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The small hive beetle (SHB), Aethina tumida, is amajor pest ofmanaged honey bee (Apismellifera) colonies in the
United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep
SHB populations in check, weak or stressed colonies can succumb to infestations. This parasite has spread from a
sub-Saharan Africa to three continents, leading to immense management and regulatory costs. We performed a
transcriptomic analysis involving deep sequencing of multiple life stages and both sexes of this species. The as-
sembled transcriptome appears to be nearly complete, as judged by conserved insect orthologs and the ability
to find plausible homologs for 11,952 proteins described from the genome of the red flour beetle. Expressed
genes include each of the major metabolic, developmental and sensory groups, along with genes for proteins in-
volvedwith immune defenses and insecticide resistance. We also present a total of 23,085 high-quality SNP's for
the assembled contigs. We highlight potential differences between this beetle and its honey bee hosts, and sug-
gestmechanisms of future research into the biology and control of this species. SNP resourceswill allow function-
al genetic analyses and analyses of dispersal for this invasive pest. All resources are posted as Supplemental
Tables at https://data.nal.usda.gov/dataset/data-transcriptomic-and-functional-resources-small-hive-beetle-
aethina-tumida-worldwide, and at NCBI under Bioproject PRJNA256171.
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1. Direct link to deposited data

https://data.nal.usda.gov/dataset/data-transcriptomic-and-
functional-resources-small-hive-beetle-aethina-tumida-worldwide

2. Introduction

The small hive beetle (SHB), Aethina tumidawasfirst recorded in the
United States in Florida in 1998 [1] and arrived perhaps as early as 1996
in South Carolina [2]. This accidental introduction into the United States
presumably originated from sub-Saharan Africa [3]. While the SHB is
not a major honey bee pest in its native environment [4], US honey
bees have been strongly impacted, leading to spoiling of honey and
often colony losses. SHB larvae feed on all hive products including
honey, pollen and brood [5]. SHB are now found throughout North
America, although the southeastern US has been particularly hard hit
by SHB infestations. In Australia, a point introduction in New South
Wales ten years ago has led to extensive infestation and colony impacts
throughout eastern Australia. Finally, a recent introduction into Italy has
led to the first stable European population of this pest [6,7].
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SHB are opportunistic pests of both honey bees and bumble bee
colonies [8]. They are also capable of reproducing and developing
on different fruits under laboratory conditions [9,5,10,11] and have
been observed feeding in compost containing decomposing water-
melon rinds [10]. While SHB have not been observed to complete a
life cycle in the absence of bees in natural settings, their ability to
feed on plant food sources has likely enabled their rapid increase in
numbers and geographic range. In-hive chemical treatments that
control SHB but spare honey bees have been elusive, in part because
of the high chemical sensitivity of honey bees to such chemicals. Me-
chanical controls have been developed to lure, bait or trap beetles
whereas ground drenching chemicals, as well as diatomaceous
earth, purportedly inhibit SHB pupation in soil surrounding colonies
[12]. Since adult beetles can fly about 10 km, re-invasion of SHB from
nearby untreated apiaries occurs quickly. Currently, the best method
of control comes directly from the honey bees themselves. Strong
healthy honey bee colonies are able to maintain low SHB populations
by exhibiting aggression toward adult beetles. Aggressive behavior
may limit food consumption and reproduction inside the colonies.
Nevertheless, aggression toward SHB varies among honey bee geno-
types [13,14,15].

Here we describe an extensive transcriptomic analysis of SHB based
on RNA gathered from various life stages and both sexes. We show the
breadth and utility of this transcriptome through assignments of
orthology-based on Benchmarking Universal Single Copy Orthologs
(BUSCO; [16]) developed for holometabolous insects. We also provide
plausible orthologs based on alignments to the protein-coding genes
found in the genomeof the redflour beetle Tribolium castaneum [17]. Fi-
nally, we provide an estimate of sequence polymorphisms within the
tested pool, and describe a tenfold increase in the number of knownmi-
crosatellite loci for this species. Along with these tools for future re-
search, we suggest possible mechanisms that can be targeted for in-
hive SHB control.
3. Materials and methods

3.1. Samples

Small hive beetle adults were collected from multiple apiaries in
Baton Rouge, Louisiana, USA. Adult beetles were maintained in the lab-
oratory until sacrificed (approximately within two weeks). Adult males
and females were then differentiated, and 30–50 adults per sex were
frozen for analyses. The other adult beetles (30–50 per sex) were dis-
sected to sample different body parts, including midguts, heads, anten-
nae, thorax (excluding the forelegs), abdomens (along with the mid-
and hind-legs), and ovaries of females. In order to obtain eggs and dif-
ferent larval stages for analyses, adult males and females were placed
in a rearing container while being fed ad libitum honey, pollen and
brood as described by de Guzman and Frake [18]. The rearing container
was then placed inside an incubator at 34 °C. After 24 h, all adults were
removed and eggs (100–150) were sampled at that time. When the re-
maining eggs hatched, 50–100first-instar (L1) larvaewere collected. In-
stars L2 and L3 (both feeding and wandering stages, n = 30–50 per
stage)were also collected as larvae developed. Samplingwas conducted
on 5 cohort sets. Total RNAwas isolated from each sample type and rep-
licate using the Maxwell 16 nucleotide purification system according to
the manufactures protocol (Promega Corporation, Madison, WI). RNA
was purified from the samples by loading 400 μl of homogenate into
the Maxwell 16 system. Purified RNA was eluted in 50 μl of nuclease-
free water then assessed for quantity (ng/μl) and quality (NIN value,
BioAnalyzer, Agilent Corp.), respectively. The quality and quantity of
each sample were then compared and the top three replicates for each
sample type were used. For each replicate, equal amount of each RNA
sample type (2000 ng) was then combined to create an all-
encompassing RNA pool.
3.2. De novo assembly and analyses

The RNA pool was subjected to ILLUMINA paired-end sequencing,
generating a total of 176,246,845 paired 101-basepair reads (100 bp
gap between reads, total of 35,601,862,690 nucleotides) after trimming
and cleaning. Adapter sequences were removed using Fastq­mcf and
adapters were removed using DynamicTrim. Fastq­mcf was run using
default parameters for adapter trimming and quality trimmingwas dis-
abled. DynamicTrimwas used for quality trimmingwith default param-
eters. To initiate a de novo transcriptome assembly, Khmer was run
separately on the forward and reverse files to normalize the reads in
silico. Pseudo­reads were created to ensure that all of the remaining
reads had a mate. The reads were assembled using a multi­kmer (k =
23–50) approach using Oases. Oases assemblies were made for each
kmer, and then merged into an optimized non­redundant set. The
resulting transcripts were then filtered to remove all transcripts less
than 200 bp (two times the initial read length). This assembly was fur-
ther collapsed using the contig program IDBA [19] under default condi-
tions. Microsatellites were identified from this consensus assembly
using MSDB (Microsatellite Search and Building Database) package
[20]. SNP positions were identified with Tophat2-Picard-GATK pipeline
[21,22] Identification of biologically important geneswas aided by com-
parisons against the gene set generated for the red flour beetle,
Tribolium castaneum (Beetlebase.org), and by matching this gene set
to the BUSCO set of proteins found in each of the holometabolous in-
sects, as well as to the OrthoDB catalogue of arthropod proteins [23].

4. Results

4.1. De novo assembly and polymorphism

A total of 176,246,845 paired reads (35,601,862,690 nucleotides)
were submitted to the NIH-NCBI Short Reads Archive under Bioproject
PRJNA256171 and BioSample SAMN02940944. Following OASES se-
quence assembly, a total of 259,543 transcript contigs were identified
representing 36,649 loci and ranging in length from 200 bp to
50,917 bp (mean = 1681.65 bp). These contigs were collapse to
42,761 consensus contigs (NCBI Transcript-supported assembly
GCKB00000000.1). GC content was determined based on analysis of
the longest transcript for each locus and found to be 38.6% of the total
potential transcriptome size of 32.84 Mb. In total, 969 microsatellite
markers were identified, a frequency of one locus per 26 kbp (Supple-
mentary Table 1). Of these, 156 were flanked by over 50 nucleotides
on both sides of the repetitive region, enabling straightforward primer
design for screening and scoring polymorphisms. Additionally, 23,085
SNPswere identified, an average distance of one SNP per 1 kbp (Supple-
mentary Table 2).

4.2. Validation and annotation

Benchmarking sets of Universal Single-Copy Orthologs (BUSCO), a
core set of single-copy genes present across the holometabolus insects
[16] were used to test the assembled contigs for completeness. Of the
BUSCO set consisting of 2477 arthropod genes, only 24were not identi-
fied in the SHB transcriptome. Those present in the SHB transcriptome
were found as both single copy (n = 132) and multiple copy (n =
2321) matches. The unexpected high number of multi-copy genes re-
flects, in large part, expression of multiple isoforms from the test popu-
lation, listed as multiple transcripts in the OASES assembly. The
consensus loci generated by a secondary assembly (IDBA, [18]) were
queried using theprotein set of the redflour beetle, Tribolium castaneum
by tBLASTN, generating 11,952 matches to 8586 loci (Supplemental
Table 3). These matches fell into all of the major functional protein
groups (134 KEGG pathway terms, 2647 INTERPRO domains, 1390 dis-
tinct Gene Ontology Biological Process terms). While a complete geno-
mic analysis is required to assess paralog counts of key gene families,

http://Beetlebase.org
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therewere no obvious discrepancies relative to Tribolium beetles for key
groups. As one example, the transcriptome presented 109 distinct cyto-
chrome P450 detoxification enzyme candidates, a number close to the
134 members of this group identified in whole-genome sequencing of
Tribolium [17]. Consensus loci and their associated matches in T.
castaneum, OrthodDB, Flybase, Gene Ontology Biological process and
Cellular location, INTERPRO, and KEGG pathway are given in Supple-
mentary Table 3.

5. Discussion

This transcriptome resource offers insights into biology of a nitidulid
beetle that is a significant pest of managed honey bees. All resources are
available at Ag Data Commons (https://data.nal.usda.gov/dataset/
transcriptomic-and-functional-resources-small-hive-beetle-aethina-
tumida-worldwide-parasite). The transcriptome that we describe re-
flects members of a multitude of physiological pathways, including re-
production, digestion, respiration, behavior, and morphology. A
specific assault on any of these pathways may lead to a less fit parasite,
increasing the likelihood that natural aggression exhibited by honey
bees can keep beetle populations belowdestructive levels. An important
aspect of our transcriptome study is that both sexes, all life stages, and
all adult body structures were analyzed. There are nevertheless likely
to be genes that are expressed so briefly that our study failed to capture
them. However, a successful targeted pest management strategy would
employ a prolonged assault of gene targets to ensure a prolonged and
sufficient incapacitation of the pest. Simple and cost-effective quantita-
tive PCR can now be used to analyze potential gene targets in each sam-
ple type to determine the best treatment strategy based on gene
regulation and function.

As expected, the SHB transcriptome is highly similar to another bee-
tle, Tribolium, a well-described genome and model organism. The simi-
larity between the species indicates that pest management controls
developed for Tribolium and other beetles will function equally well
for SHB. Indeed, RNAi technology is proving successful against pest in-
sects such as Tribolium [24]. Assuming that this mechanism also exists
in SHB, a multi-factored strategy can be used to combat the pest at sev-
eral life stages and through the disruption of several important physio-
logical pathways.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.06.003.
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