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Abstract: Molecular recognition by protein mostly occurs in a local region on the protein surface.
Thus, an efficient computational method for accurate characterization of protein local structural

conservation is necessary to better understand biology and drug design. We present a novel local

structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order inde-
pendent way and provides a GA-score, a chemical feature-based and size-independent structure

similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local

structures of diverse sizes and characteristics, demonstrating its universal applicability to local
structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting

conserved local regions on the entire surface of a given protein. In addition, the applications of G-

LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its
strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computa-

tional method for exploring interesting biological problems through large-scale comparison of pro-

tein local structures and facilitating drug discovery research and development. G-LoSA is freely
available to academic users at http://im.compbio.ku.edu/GLoSA/.

Keywords: molecular recognition; local structure comparison; structural bioinformatics; computer-

aided drug design

Introduction
One of the most remarkable protein features is their

ability of reversible binding to other molecules. Pro-

tein responses to ligands are typically associated

with a plethora of biological functions that are

essential for life. A ligand can be any kind of mole-

cules such as metal ions, substrates, partner pro-

teins and/or nucleic acids, and drugs. Metal ion

binding stabilizes protein structure, often gives rise

to large conformational changes upon binding, and/

or participates in catalysis.1 Substrates bind at

active sites of enzymes and are then chemically

transformed into other molecules. Protein binding

(i.e., protein-protein interactions) plays various roles

in almost all biological activities, including, but not

restricted to, signal transduction, molecule trans-

port, gene regulation, catalytic enzymatic activities,

muscle contraction, and structural roles.2 Protein-

nucleic acid interactions are also crucial in biological

processes, ranging from replication and transcription

to enzymatic events to miRNA machinery.3–5 Drug

compounds bind to proteins, regulating their func-

tions so as to acquire beneficial effects to treat

diseases.
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Typically, molecular interactions with diverse

ligands occur on local surface regions of proteins,

though the shape and size of the local regions vary in

terms of ligand types: for example, a center in a shell of

several hydrophilic protein residues for metal ions,6 a

concave-shaped structure (i.e., “pocket”) for small mole-

cules, and noncontiguous, relatively large, flat surfaces

for proteins.7 Therefore, local structure-centric charac-

terization of proteins rather than global structures is

needed to better understand biology. Protein classifica-

tion could be an illustrative example to show the needs.

A major goal of SCOP (structural classification of pro-

teins)8 and CATH (class, architecture, topology, homol-

ogous superfamily)9 is to understand the structural,

functional, and evolutionary relationships among pro-

teins by classifying domains according to their struc-

ture. This structure-based approach may be effective in

detecting distant relationships across proteins. How-

ever, the classification by protein fold may be too con-

servative to do a fine classification of proteins with a

similar function, yet distinct folds. Indeed, an all-

against-all comparison of SCOP representatives

showed the cases of evolutionary convergence to com-

mon functional sites from different folds,10 indicating

that overall protein structure dissimilarities do not

necessarily imply dissimilarities in their functions.

The alignment and similarity measurement

between protein structures are a key component for

contemporary structural biology studies such as hier-

archical classification of protein domains, protein

function prediction,11 protein structure prediction,12

and drug discovery.13 There are many publicly avail-

able computational tools for protein structure align-

ment and comparison such as DALI,14 CE,15 and TM-

align.16 However, these tools have been designed for

global structure alignment, necessitating new compu-

tational methods that can align local structures and

measure their structural similarities as a comple-

mentary or contrasting approach.

Considerable efforts have been made to develop

efficient computational tools for local structure align-

ment. Consequently, a handful of methods are cur-

rently available. For example, SiteEngine is a

geometric hashing-based pocket-comparison method.

In this method, each structure is represented by phys-

icochemically important points [i.e., pseudocenters or

chemical feature points (CFPs)], and the structural

similarity is measured based on geometric matching

between surface patches.17 The alignment and scoring

algorithms were extended to I2I-SiteEngine, a

method for structure alignment between two protein-

protein interfaces.18 ProBiS represents protein surfa-

ces as CFPs and aligns them using a conserved geom-

etry detected by maximum clique algorithm.19 The

structure alignment score is calculated using the root-

mean-square deviation (RMSD) between aligned

CFPs, the number of the aligned pairs, and alignment

expectation value. The score is then standardized by

Z-Score using precalculated alignment scores for all

possible non-redundant Protein Data Bank (PDB)

structure pairs.20 CF-based alignment and scoring

have a merit in that the CFs assigned in the struc-

tures are real interaction points for molecular recogni-

tion, but this approach requires more computational

cost than Ca atom-based one due to a larger number

of the structure-representing points in the alignment

process. iAlign21 and APoc22 are computational meth-

ods for the structure alignment of protein-protein

interfaces and protein pockets, respectively. They

adopt a heuristic algorithm to align structures, where

initial guessed alignments are generated from gapless

sequence alignment, secondary structure alignment,

and fragment superposition, and then the alignments

are refined through iterative dynamic programming.

Both methods provide size-independent structural

similarity scores, whereas SiteEngine, I2I-

SiteEngine, and ProBiS do not. The alignment and

scoring in iAlign and APoc are based on the Ca atom

positions (not CFPs), though interfacial contact pat-

terns (in iAlign), the orientations of Cb atoms, and

residue-based chemical similarity (in APoc) were

additionally used for more accurate scoring.

In this study, we introduce a new local structure

alignment method, G-LoSA (Graph-based Local

Structure Alignment), which is a generalization of

our earlier algorithm that was used for template

ligand identification23 and ligand binding site (BS)

prediction.24 We have specially pursued the develop-

ment of a computational tool for protein local struc-

ture alignment and similarity measurement that

can be universally applied to any kinds of local

structures (e.g., protein pockets and protein-protein

interfaces) and provide a CF-based size-independent

scoring function with reasonable computing effi-

ciency. We first describe the alignment and scoring

algorithms in detail. Representative examples and

benchmark tests are then presented to illustrate

robustness and applicability of G-LoSA to local

structure-centric biological studies and drug design.

Results

G-LoSA scoring function

In G-LoSA, all possible alignments between two local

structures are generated by iterative maximum clique

search and fragment superposition (see Materials and

Methods for the detailed algorithm), and the optimal

alignment is determined by the maximum GA-score

(G-LoSA Alignment score). The overall algorithm is

schematically illustrated in Figure 1. A GA-score is a

scoring function to quantify structure similarity

between two local structures based on their CFPs.

GA-score5Max
1
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qi5

1 if chemical feature types are identifical; or HD=OH or HA=OH

0:8 if HD=PC; HA=NC; OH=PC; OH=NC; or AR=AL

0:5 otherwise

8>><
>>: (2)

where “Max” denotes that the GA-score is the maxi-

mum of all possible alignments, NT is the smaller num-

ber of CFPs between two local structures, and Nali is

the number of aligned CFPs. di is the distance between

the CFPs in the ith pair. d0 is the scaling factor to nor-

malize the aligned distances. qi is defined based on the

chemical feature similarity of the ith CFP pair. We

define seven different CFs for amino acids (Supporting

Information Fig. S1). Hydrogen bond donor (HD),

hydrogen bond acceptor (HA), hydroxyl group (OH),

positively charged atom (PC), and negatively charged

atom (NC) are defined by single atom points, while aro-

matic ring (AR) and aliphatic hydrophobic group (AL)

by the geometric center of a set of atoms (see Support-

ing Information Table S1 for the detailed definition for

each amino acid).

Figure 2 shows the average GA-scores calculated

from all pairs of 2,454,439 random local structures as

a function of number of CFPs. The raw GA-score

(rGA-score) was calculated using a constant value (2.5

Å) for d0. For the GA-score, a size-dependent scaling

factor d0(NT) was used instead, so that the average

GA-score is not dependent on the size of the random

structure pairs. The scaling factor was empirically

obtained from curve fitting to the plots of the average

d between an aligned CFP pair as a function of NT.

d0ðNTÞ50:27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NT26

p
10:98 (3)

As shown in Figure 2, the mean GA-scores, nor-

malized by d0(NT) are independent of the number of

CFPs (i.e., the size of the random local structures),

but the rGA-score decreases from 0.69 to 0.35 as the

number of CFPs increases. The average GA-score for

a random local structure pair is 0.49. Table I shows

the statistical significance of the GA-score derived

from the random local structures. The GA-score dis-

tribution for all random local structures was mod-

eled by the type I extreme value distribution

(Gumbel distribution; Supporting Information Fig.

Figure 1. Schematic illustration of the alignment algorithm in G-LoSA.

Figure 2. The average raw GA-score (rGA-score) and the

GA-score of the random local structure pairs as a function of

number of CFPs.
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S2), and the P-values of representative GA-scores

are given in Table I. A GA-score of 0.59 is significant

at P< 5 3 1022.

Local structure alignment by G-LoSA

Figure 3 shows four representative examples to

illustrate the quality of G-LoSA local structure

alignment. The alignments were obtained from PDB

ligand/BS-structure library search by G-LoSA. For

this search, the BS of a ligand TQ3 (5-phenylsul-

fanyl-2,4-quinazolinediamine) in PDB IDs: 1IA1

(chain id: A) was used as the query (target) struc-

ture. To put strict conditions on the structure library

search, we excluded all homologous library proteins

whose sequence identity is> 30% to the target pro-

tein. The four representative alignment pairs were

chosen to have the same number of BS residues as

the target BS (the number of BS residues is 13) and

various GA-scores. Structural comparisons between

the target BS and the identified template BS show a

clear correlation between GA-score and their struc-

tural similarity.

To further provide insight into a relationship

between GA-scores and BS structural similarities,

Figure 3 also shows similarity scores between the

target and template ligands, which are measured by

the overlap ratio (RO) defined by NOI/N, where NOI

and N are the number of overlapped identical atoms

and a total number of atoms in the ligand, respec-

tively.23 A library ligand is transferred into the tar-

get BS upon the superposition of its BS. If the

distance between an atom of the target ligand and

its nearest atoms of the template ligand is� 1.2 Å

and their atom types are identical, the ligand atom

is defined as the overlapped identical atom. The RO

values of the four examples show a strong correla-

tion with the GA-scores. Based on the fact that

structurally similar pockets recognize similar

ligands, the results also support the robustness of

G-LoSA for quantitating similarity between different

protein local structures (in this example, different

small ligands binding pockets).

Benchmark validation for diverse types of local

structures

We benchmark the G-LoSA performance in detecting

biologically related local structures from experimen-

tal structures. To examine universal applicability of

G-LoSA to various types of local structures, we eval-

uated its performance against four different

Table I. Statistical Significance of the GA-Score Derived from the Random Local Structures

GA-score 0.57 0.59 0.65 0.71 0.76 0.81
P-value 1 3 1021 5 3 1022 1 3 1022 1 3 1023 1 3 1024 1 3 1025

Figure 3. Representative examples to illustrate the relationship between GA-score and local structure similarity. Each library

ligand/BS structure [blue (A) PDBs:2BL9, (B) 3SRQ, (C) 2W9G, and (D) 3OTK] is aligned to the target BS/ligand structure (green,

PDB:1IA1) with its GA-score between BS and overlap ratio (RO) between ligands.
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benchmark sets: Ca21-BS set, small-molecule ligand

BS set, protein binding surface set, and protein-

protein interface set (Fig. 4). The evaluation against

the protein binding surface set uses the same homol-

ogous/nonhomologous pair set in the protein-protein

interface set. Only difference is that for a given

protein-protein interface pair (e.g., interface between

chains A and B in PDB_1 vs. interface between

chains C and D in PDB_2), the final GA-score for the

protein binding surface benchmark evaluation is

determined by the best GA-score between the surface

of the first element (PDB_1_A) and either surface in

the second element (PDB_2_C and PDB_2_D).

The quantitative comparisons are based on the

receiver-operating-characteristic (ROC) curves from

the prediction results and the area-under-curve

(AUC) values. An AUC value of 1.0 signifies that the

tool perfectly prioritizes homologous local structure

pairs in terms of the similarity score, whereas a

value of 0.5 implies random prediction. The G-LoSA

performances are compared with those of APoc (for

the Ca21-BS, small-molecule ligand BS, and protein

binding surface sets) and iAlign (for the protein-

protein interface set). APoc and iAlign were chosen

for comparison because of their availability and

reported outstanding performance for ligand BS and

protein-protein interaction interfaces, respectively.

PS-score (for APoc) and IS-score (for iAlign) normal-

ized by smaller structure were used as the quanti-

ties for structure similarity measurement by these

control tools.

Compared with APoc or iAlign, G-LoSA shows

consistently better or comparable performance

against the diverse benchmarks (Fig. 5), indicating

its reliable performance regardless of the sizes or

characteristics of target local structures. As shown in

the ROC curve for the Ca21-BS set (Supporting Infor-

mation Fig. S3), G-LoSA (AUC 5 0.98) shows consid-

erably better performance than APoc (AUC 5 0.46).

The worse performance by APoc may be due to its

Figure 4. Structural illustration of four different benchmark local structure sets: (A) Ca21-BS, (B) small-molecule ligand BS set,

(C) protein binding surface set, and (D) protein-protein interface set.
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alignment algorithm and scoring function that are

optimized to deal with small ligand binding pockets

with more than nine residues.22 When APoc is

applied to the small-molecule ligand BS set, it shows

reliable performance [Fig. 5(A): AUC 0.90 for G-LoSA

and 0.88 for APoc]. It is not surprising that APoc also

shows comparable performance to G-LoSA even

against the protein binding surface set [Fig. 5(B):

AUC 0.98 for G-LoSA and 0.99 for APoc] in that pro-

tein binding surface is also a pocket associated with

protein binding, though it is much more flat than

small-molecular ligand BS in general. For the

protein-protein interface set, where APoc is not appli-

cable, G-LoSA shows comparable performance to

iAlign [Fig. 5(C): AUC 0.98 for G-LoSA and 1.0 for

iAlign]. Note that iAlign has its applicability limited

only to protein-protein interfaces due to its original

design for interfacial structural alignment and

scoring.

Performance evaluation from the ROC plots

could be more relevant within a very small nonho-

mologous pair rate range (e.g., �5%) because the

high ability to recognize the homologous structure

pairs at the beginning of a rank-ordered list is

needed for practical tasks involved in a large struc-

ture library search. When we focus on the regime

with a low nonhomologous pair rate� 5%, G-LoSA

shows reliable performances against the small-

molecule ligand BS and protein binding surface sets

[insets of Fig. 5(A,B)]. For the protein-protein inter-

face set, iAlign outperforms G-LoSA, but the per-

formance of G-LoSA is also reliable [inset of Fig.

5(C)], where G-LoSA achieves a homologous pair

rate of 0.93 at nonhomologous pair rate of 0.05. The

better performance of iAlign results from its algo-

rithms optimized for protein-protein interface struc-

tures (e.g., calculations of contact overlap factors to

consider the similarity of interfacial contacts

between different interfaces). Overall, the analysis

demonstrates that G-LoSA can be used to accurately

quantify structure similarity for a given local struc-

ture pair regardless of the sizes and characteristics

of the local structures of interest, suggesting its uni-

versal applicability to the characterization and clas-

sification of local structures for diverse biological

studies.

Application to entire protein structures

We evaluate how accurately G-LoSA detects local

structural conservation in entire proteins using the

small-molecule ligand BS set. The original bench-

mark set consists of pairs of different small molecule

BS structures. Instead of using the two BS struc-

tures, we performed structure alignment between

the entire protein structure of one BS and the other

BS structure (e.g., given a BS structure pair

BS_PDB_1 and BS_PDB_2, G-LoSA aligns

BS_PDB_2 onto the entire structure of PDB_1). This

evaluation is more challenging in that alignment of

a small structure onto much larger one has a high

propensity of generating a false positive result than

alignment between two small structures whose sizes

are comparable. The ROC analysis (Fig. 6) demon-

strates that G-LoSA outperforms APoc with more

salient overall performance difference (AUC 0.86 for

G-LoSA and 0.78 for APoc) than the above compari-

son of the two BS structure [Fig. 5(A)].

Figure 7 shows a representative example to

illustrate a potential application of G-LoSA to whole

protein search for template-based ligand BS, ligand

structure, and protein BS prediction. For this illus-

tration, we choose Ras-related protein 1 (Rap1;

chain A in PDB:4DXA25) as a target protein, as this

protein has both the ligand and the protein BS. 100

and 200 templates were first identified for ligand

and protein BS prediction, respectively, in terms of

GA-score. We excluded all homologous library pro-

teins whose sequence identity is>30% to the target

protein during the library searches. TM-scores

between the target and template proteins were also

Figure 5. ROC plots for (A) small-molecule ligand BS, (B) protein binding surface, and (C) protein-protein interface benchmark

sets. The insets are the ROC plots within a low true negative rate�5%.
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measured by TM-align. The templates were then

resorted by an average of GA-score and TM-score to

take into account the complementarity of global

structure similarity in identifying good templates.24

Five templates with the highest average scores were

selected for each prediction (i.e., top five templates

for ligand BS prediction and another top five tem-

plates for protein BS prediction). We measured the

ratio of the correctly predicted BS residues over the

total number of BS residues in the target protein

(i.e., recall value) for the top five templates of each

prediction. The predicted residues are defined as

those that have any atom within 1 Å from any atom

in the aligned template. The aligned structures of

the top templates onto the target protein, the simi-

larity scores, and recall values are shown in Sup-

porting Information Figure S4 (for ligand BS

prediction) and Supporting Information Figure S5

(for protein BS prediction). Our approach success-

fully predicts both sites [Fig. 7(A)] where the part-

ner protein (Krev interaction trapped 1, KRIT1)

forms a complex [Fig. 7(B), recall 5 0.58 in the best

template] and the native ligand (50-guanosine-

Figure 7. An example of template-based ligand and protein BS prediction by G-LoSA. A: The target protein structure (chain A in

PDB:4DXA) shown in cartoon representation with predicted BS residues in sphere representation (blue for ligand BS and red for protein

BS). B: The experimental structure of the target protein in complex with its partner protein. C: The native ligand structure in the target

protein. D: A comparison of structure and conformation between the native and template ligands. The figures were prepared using the

templates of the highest recall value for each prediction (template 1 for ligand BS prediction and template 4 for protein BS prediction).

Figure 6. ROC plots for small-molecule ligand BS. In this

analysis, alignment by G-LoSA and APoc was performed

between the entire protein structure of one BS and the other

BS structure, instead of using the two BS structures. The

inset is the ROC plots within a low true negative rate�5%.
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diphosphate-monothiophosphate) binds [Fig. 7(C),

recall 5 0.85]. In addition to the accurate prediction

of the ligand BS, the template ligand perfectly

regenerates the structure and conformation of the

native ligand [Fig. 7(D)]. These results demonstrate

the potential of G-LoSA to detect biologically impor-

tant local regions on the entire surface of a given

protein.

Comparison with previous G-LoSA in

identification of ligand templates
Major extensions of G-LoSA algorithm in this study

over our earlier version include (i) generation of

more initial structure alignments using both multi-

ple maximum clique solutions and fragment super-

position, (ii) CF-based size-independent score of

structure similarity, and (iii) usage of linear sum

assignment problem (LSAP) algorithm to refine the

initial alignments. In our previous study,23 we

applied the earlier version to searching for template

ligands in a known protein-ligand BS structure

library, aiming to design a ligand for a target pro-

tein. The performance evaluation against a bench-

mark set shows that using the currently available

protein-ligand structure library, this approach can

identify a single template ligand that is highly simi-

lar to the target ligand in more than half of the

benchmark targets. In addition, multiple templates

with partial similarity to the target ligand can also

be identified for fragment assembly-based ligand

design, leading to enhancement of the prediction

performance. These results clearly show the poten-

tial application of G-LoSA to template-based ligand

modeling for de novo ligand design. Here, we evalu-

ate the ability of the new G-LoSA in identifying tem-

plate ligands and compare the performance with the

earlier version, using the same benchmark set (75

targets from the Astex diverse set26). The BS struc-

ture of each benchmark target was defined by a cut-

off of 4.5 Å from the cognate ligand and used as a

query BS structure to search for template ligands

from the ligand BS structure library. In this case,

the GA-score was normalized by the number of

CFPs in the query BS structure to identify template

ligands that can maximally cover the target ligand.

Figure 8(A) shows the average RO between the

target ligands and the best template ligands as a

function of number of top templates (solid lines).

The best template is a template with the highest RO

among the top N templates. The average RO calcu-

lated using the coordinates from all top N templates

is also plotted in the figure (dotted lines). The cur-

rent G-LoSA outperforms the previous one for both

the best template and multiple templates cases, indi-

cating the ability of the current G-LoSA in more

accurately rank-ordering for better templates.

Another advantage over the previous version is

that GA-score can play a role as a confidence score

for estimating the quality of predicted models from

the templates. In Figure 8(B), the RO values of the

ligand templates from the best GA-scored BS for

each target are plotted in term of GA-score. The

results show that the GA-score has a reliable corre-

lation with RO (Pearson product moment correlation

coefficient R 5 0.68), suggesting that the quality of a

ligand template could be inferred from the GA-score

between the target and template BS, as also illus-

trated in Figure 3. The BS similarity score (S) used

in the earlier G-LoSA is defined by S 5 N2/RMSD,

where N is the number of aligned library BS-

structure residues. The RMSD is the root-mean-

square deviation of the aligned residues pairs and

calculated using the coordinates of Ca atoms and

side-chain centroids. Unlike GA-score, this scoring

Figure 8. Performance comparison between the current and previous G-LoSA in identifying template ligands for the 75 bench-

mark targets from the Astex diverse set. A: The average RO vs. the number of top templates. The best template was chosen

among given top N templates in terms of RO. The average RO for multiple templates was measured by using all the top N tem-

plates. B: RO vs. GA-score. C: RO vs. BS similarity score used by the previous G-LoSA. For (B) and (C), the templates of the

highest GA-score and BS similarity score for each benchmark target were used, respectively.
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function does not provide the values of a standar-

dized range, and it is dependent on the size of the

local structures. Therefore, the BS similarity score

in the previous G-LoSA is hard to be used as a confi-

dence score to predict the quality of the ligand tem-

plate [R 5 0.46, Fig. 8(C)]. The benchmark validation

clearly demonstrates that the current G-LoSA shows

strong potential for computer-aided drug design.

Discussion and Conclusions

Accurate characterization and prediction of molecu-

lar interactions between proteins and diverse

ligands in the context of their three-dimensional

structures are central to better understanding the

structure and function relationship of proteins and

to developing new therapeutic agents. A comparative

study of protein structures is a powerful approach to

detecting structural conservation in the proteins,

leading to disclosing novel biological insights. Effi-

cient computational tools for local structure align-

ment and similarity measurement are imperatively

needed as the molecular recognition by protein

mostly occurs in a local region on the protein surface

rather than the global structure.

This work presents G-LoSA, a method to align

protein local structures in a sequence order inde-

pendent way and to provide the GA-score, a size-

independent quantity of structural similarity for a

given local structure pair. In particular, the GA-

score is calculated based on the CFs of each amino

acid and can be applied to measure the structural

similarity with the local structures of diverse sizes

and characteristics, yet maintaining its length inde-

pendency. Our validation results indicate that G-

LoSA is a robust tool for local structure-centric com-

parative biology studies. In particular, G-LoSA is

highly effective in detecting conserved local regions

on the entire surface of a given protein. G-LoSA was

also used to demonstrate its applicability to identify-

ing template ligands from the PDB library for de

novo drug design, showing strong potential for

computer-aided drug design.

In G-LoSA, both the iterative maximum clique

search and the fragment superposition are adopted

to generate possible alignments between two differ-

ent local structures. We examined G-LoSA on which

alignment approach generates the maximum GA-

score against the homologous pairs of the Ca21-BS,

small-molecule ligand BS, and protein-protein inter-

face sets. The results indeed show strong comple-

mentarity between both alignment approaches: 88

and 12% (iterative maximum clique search and frag-

ment superposition, respectively) for the Ca21-BS

set, 39 and 61% for the small-molecule ligand BS

set, and 51 and 49% for the protein-protein interface

set. The analysis also indicates a dominant role of

the iterative maximum clique search in aligning the

local structures that are smaller than small-

molecule ligand BS.

G-LoSA has been designed aiming at its applica-

tions to high-resolution protein structures. However,

our alignment algorithm is based on the Ca posi-

tions, and thus this design enables the alignment to

be less sensitive to the conformational changes of

side chains. Cheng et al. reported a computational

tool, PCalign for measuring the structural similarity

of protein-protein interfaces.27 Their method adopts

a coarse-grained approach in interface representa-

tion, alignment, and scoring, thus has a merit that

its performance could be tolerant to low-resolution

structures such as those solved by cryo-EM. Optimi-

zation of G-LoSA to efficiently deal with structural

data in different resolutions could contribute to fur-

ther enhancing our understanding of protein struc-

tural biology.

With the development of high-throughput exper-

imental techniques, the size of data repositories of

biological molecules has been dramatically increas-

ing in the PDB. In addition, computer modeling

efforts to generate high-resolution structures of

diverse intermediate states are also enriching the

universe of available biological structural data. We

expect that G-LoSA could be harnessed to search for

a huge protein structure database encompassing

experimentally solved and predicted protein struc-

tures to explore interesting local structure-centric

biological problems and facilitate drug discovery

research and development.

Materials and Methods

Random local structure set

A set of random local structures was generated to

derive a CF-based size-independent scoring function

and to perform a statistical significance analysis.

The overall procedure of the structure set prepara-

tion is shown in Supporting Information Figure S6.

A list of non-redundant 21,744 protein chains was

obtained using the first element of each cluster in

the clustering analysis of all protein chains in the

PDB28 by blastclust with 30% sequence identity

(http://www.rcsb.org/pdb/statistics/clusterStatistics.

do, as of March 2014). The coordinates of the non-

redundant protein chains were extracted from the

corresponding PDB files. For each protein chain, a

local structure was defined as residues within a

radius centered at the Ca atom of a randomly

selected residue. The radius was also randomly

determined within a range of 3–20 Å. A set of the

local structures was filtered out based on the resolu-

tion of X-ray structures (�3 Å) and the number of

residues in each local structure (3–50). Fifty struc-

tures were randomly selected from the remaining

set (14,776 local structures) for each number of resi-

dues (3–50, thus 2,400 local structures in total). All
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possible pairs between the local structures

(2,878,800 pairs) were generated and then filtered

by a global structure similarity TM-score cutoff of

0.4 (measured by TM-align16) between the protein

chains of each local structure pair, resulting in

2,454,439 pairs.

G-LoSA alignment algorithm

In the maximum clique search method, two given

local structures (A and B) are represented by Ca

atoms (RðAÞ5frðAÞ1 ; r
ðAÞ
2 ; . . . ; r

ðAÞ
M g and

RðBÞ5frðBÞ1 ; r
ðBÞ
2 ; . . . ; r

ðBÞ
N g, where r is the coordinate

of Ca atom). All combinations of inter-structural

pairs (PAB5fp11ðrðAÞ1 ; r
ðBÞ
1 Þ; p12ðrðAÞ1 ; r

ðBÞ
2 Þ;

. . . ;pMNðrðAÞM ; r
ðBÞ
N Þg) are generated using the repre-

sentative points from the local structures. Two pairs

pijðrðAÞi ; r
ðBÞ
j Þ and pklðrðAÞk ; r

ðBÞ
l Þ are selected from PAB

and then both distances dðrðAÞi ; r
ðAÞ
k Þ and dðrðBÞj ; r

ðBÞ
l Þ

are calculated. If jdðrðAÞi ; r
ðAÞ
k Þ2dðrðBÞj ; r

ðBÞ
l Þj is less

than a cutoff (dcut), pij and pkl are assigned to verti-

ces of a product graph and connected by an edge.

This procedure is applied to all pairs in PAB. The

generated product graph is searched for the maxi-

mum clique, the largest subset of vertices in which

all vertices are connected to all other vertices. We

used an improved branch and bound algorithm for

fast search for a maximum clique in a product

graph.29 In our case, solving the maximum clique

problem for the product graph is equivalent to iden-

tification of the largest subset of structurally aligned

points. Two local structures are superposed using

the rotation matrix obtained from the aligned point

sets. G-LoSA repeats this procedure three times,

increasing dcut from 1.5 to 2.5 Å by an increment of

0.5 Å (so-called the iterative maximum clique

search), resulting in three alignments.

The second method to align two local structures

is to use fragments from each local structure. A set

of consecutive three residues (regardless of their

sequence continuity) is extracted from each local

structure by allowing (for smaller local structure) or

not allowing (for larger local structure) overlap

between different fragments. For each fragment

pair, an alignment is obtained using equivalent resi-

due pairs in the fragment pair.

To perform a structure alignment focused on

conserved residues and to reduce computational

cost, we incorporated an option to filter out dissimi-

lar residue pairs from two local structures based on

their BLOSUM62 score30 and secondary structure

identity during both the iterative maximum clique

search and the fragment superposition. A secondary

structure for a given residue is determined based on

the Ca coordinates of five neighboring residues.16

One can freely define a specific BLOSUM62 cutoff

value (default 5 0) for the similarity comparison and

the minimum number of similar residues pairs in a

fragment (default 5 1) before structure alignment.

All structure alignments by G-LoSA in this study

were performed using the default values. The sec-

ondary structure comparison was only applied to

structure alignment of protein binding surfaces and

protein-protein interfaces to reduce computing costs.

The aligned residue pairs in the initial align-

ment by the iterative maximum clique search and

the fragment superposition are identified using the

shortest augmenting path algorithm to solve the lin-

ear sum assignment problem (LSAP).31 If the dis-

tance between the Ca atoms of an aligned residue

pair is >8 Å (an empirically optimized value), the

pair is discarded from the aligned residue pair set.

G-LoSA then again superposes the local structures

by the rotation matrix for the updated aligned resi-

due pairs. G-LoSA also identifies the aligned CFP

pairs for GA-score calculation by solving the LSAP,

based on the superposed local structure pair.

Diverse local structure benchmark sets

Ca21-BS set. To prepare a Ca21-BS set, we first

downloaded all PDB files (as of April 2015) from the

PDB and then collected all PDB protein chains con-

taining Ca21 ions. The Ca21-BS were then extracted

from the coordinates of the Ca21 containing protein

chains using a cutoff distance of 4.5 Å between a

Ca21 ion and any heavy atom in a residue. Among

Ca21-BS whose number of residues is between 3 and

6 (5,240 BS), ones from redundant proteins were

removed using a sequence identity cutoff of 60%. A

structure pair list was generated only using the

remaining Ca21-BS (1,024 BS). Among the pairs,

only pairs whose protein chains are homologous to

each other were selected based on the 30% sequence

identity cluster lists by blastclust, followed by fur-

ther filtering using TM-score (�0.7) and a distance

between Ca21 ions (�3 Å) to select only Ca21-BS

from structurally similar proteins. The remaining

550 pairs were finally used as a “homologous pair

set” for Ca21-BS. For the “nonhomologous pair set,”

500 protein chains were randomly selected from the

PDB files and then local structures whose number of

residues is between 3 and 6 were randomly

extracted from each protein chain. One thousand

pairs were randomly selected from the pair list and

used as the nonhomologous pair set.

Small-molecular ligand BS set. The datasets

used for this benchmark were derived from the APoc

homologous/nonhomologous pair sets (subject/control

sets in the original paper).22 The homologous pair

set consists of 38,066 pairs of pockets where proteins

are at low sequence identity and contain the same

or similar type of ligands. The nonhomologous pair
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set contains the same number pairs of pockets that

interact with dissimilar ligands in randomly selected

proteins with low sequence or global structural simi-

larity. The residues of a ligand BS were extracted

from the protein using a cutoff distance of 4.5 Å

between any ligand heavy atom and any protein

heavy atom.

Protein-protein interface set. For a given pro-

tein complex, a protein-protein interface structure

consists of two protein surfaces at the interface. The

datasets used for this benchmark were derived from

the iAlign homologous/nonhomologous pair sets.21 In

the dimer-597 set, the homologous and nonhomolo-

gous pair sets contain 373 biologically related, struc-

turally similar protein-protein interfaces and

176,875 unrelated pairs, respectively. The protein-

protein interfacial residues were extracted from the

PDB file using a cutoff distance of 4.5 Å between

any heavy atoms from individual proteins.

PDB structure libraries
To build a ligand BS structure library, the X-ray

structures with resolution of >3 Å were eliminated

from the library. DNA and RNA molecules were also

removed, and ligand molecules in the PDB files

were identified in the heteroatom section. Heteroa-

toms having an identical chain ID and sequence

number were grouped into one heteroatom group. If

a distance of any atom pair from different heteroa-

tom groups was 1–2 Å, the two heteroatom groups

were merged into one group and identified as multi-

part ligands. Metal ions, water molecules, and small

molecular weight additives were removed by setting

the minimum number of heavy atoms in a heteroa-

tom group to 5. To only consider noncovalently

bound ligands, if any atom in a heteroatom group

was located within 2 Å from any protein atom, the

heteroatom group was identified as a covalently

linked ligand and removed from the library. If any

atom of a residue in a protein is within 4.5 Å of its

cognate ligand, the residue is defined as the BS resi-

due. The library contains 100,856 ligand/BS-struc-

ture pairs.

For a protein BS structure library, if any atom

of a residue in a protein is within 4.5 Å of any atom

in its neighboring protein with a different chain ID

in the asymmetric unit, the residue is defined as the

protein BS residue. Redundancy of protein BS in

each PDB file was removed using G-LoSA with a

GA-score cutoff of 0.85. The library contains 457,669

protein BS.
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