between ribosomes estimated in
Bremer and Dennis (26) and our computed values (Eq. S8
and Supporting Materials and Methods S7) for each growth
rate using the r-values of each mRNA species from our sim-
ulations and assuming the ribosome has the size of one
nucleotide LR ¼ 0 (Fig. S6 a). However, the real length of
the ribosome covers ~12 codons, which is accounted for
in our simulations, and performing the computation with
the correct ribosome length shows that the values from the
literature overestimate the true mean distance between ribo-
somes. The effect observed above results directly from the
inverse changes in mean r, given that the mean tRNA activ-
ity (i.e., the fraction of tRNA species bound to ribosomes
(see Eq. S9 and Supporting Materials and Methods S7)) of
all tRNA species is similar for the different growth rates
(Fig. S6 c), and that the average of the fold changes in abun-
dance from all tRNA species at each growth rate relative to
0.4 h�1 is fairly constant (Fig. S6 d). This suggests no major
changes in the ratio between cognate and competitor tRNA
concentrations that could affect yr.

Interestingly, with the increase in growth rate, the Vp dis-
tribution shifts from having one peak to a bimodal distribu-
tion and back again to having just one peak, suggesting a
systemic change in the control of the synthesis rate. Previ-
ous computational and experimental studies have shown
for different organisms that translation of most mRNA spe-
cies is initiation- or elongation-limited (33,34). In particular,
Biophysical Journal 110, 2120–2131, May 10, 2016 2123
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FIGURE 2 (a) Distribution of protein synthesis rate (Vp) for the different growth rates. The red bar and number represent the mean Vp among all mRNA

species. (b) Elongation rate (yr) for each mRNA species in function of the ribosomal density (r) for the different growth rates. The red star and text represent

the mean (r, yr) from all the mRNA species in the cell. Vertical and horizontal error bars represent standard deviation from 100 repeated simulations. (c and d)

Specific protein synthesis rate (Vs) for each mRNA species in function of the ribosomal density (r) (c) and in function of the initiation rate (kI� Rf) (d) for the

different growth rates. Green and blue color-code separates the data points that have a Vp below or above the mean Vp among all mRNA species, respectively.

Vertical and horizontal error bars represent standard deviation from 100 repeated simulations. To see this figure in color, go online.
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computational studies have shown that the specific protein
synthesis rate (Vs), i.e., the rate of proteins produced per
number of copies of an mRNA species (see Supporting Ma-
terials and Methods S7), is limited by translation initiation
for low values of r; by translation termination for high
values of r; and reaches a maximum for moderate values
of r for which translation elongation becomes limiting
(9,35,36). We observe that the cells simulated at growth
rates 0.4 and 1.6 h�1 have a higher number of mRNA spe-
cies that cluster in a more stable region of the Vs curve
with higher r and higher initiation rate (kI � Rf), indicating
that these are mostly elongation-limited, whereas the cells at
growth rates 0.7 and 1.07 h�1 have their mRNA species
clustered into two groups that correlate with the Vp bimodal
distributions: one group with lower r for which translation is
mostly initiation-limited and a second group with higher
r-values for which translation is mostly elongation-limited
(Fig. 2, c and d). A decrease bigger than 20% in the ratio be-
tween Rf and the total number of mRNA copies at 0.7 and
1.07 h�1 with respect to the one at 0.4 h�1 suggests a limi-
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tation in free ribosome resources (Fig. S6 b). Thus, it ap-
pears that under low and high growth rates that the system
optimizes protein translation with higher Vs for the mRNA
species, whereas for intermediate growth rates, translation
initiation regulates protein synthesis. Consequently, at
growth rates 0.4 and 1.6 h�1, there is a higher proportion
of mRNA species limited by translation elongation—a lim-
itation that corresponds to more ribosome blocking
(higher r) due to queuing of ribosomes downstream of the
sequences and lower yr, so that the overall mean yr of the
entire mRNA pool decreases (Fig. 2 b).

Although these results were obtained from simulations
considering a homogeneous mRNA pool across mRNA con-
ditions (see Supporting Materials and Methods S3), they are
valid for any choice on pool composition as long as the total
number of ribosomes and mRNAs in the system remains as
parameterized here. This is consequence of the calibration
performed on the initiation rates to force the cell at each
growth rate to have 80% of its ribosomes active in transla-
tion. This leads to a steady state where, for each growth
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condition, the level of free ribosomes will always consist of
the remaining 20%, which is independent of the individual
ribosome profiles of each sequence. If the ratio between
free ribosomes and total amount of mRNAs is maintained
independently of the mRNA pools used, the shifts on
average ribosomal densities will be observed because they
constitute a direct effect of the competition among trans-
lating mRNAs for free ribosomes, which in turn, directly in-
fluence the level of ribosome crowding along the mRNA
sequences.
Determinants of elongation rate

We investigate further the determinants of translation elon-
gation rate by focusing on the analysis of the cell at growth
rate 1.07 h�1 (highest mean yr and moderate mean r) and the
production of a heterologous protein. The results discussed
below are similar for the four growth rates, and thus are in-
dependent of the changes in r, unless otherwise stated.

To qualitatively validate the model and its parameters, we
separately simulate the translation of four Luciferase tran-
scripts in an E. coli cell growing at 1.07 h�1, we postprocess
the translation time profiles of the transcripts (see Support-
ing Materials and Methods S7 and S8) and we compare our
results with the ones from pulse-chase experiments per-
formed by Spencer et al. (12). For the simulations, we use
the same Luciferase transcripts as in Spencer et al. (12),
which consist of a wild-type (WT) Luciferase transcript
and three other sequences whose designs follow different
criteria based on synonymous codon substitution: codons
with existing WC decoding tRNA isoacceptors combined
with high tRNA gene copy number (WC and tRNA genes),
codons with the highest genome codon usage frequency
(CU-based), and codons without WC decoding tRNA isoac-
ceptors (WB-based; see criteria detail in Supporting Mate-
rials and Methods S6 and mRNA sequences in Table S6).
The mean time-evolution curves of methionine level from
our in silico pulse-chase performed on the WT, WC, and
tRNA genes and CU-based transcripts (no experimental
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curve available for WB-based) show good agreement
with the experimental curves from Spencer et al. (12)
(Fig. 3 a). The experimental curves obtained at 37�C, and
hence with faster elongation rate, were calibrated for com-
parison with our system at 20–25�C by multiplying the
time axis by a factor of 23 s (Supporting Materials and
Methods S8). The deviations between the simulated and
experimental curves are accounted for by the distribution
of the simulated curves that generated our mean time-evolu-
tion curves of methionine level.

Three other Luciferase transcripts were designed where
codons were replaced by their synonyms based on existing
WC decoding tRNA isoacceptors (WC-based), based on
the highest cognate tRNA concentration (TC-based), and
based on the highest codon elongation rate (kmax

eff -based)
(more detail about criteria can be found in the Supporting
Materials and Methods). For the design of the kmax

eff -based
transcript we computed the codon elongation rate (k j

eff) of
each codon species j with Eq. 2, using the steady-state
tRNA concentrations obtained after simulating an E. coli
cell at 1.07 h�1. The WC and tRNA genes and kmax

eff -based
transcripts present the fastest elongation rates ((Fig. 3 b);
for translation time profiles, see Fig. S8) and highest protein
synthesis rates when compared to the WT transcript (28 and
28.6%, respectively; see Fig. S9 a), with kmax

eff -based being
more optimal. These two transcripts differ only in the use
of two codon species (one encoding for glutamine and the
other for serine) that, combined, appear in 43 positions
along the 585-codon sequence. The similarity between these
two transcripts is explained by the previously observed cor-
relation between tRNA abundance and its gene copy number
(25,37,38), and the fact that keff of a codon is maximized by
high concentration of cognate WC tRNA and low competi-
tion. Only the WB-based transcript leads to a decrease in
protein synthesis (~20% less translated protein; see
Fig. S9 a) relative to the WT transcript. We tested a tran-
script where the 20 first codons were not changed and
confirmed that the different pulse-chase curves between
WT and kmax

eff -based are a result of changes in elongation
0 1500
]

WT

WC & tRNA genes

CU based

WB based

keff
max 

WC based

TC based

based

FIGURE 3 (a) Comparison between simulated

(sim) and experimental time-evolution curves of

methionine level obtained from experiments in

Spencer et al. (12) for WT Luciferase and for

two of its synonymous transcripts (WC and tRNA

genes and CU-based). Bounds represent the 25th

and 75th quartile of the distribution from the in sil-

ico pulse-chase curves. Time axis from the experi-

mental data points was adjusted with the same

calibration factor used for the methionine labeling

time (see Supporting Materials and Methods S8).

(b) In silico pulse-chase performed during the

translation of seven heterologous transcripts

yielding the same amino-acid sequence based on

The time-evolution curves of methionine level result from the average of

the 25th and 75th quartile of their sample distribution in Fig. S7. To see
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rate rather than initiation (Fig. S9 b). Nevertheless, we note
here that even though a transcript is optimized for elonga-
tion by synonymous codon substitution with the purpose
of increasing protein production levels, the translation initi-
ation rate, which is dictated by the beginning of the tran-
script’s sequence and the steady-state Rf of the host cell,
has a major impact on the gain in protein production with
respect to the WT in its rate-limiting regime (as seen above
with the specific protein synthesis rate (Vs), and is further
discussed in Fig. S9, b–d).

These findings are supported by sensitivity analysis of the
ribosome kinetic parameters with respect to yr. After per-
forming an initial screening on the 25 kinetic rate constants
to identify the insignificant ones (Fig. S10), we use a Monte
Carlo-based numerical procedure for variance-based global
sensitivity analysis (39). We then determine the ribosome
kinetic rate constants that most influence the value of yr
observed for an mRNA transcript (Fig. 4 a; results are valid
for any mRNA species, as the ribosomal kinetic pathway is
the same for all codons). The analysis shows no dominant
rate constants (all sensitivity indices < 0.4), but their order
of influence, as ranked by their main effects (Ski), indicates
that k�1, k

nc
�2, and k

WB
5 are the most influential rate constants,

which indicates that there are two decoding stages of the
ribosome that determine yr: (1) rejection of competitor
tRNA (k�1 and knc�2) during initial selection, and (2) accom-
modation of cognate WB tRNAs (kWB

5 ). Interestingly,
although the influence of k2 on yr is mostly due to interaction
effects (STki ), we observe that the nominal value (obtained
from experiments) of k2 seems to be optimized to yield
the highest yr (inset in Fig. 4 a). Analysis of the system
for the parameters at 37�C and for the in vivo parameters
deduced from in vitro ones (40) showed a redistribution of
the rate-limiting steps (Fig. S11, a and b), where cognate
binding interaction (kWB

5 ) becomes more important than
the overall tRNA competition (k�1 and knc�2). This finding
supports the discussions on tRNA competition as observed
at in vitro conditions presenting an inhibitory effect on
translation elongation that would decrease translation effi-
a b
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ciency if maintained at in vivo conditions (40,41). The
fact that the ratio between each ribosome kinetic rate con-
stant at 37�C and then at 20�C is approximately the same
(except for the initial tRNA binding rate constant and at
least until the tRNA accommodation for which we have
values to compare) would explain why our results at 20–
25�C match so well the experiments performed at 37�C
(12). We note here that when we combine the ribosome ki-
netics at 20–25�C with the parameters of the system at 37�C
(such as total number of ribosomes, total number of tRNAs,
and total number of mRNAs), we also perform a scaling of
the initiation rate to bring the translation process to the con-
ditions at 37�C by enforcing 80% ribosomes to be active in
translation. If in this system the ribosome kinetics were to be
replaced by a faster kinetics, such as the one at 37�C, the re-
sulting effect would be a faster elongation rate due to the ri-
bosomes’ faster movement along the sequence and a faster
update of the number of free ribosomes. This is so because
elongation rate at 37�C is expected to increase, and such in-
crease would happen uniformly for all sequences as the ribo-
some kinetics is assumed equal for all codons. However, if
the system was to be submitted to the same scaling condi-
tion that, on initiation, enforces an 80% ribosome activity,
the steady state reached for this system would be the same
as the one obtained with a ribosome kinetics at 20�C.

These results support the optimality of kmax
eff -based tran-

script design as less competition and higher rate of accommo-
dation for cognateWB improves keff values. Furthermore, the
high correlation (Fig. 4 b) between the codon elongation rates
obtained from our stochastic simulations (kstoch; see transla-
tion time profiles in Supporting Materials and Methods S7)
and keff for each codon (Fig. 4 b) indicates that keff is a high
accuracy predictor of codon elongation rate of slow codons
(i.e., codons limiting translation). Stochastic queuing effects
that are dependent on themRNAsequence downstream intro-
duce variability on the measured kstoch for fast codons and
bias the codon elongation rate toward values that are lower
than the ones expected in a theoretical system without ribo-
some-queuing interference.
FIGURE 4 (a) Main and total effect (Ski ; STKi ) on
the value of yr due to a change in rate constant ki.

(Inset) Changes in yr in function of the changes

on k2 for a range of two orders of magnitude below

and above its nominal value (star). (b) Codon elon-

gation rate obtained from stochastic simulations

(kstoch) versus the codon elongation rate constant

(keff ; open circles). Each data point corresponds

to one of the 61 codons taking part in the transla-

tion elongation. Linear regression line is repre-

sented by a continuous line. The Pearson

correlation coefficient (r) and p-value are indi-

cated. The dashed line is the one-to-one function

for comparison. The signal/noise from kstoch corre-

sponding to each codon is represented by the dots

and remains higher than 1 for all codons, starting

to stabilize for the codons with higher elongation

rates. To see this figure in color, go online.
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Key factors on tRNA activity
FIGURE 5 Number of tRNA molecules of species i active in translation

(tRNAa
i ) in function of its respective cognate interaction-based mRNA

codon usage frequency (IBmCUcogn
tRNAi

). The Pearson correlation coefficients

(r) and the p-values are indicated. Correlation outliers are underlined in the

legend. To see this figure in color, go online.
The amount of tRNA available for translation used to esti-
mate keff dictates both the cognate and competitor tRNA
concentrations for each codon, and directly depends on
the amount of tRNA that is active in translation, i.e., occu-
pying the ribosomes. We estimate the mean ribosome occu-

pancy time lag (Dt
ds
bi ) and the total number of events (Nds

bi )

per decoding stage (ds) and binding interaction (bi) using
Eq. S10 for the WT Luciferase transcript in an E. coli cell
growing at 1.07 h�1. The decoding stages are A-site OFF,
A-site PROOF, P-site ON, and E-site OFF (see Fig. 1 and
Supporting Materials and Methods S9), and the possible
binding interactions areWC,WB, nc, and non. The statistics
obtained here are valid for any mRNA sequence and growth

rate. Higher ribosomal densities increase both Dt
P-ON
bi and

Dt
E-OFF
bi because of slower translocation of the ribosome,

but the proportions between the events remain the same (re-

sults not shown). Note that Dt
ds

bi values result directly from
the intrinsic ribosome kinetics and, as such, they are very
similar for all the different tRNA-codon interactions, except
for P-site ON and E-site OFF decoding stages. Here, the
ribosome translocation time depends on the ribosome
queuing downstream of the mRNA sequence (Fig. S12),
whereas the number of events depends on the codon species
and the free tRNA abundances (Fig. S13). Most of
the tRNAs involved in cognate binding interactions
(68.74 and 40.35% for WC and WB, respectively) are
accepted for peptidyl bond formation and occupy the ribo-

some until its release at the E-site after a long Dt
E-OFF
WC or

Dt
E-OFF
WB has occurred (Table 1). Thus, tRNA species with

higher cognate-based mRNA codon usage frequency

(IBmCUcogn
tRNAi

) (see Eq. 1) also have higher frequency of

events that result in E-site release, and subsequently are
active in translation in higher amounts as shown by the cor-
relation found in Fig. 5. However, there is a difference of
~28% between WB and WC binding interactions that will
not reach decoding stage E-site OFF and will instead end
up with the tRNA being rejected at proofreading stage
(A-site PROOF), which is a much faster event than for
E-site OFF. Deviation from the regression line corresponds

to cases for which the proportion of IBmCUWC
tRNAi

is very low,

and IBmCUWB
tRNAi

is not high enough to compensate for the

number tRNA molecules that could be active if there was

high IBmCUWC
tRNAi

instead of IBmCUWB
tRNAi

. Such are the cases

of the outliers Leu3, Pro3, Val2A, and Val2B in Fig. 5 (see

proportion of IBmCUWC
tRNAi

and in Fig. S14). Thr1 deviates

from the regression line because it is the species with the
lowest concentration in the cell and with an abundant isoac-
ceptor (Thr3) (Fig. S15). Therefore, the probability of Thr1
to bind with the ribosome is reduced and hence its activity

is not representative of the IBmCUcogn
Thr1. Because a small
number of near-cognate binding interactions can reach
A-site PROOF and E-site OFF decoding stages (1.08 and
0.02%, respectively), IBmCUnc

tRNAi
can be high enough

such that the number of A-site PROOF or E-site OFF events

can compensate for a low IBmCUcogn
tRNAi

or a high proportion

of IBmCUWB
tRNAi

with respect to IBmCUWC
tRNAi

, and hence

contribute to a higher tRNA activity (which is the case of
Val1 in Fig. S15).

From Nds
bi presented in Table 1 we compute a total of 2.4%

of cognate binding events among all possible binding
events, and only 1.3% of these 2.4% resulted in a complete
codon translation (reaching P-site ON, thus leaving the
A-site free for the binding of a new tRNA). The larger
bulk of translation binding events consists of interactions
with competitor tRNAs (97.6%), which support tRNA
competition as a determinant of elongation rate. We
compute the average time of codon translation per incorpo-

rated amino acid and per binding interaction (tbicodon) using
Eq. S11. The fact that tnoncodon is of the same order of magni-
tude as tnccodon (Table 1) implies that non-cognate binding in-
teractions cannot be dismissed on the basis of these being
fast events, contrary to the assumption made by Fluitt
et al. (10). This assumption is used in recent translation
modeling attempts (14,15) where these interactions are
ignored based on being fast and all competition in the
system is resumed to near-cognate binding interactions.
In fact, although the total time spent per non-cognate

binding interaction is small (Dt
A-OFF
non z1:2� 10�2s), one

needs to take into account that these binding events
have a very high frequency of occurrence. If we compute
the ratio between the total time spent per near-cognate inter-

action and non-cognate interaction ððDtA-OFFnc � NA-OFF
nc þ

Dt
A-PROOF
nc � NA-PROOF

nc þ Dt
E-OFF
nc � NE-OFF

nc Þ=ðDtA-OFFnon �
NA-OFF
non ÞÞ, we observed that this value is very close to 1,
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implying that non-cognate events are as important as near-
cognate ones. Nevertheless, despite the high number of
near-cognate binding events, we estimate that near-cognate
misincorporation occurs only once for each 318-cognate
WC- and WB-complete codon translations, resulting in an
error frequency of ~3 � 10�3, which is in the range of the
E. coli in vivo measurements (42–47). These results under-
line the significance of competition in the dynamics of trans-
lation elongation; they remain valid for in vivo conditions
(Fig. S11 c) despite the observed decrease of the effect of
tRNA competition in translation and subsequent decrease
in error frequency of a factor of 3.
Global effects of amino-acid starvation and
surplus in the cell

Given the role that tRNA availability plays in elongation
rate, an interesting question is how the surplus or starvation
of certain amino acids will globally affect elongation rate in
the cell. To answer this question, we simulate 20 times the
cell at growth rate 1.07 h�1, and in each simulation we in-
crease or decrease the concentration of each tRNA isoaccep-
tors for the same amino acid by 50% of their literature
values at the given growth rate. Analysis of the relative de-
viation of the average elongation rate from all mRNA spe-
cies with respect to the standard case at 1.07 h�1 shows
three regimes according to the effect of the increase/
decrease of the amino-acid concentrations on the average
elongation rate in the cell (Fig. 6). Similar results were ob-
tained when the concentrations where changed by 20 and
50% for each tRNA species separately (Fig. S16), and anal-
FIGURE 6 Relative deviation of the average elongation rate from all

mRNA species in the cell, upon combined 50% decrease of the abundance

of all tRNA isoacceptors. This is per amino-acid type in function of the rela-

tive deviation of the average elongation rate from all mRNA species in the

cell upon one-at-a-time 50% increase of the abundance of the same tRNA

isoacceptors per amino-acid group. One-to-one line (dashed) plotted for

comparison. To see this figure in color, go online.
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ysis of these results revealed the mechanisms behind the
observed effects (details in Fig. S17). The amino acids
Phe, His, Met, Asn, Pro, and Gln in regime i generally
limit translation in the cell under starvation conditions and
improve elongation rates under surplus. These amino acids
have isoacceptor tRNAs that are among the ones whose
cognate (specially WB type) codons have very slow codon
elongation rates, and present a low ratio between codon
elongation rate and cognate codon mCU on the mRNA se-
quences in the cell (Figs. S18 and S19). On the other
hand, the amino acids Gly, Glu, and Arg in regime ii gener-
ally limit translation in the cell under surplus by increasing
the competition on their near- and non-cognate codons, and
generally improve translation under starvation conditions
due to diminished competition pressure. These amino acids
have tRNA isoacceptors that are among the species in the
cell that are present in highest abundances (Fig. S15) and,
as a consequence, their cognate codons have the highest
codon elongation rates (Fig. S19). In the case of Leu, the
negative effect on elongation rate due to the surplus of its
tRNA isoacceptor Leu1 prevails; however, the combined
effect from all its isoacceptors under starvation is character-
istic of regime iii. The amino acids in regime iii are the ones
that have an effect similar to ii, but to a smaller extent
under surplus due to the increase in competition resulting
from their combined isoacceptor high abundances or
high IBmCUnc

tRNAi
þ IBmCUnon

tRNAi
. However, under starva-

tion, their cognate codon elongation rates are negatively
affected by the high IBmCUcogn

tRNA demanding free tRNA.
Overall, starvation of a tRNA or an amino acid has a more

pronounced effect on the cell’s translation behavior because
it acts upon the rate-limiting codons. Nevertheless, the
global effects of competition on translation elongation due
to transient changes in nutrient supply introduce into the
cell another level of regulation of the patterns of protein
synthesis as a response to stress. Our stochastic framework
has the potential to study the surplus/starvation effect of
changes in the amount of tRNA competition on the elonga-
tion of the different mRNA species in detail, which is not the
case in the most recent stochastic approach for modeling
translation (15) where the effect of diminished competition
pressure for the amino acids Gly, Glu, and Arg has not been
observed, concluding instead that all types of amino-acid
starvation only lead to a decrease of the mean elongation
rate in the cell.
CONCLUSIONS

In this work we used a stochastic framework to model the
translation process based on the available ribosome kinetics
that describes tRNA competition while discriminating be-
tween cognate Watson-Crick and wobble interactions, and
we simulated the simultaneous translation of a representa-
tive pool of E. coli mRNA sequences under a range of
different growth rates (0.4, 0.7, 1.07, and 1.6 h�1) with
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parameters obtained from the literature. The variation of the
mean elongation rate from all mRNA species observed with
the change in cell growth rate resulted from a systems
response to an alteration of the ratio between free ribosomal
resources and the number of mRNA copies that required
those resources. Control of translation is observed to shift
between initiation and elongation, which is characterized
by a change in the ribosomal densities, and thus fine-tunes
the protein synthesis of the mRNA species in the cell. We
do not observe an increase in the mean elongation rate
with growth rate as estimated in Bremer and Dennis (26),
from where the data was collected. The way mean elonga-
tion rate is usually estimated (26,48) takes only into account
the protein synthesis and the number of free ribosomes,
which both increase with growth rate (not necessarily in a
proportional way), and not the changes that can occur in ri-
bosomal density and that affect elongation rate. Our results
are consistent with what is expected from a system where
the codon elongation rate is determined by the ribosome ki-
netics and the free tRNA concentrations, and where the
elongation rate is determined by the combined effect of
the multiple codon elongation rates and the ribosomal den-
sity along a sequence (which is also influenced by the initi-
ation rate). For a system where tRNA competition effects
are not observed to change radically with growth rate and
the mRNA pool is qualitatively constant (such as here,
despite the change in tRNA levels), the mRNA species be-
ing translated will present a maximum elongation rate under
initiation-limiting conditions and a lower elongation rate
under elongation-limiting conditions (if the ribosomal den-
sity is such that high ribosome queuing interaction nega-
tively impacts elongation). These results suggest that the
actual mean elongation rate is thus no longer well repre-
sented by just the amount of protein synthesis in the system,
as for some mRNA species the highest protein synthesis is
achieved by crowding the sequence with ribosomes, which
may result in lower elongation rate. This implies that the
actual elongation rate of some mRNA species may remain
constant under different growth rates, whereas for others
it may decrease as a result of the level of ribosome crow-
ding. This is consistent with the observation of an approxi-
mately constant elongation rate for lacZ for increasing
growth rates (49).

Our sensitivity analysis results showed that the level of
tRNA competition and the type of cognate binding interac-
tion (WC versus WB) determines elongation rate, as shown
by sensitivity analysis. The design of heterologous tran-
scripts based on optimizing the sequence with synonymous
codons that minimize tRNA competition and maximize the
WC binding interactions with their cognate tRNAs was
shown to lead to higher protein production. However, there
is a tradeoff between protein production level and elonga-
tion rate due to ribosome crowding effects. We proposed
an equation to assist the design of optimized mRNA se-
quences that compute the codon elongation rate (keff) of a
codon given that the amount of free tRNA species in the
host organism is known. Nevertheless, because this equation
will only help to design a sequence with codons that have
high codon elongation rates, final protein specific activity
will need to be tested, as it has been demonstrated that co-
translational folding of proteins during the translation of
slow codons is essential for correctly creating specific do-
mains determining the protein activity (1–3).

The analysis of our system showed that non-cognate bind-
ing interactions do, in fact, contribute to the competition
level as much as the near-cognate ones do—contrary to
the assumption made by Fluitt et al. (10) that these can be
ignored based on their fast interactions, thus assuming that
all competition in the system is resumed by near-cognate
binding interactions. Furthermore, the existing stochastic
models (14,15) of translation use the latter results to esti-
mate a factor for the tRNA competition, which is fixed per
codon and is integrated in the codon elongation. This
competition factor is estimated using the total amount for
each tRNA species in the cell instead of the free transient
tRNA amount that can be obtained at each step of the simu-
lation, and as a consequence the effect of competition from
changes in tRNA availability is no longer representative
of the actual state of the cell. Because we accounted for
these, we observed in our surplus/starvation studies the
effect of changes in the amount of tRNA competition on
the elongation of the different mRNA species. Similar
studies performed in Shah et al. (15) failed to observe
this effect, concluding that all types of amino-acid starva-
tion only lead to a decrease of the mean elongation rate in
the cell.

Furthermore, the results presented here, which were ob-
tained from a ribosome kinetics at 20–25�C, were validated
for higher temperature of 37�C. This is more consistent with
in vivo conditions, and for the deduced in vivo kinetic rates
obtained in Rudorf et al. (40). Analysis of the system for the
parameters at 37�C and for the in vivo parameters deduced
from in vitro ones (40) were found to support a translation
model for which tRNA competition, although still an impor-
tant factor, has a lower impact in translation elongation rate
then the type of cognate decoding (40,41).

In conclusion, our stochastic framework has proven to be
effective in the analysis of a complex system such as trans-
lation. Literature describing the parameters for translation
resources and specifically the ribosome kinetics is widely
available for E. coli. The use of parameters and data pertain-
ing to a specific organism establishes the framework for the
study and modeling of systems with an amount of compo-
nents corresponding to the size of a biologically meaningful
translation system—one that does not need to rely on the use
of simplified parameter regimes. Furthermore, because the
ribosome decoding center has been shown to be highly
conserved among species during evolution (50) and similar-
ities have been reported in the function of the different elon-
gation factors in both bacteria and eukaryotes (51), the
Biophysical Journal 110, 2120–2131, May 10, 2016 2129
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results observed in this work remain therefore valid for other
organisms. This framework is a valuable tool for the system-
atic study of translation. Adding information on ribosome
or polysome profiling experiments, as well as mRNA
sequencing data for the specific conditions under study
when available, can be valuable to the systems-level anal-
ysis of translation in the cell. This framework could thus
be used for future work focused on: (1) exploring particular
patterns of translation in certain mRNA sequences that
could then be clustered by functionality and by codon fre-
quency, (2) studying the impact of changing the sequence
of certain endogenous genes on the translation of the other
mRNA sequences in the cell, and (3) studying the impact
of expressing heterologous genes on the translation of other
mRNA sequences.
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