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During the translocation step of prokaryotic protein synthesis,
elongation factor G (EF-G), a guanosine triphosphatase (GTPase),
binds to the ribosomal PRE-translocation (PRE) complex and facili-
tates movement of transfer RNAs (tRNAs) and messenger RNA
(mRNA) by one codon. Energy liberated by EF-G’s GTPase activity
is necessary for EF-G to catalyze rapid and precise translocation.
Whether this energy is used mainly to drive movements of the
tRNAs and mRNA or to foster EF-G dissociation from the ribosome
after translocation has been a long-lasting debate. Free EF-G, not
bound to the ribosome, adopts quite different structures in its GTP
and GDP forms. Structures of EF-G on the ribosome have been vi-
sualized at various intermediate steps along the translocation path-
way, using antibiotics and nonhydolyzable GTP analogs to block
translocation and to prolong the dwell time of EF-G on the ribosome.
However, the structural dynamics of EF-G bound to the ribosome
have not yet been described during normal, uninhibited transloca-
tion. Here, we report the rotational motions of EF-G domains during
normal translocation detected by single-molecule polarized total in-
ternal reflection fluorescence (polTIRF) microscopy. Our study shows
that EF-G has a small (∼10°) global rotational motion relative to the
ribosome after GTP hydrolysis that exerts a force to unlock the ribo-
some. This is followed by a larger rotation within domain III of EF-G
before its dissociation from the ribosome.
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Coupled translocation of transfer RNA (tRNA) and messenger
RNA (mRNA) within the ribosome, catalyzed by the guanosine

triphosphatase (GTPase) elongation factor G (EF-G), is one of the
major steps in the elongation cycle of protein synthesis, allowing
the next codon to enter into the ribosomal A site, in preparation for
the next decoding step. Upon binding to the PRE-translocation
(PRE) ribosomal complex, EF-G rapidly hydrolyzes GTP. Trans-
location follows, and EF-G·GDP dissociates from the resulting
POST-translocation complex (1). Recent studies (2–4) have clearly
demonstrated that EF-G·GTP promotes translocation from either
the classic or hybrid PRE complex, which contain tRNAs in the
A/A and P/P or A/P and P/E sites, respectively (first letter 30S
position, second letter 50S position).
EF-G has five domains (5, 6). Its structures in the GTP and

GDP forms free of the ribosome indicate a significant hinge-like
joint motion of the C-terminal domains (III–V) with respect to N
terminus (domains I and II) (7, 8). Structural and single-molecule
studies have captured different EF-G structures and states on the
ribosome (9–17), using antibiotics and/or nonhydrolyzable GTP
analogs to prevent rapid translocation and increase the lifetime of
ribosome-bound EF-G. These studies have provided valuable in-
sights into how EF-G interacts with the ribosome. However, studies
of the EF-G:ribosome complexes obtained in these conditions do
not necessarily capture all of the relevant intermediates and may
sometimes represent off-pathway or rarely visited states. Rapid
reaction kinetics studies have examined the structural changes of
the ribosome and tRNAs during normal translocation (4, 18–21),

whereas the corresponding kinetic and structural information for
EF-G is mostly unknown. Moreover, none of these earlier studies
have described the kinetics of conformational changes of ribosome-
bound EF-G during normal, rapid translocation.
Here we address this gap by comparing rotational motions that

individual EF-G subdomains, labeled with an appropriate fluo-
rescent probe, undergo on the ribosome during both normal and
antibiotic-inhibited translocation or with an empty ribosomal A
site. We detect these motions with millisecond time resolution,
using single-molecule polarized total internal reflection fluores-
cence (polTIRF) microscopy (22, 23). By monitoring the emission
polarization of single fluorescent probes under different polari-
zations of the excitation light, polTIRF determines the kinetics of
change in the 3D angular orientation of the labeled subdomains
and the microsecond rotational fluctuations (the “wobble”) of the
protein relative to the ribosome. We previously used polTIRF to
determine how molecular motor proteins translocate along the
cytoskeletal actin filaments in vitro (22, 23). This is to our
knowledge the first study to extend this single-molecule tool beyond
cytoskeletal motors. Details of the polTIRF principle and instru-
mentation are described in Supporting Information and ref. 22. Our
results suggest that EF-G serves as a force-generating motor via a
power stroke in the early steps of translocation, supporting the
proposal that energy released from GTP hydrolysis triggers EF-G
conformational changes to promote translocation (24). The se-
quential motions of EF-G that follow the first stroke and complete
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translocation may follow either a power-stroke or a Brownian ratchet
mechanism, the latter driven by stochastic thermal fluctuations.
We labeled EF-G using bifunctional rhodamine (BR), a fluo-

rescent probe that cross-links two engineered cysteine (Cys) resi-
dues located seven residues apart in an α-helix (Fig. 1A). Rotation
of BR relative to the protein is highly restricted, as documented by
the polTIRF signals, and thus rotations of the labeled sites can be
inferred from the probe angle changes. We prepared several EF-G
mutants, labeled them with BR, and demonstrated that BR cross-
links the two engineered Cys residues, using site-specific cleavage
and mass spectrometry (Fig. S1). After testing their activities in
translocation (Table S1), we selected the following BR-labeled
EF-Gs for further polTIRF experiments: EF-GBR232-239 (BR cross-
linking cysteines in the EF-G sequence at positions 232 and 239,
domain I), EF-GBR429-436 (domain III), EF-GBR467-474 (domain
III), EF-GBR555-562 (domain IV), EF-GBR630-637 (domain V),
and EF-GBR692-699 (formally domain V, but actually in between
IV and V) (Fig. 1B).
In polTIRF experiments, the ribosome was attached to a mi-

croscope slide through both the 3′ and 5′ ends of an mRNA to
constrain its rotational mobility (Fig. S2A). A 40-nt length mRNA

and 2-kDa PEG linkers provided an optimized attachment that
immobilized the ribosomes with the least rotational mobility (Fig.
S2B). Ribosomes immobilized under these conditions successfully
completed approximately six elongation cycles (Fig. S3), as de-
tected by single-molecule fluorescence resonance energy transfer
(FRET) patterns using Cy3- and Cy5-labeled tRNAs (25). Pol-
TIRF recordings, including 16 different simultaneous polarized
fluorescence intensities (PFIs) as shown in Fig. 1C, began after
injecting BR-labeled EF-G (EF-GBR) and other necessary com-
ponents into the flow chamber to start multiple elongation cycles.
When an EF-GBR transiently bound to an immobilized ribosome,
a pulse of fluorescence was detected (Fig. 1 C and D). During this
binding event, simultaneous discrete changes of the individual
PFIs signaled a sudden rotation of the EF-GBR, whereas the total
intensity remained almost constant (Fig. 1 C–E). A maximum-
likelihood, multitrace change-point algorithm identifies statisti-
cally valid change points caused by sudden rotations and localizes
their timing within several milliseconds (26). For each instance of
EF-GBR binding to the ribosome, the orientation and extent of
wobble of EF-GBR before and after any structural changes were
determined from the PFIs (details in Supporting Information).
For all of the EF-GBR constructs tested, the observed fluores-

cence pulses under normal elongation conditions indicated two
types of binding events. About half of the events had short dwell
times of occupancy on the ribosome (42–71 ms; Fig. 2A, Fig. S4,
and Table S2) and no detectable rotations. These events were
assigned to sampling of the ribosome by EF-G and dissociation,
without completion of translocation. The other half of the events
showed rotational motions and had longer dwell times (130–183
ms; Fig. 2A and Table S2 and sample traces in Fig. 1 C and D and
Figs. S5–S9). These were considered to be successful translocation
events. The assignments and durations of these two different types
of binding events agree very well with a recent study using Cy5-
labeled EF-G (4), in which EF-G binding events without ribo-
somal 30S–50S subunit rotations were considered to be sampling
events and EF-G binding events that were correlated with subunit
counter-rotations were considered to be translocations. For these
events, all of the EF-GBRs exhibited similar dwell times on the
ribosome before and after the rotational change points (60–80 ms
and 72–104 ms, respectively, at 18 °C; Table S2).
Rotational motions of individual EF-GBR binding events were

quantified by the orientation of the BR probe before and after
motions. All EF-GBRs exhibited similar microsecond wobble
amplitudes, demonstrating that the probe dipoles follow the labeled
helix quite faithfully and that none of the labeled helices were
highly mobile relative to the rest of their domains.
Histograms of the angle change captured using EF-GBR232-239,

EF-GBR555-562, and EF-GBR692-699 (Fig. 2B) all had well-defined
peaks around 10° (total subtended angle change). Rotational
motions of EF-GBR630-637 also showed a peak around 10°, but
with a broader distribution. Such small reorientations of the entire
EF-G molecule are consistent with the several positions detected
in structural studies of EF-G trapped on the ribosome in various
intermediate translocation states (8, 11–15, 27–30). On the other
hand, EF-GBR429-436 and EF-GBR467-474, both labeled in domain
III, consistently showed very large and variable rotational motions,
whose angular changes were evenly distributed from 0° to 90°
without a clear peak (Fig. 2B). That both EF-GBR429-436 and EF-
GBR467-474 exhibited the same behavior, although their fluorescent
probes were located on two different α-helices nearly perpendic-
ular to each other, indicates that the motions we detected are not
artifacts caused by fluorophore labeling or changes of secondary
structure. We speculate that the wide distribution of the domain
III rotational angles results from flexibility of domain III in the
EF-G∙GDP form (6) that might give rise to multiple parallel trans-
location and/or dissociation pathways. Strikingly, EF-GBR555-562

(domain IV), EF-GBR630-637 (domain V), and EF-GBR692-699 (do-
main V) all showed much smaller angle changes than domain III
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Fig. 1. Structures of BR and EF-G and polTIRF recordings of a single EF-GBR

binding event. (A and B) Structures of (A) BR and (B) EF-G. BR is shown cross-
linking two Cys side chains on an α-helix. The α-helices of EF-G labeled with
BR are marked in green. (C and D) Sixteen PFIs (C) and the sum of all PFIs
(D) of a single EF-GBR binding event during translocation. Intensities are
plotted as photon counts per ms averaged every 8 ms. (E) Three-dimensional
orientations, rotational motion, and wobble (δ) of BR-labeled EF-G recon-
structed from PFIs of this binding event. In C, the labels, such as s1x, s2x, and
s1y, represent 16 combinations of excitation path (1 in the x–z plane, 2 in the
y–z plane), excitation polarization (s, perpendicular to and p, parallel to the
plane containing the incident and reflected beams; and L, 45° to the left of
p and R, 45° to the right of p), and emission polarization (x or y), which were
collected and plotted as PFIs. The binding of EF-GBR to the immobilized ri-
bosome at time 0.02 s and the dissociation of BR-EF-G at time 0.12 s are
determined by sudden increase and decease of the total intensity, respectively.
The rotational motion of EF-GBR is clearly indicated by changes of many indi-
vidual PFIs at time 0.08 s, whereas the total intensity remains almost constant.
Three-dimensional orientations of the probe dipole before and after rotational
motions were resolved from 16 PFIs and plotted as red and blue arrows in E,
respectively. Wobble (δ) of the probe on the microsecond scale, reconstructed
from PFIs, was plotted in E as a cone around the dipole.
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(Fig. 2). If domains IV and V accompany or follow tRNA mo-
tions during final translocation, their lack of large rotation in-
dicates they are not tightly coupled to domain III.
We also detected two conformational states of ribosome-bound

EF-G having similar dwell times (60 ± 7 ms and 52 ± 5 ms; Fig.
S10), using single-molecule FRET between EF-GBR467-474 and
Cy5-labeled ribosomal protein L11 on the large subunit. The
change of FRET efficiency observed is caused by change in dis-
tance between EF-GBR467-474 and L11 during translocation (12,
15). Similar dwell times measured from polTIRF and FRET ex-
periments indicate that they both capture the same transition
dynamics during translocation. Together, the polTIRF and FRET
results suggest that EF-G has a small, initial global reorientation
and that its domain III, which includes residues 429-436 and 467-
474, has a large and variable local motion, in concert with smaller
motions of the other domains. As the linker between the C-ter-
minal and N-terminal regions, domain III functions as a joint
during EF-G’s hinge-like motion (7), so that its large rotational
motions during translocation are consistent with the expected
large translation of domain IV as it escorts or follows peptidyl-
tRNA from the A site to the P site.
Interestingly, EF-GBR exhibits conformational changes on the

ribosome even when it binds in the absence of an A-site tRNA.
Binding of EF-G to initiation complexes (ICs) with empty A sites
has been shown before (16, 31). Dwell times of EF-GBR binding
to ICs containing a P-site initiator fMet-tRNAfMet and an empty
A site decreased by 50–70% for both rotating and nonrotating
events and the proportion of events showing angle changes de-
creased about 20% (Table S3). For events with tilting, EF-G
dwell times were 50–75% shorter on ribosomes containing empty
A sites both before and after the rotational motion. These results
indicate that the presence of an A-site tRNA adds a relatively
small increment (0.7–1.4 kBT) to the transition energy barrier for
the internal conformational change and for dissociation of EF-G.
The distributions of rotation angles for EF-GBR domains on ICs
with an empty A site were quite similar to those observed dur-
ing translocation (with the sole exception of EF-GBR467-474;
Fig. S11).
The large and variable motions of the EF-G domain III we

observe during normal translocation have not generally been
detected among the X-ray and cryo-EM structures obtained us-
ing antibiotics and/or nonhydrolyzable GTP analogs that inhibit
normal translocation and prolong the dwell time of EF-G on
the ribosome. These blockers may rigidify the conformation of

ribosome-bound EF-G. It is possible that time-resolved cryo-EM
with single-particle sorting into different classes, by resolving
structural heterogeneities in the sample, could reveal the mo-
tions of domain III detected by polTIRF. An exception to the
structures lacking large motions within ribosome-bound EF-G is
provided by a crystal structure in which the antibiotic dityro-
mycin arrests the ribosome in a PRE-translocation structure
(32). This structure shows domain III rotated about 90° from the
position seen in isolated EF-G complexed with either GNPPNP
or GDP, consistent with the large rotations of domain III that we
observed. However, Lin et al. (32) assume that domains III–V
rotate together as a rigid body, which is inconsistent with our
polTIRF data showing domain IV rotates less than domain III.
Molecular dynamic simulations (27) have revealed relative rotational
motion between domains IV and III. Therefore, a model, in which
domain III moves first to apply the force and then domain IV
translates to complete translocation just before EF-G dissociates
(see Fig. 4), would reconcile the structure presented by Lin et al. (32)
and the rotational motions captured by us.
We next monitored the rotational dynamics of EF-GBRs in the

presence of the antibiotics viomycin (Vio) (5 μM) and specti-
nomycin (Spc) (2 mM), which do not affect the rate of EF-G–

dependent GTP hydrolysis (1, 33) but block translocation at
subsequent steps along the pathway (19, 34, 35). Vio exhibits a
bimodal behavior in its effects on ribosome dynamics (36). At the
low concentration we use, Vio stabilizes tRNAs in the hybrid
states and the ribosome in the rotated conformation and it halts
translocation at an early stage (36–38). Spc disrupts trans-
location later in the process by blocking swiveling of the head
domain of the small ribosomal subunit (39). Both Vio and Spc
considerably reduced the extent of rotations in domain III (EF-
GBR429-436 and EF-GBR467-474; Fig. 3A and Fig. S12) toward the
amplitude of the global motion reported by the other domains.
The average angle change of EF-GBR429-436 decreased from 46° ±
1° to 27° ± 1° and 37° ± 1° (SEM) in the presence of Vio and
Spc, respectively.
In contrast, Vio and Spc had little or even no effect on rotations

of domains I (EF-GBR232-239), IV (EF-GBR555-562), and IV–V
(EF-GBR692-699) (Figs. 2B and 3A and Fig. S12). Moreover, the
antibiotics had no significant effect on the proportion between
rotating and nonrotating EF-GBR binding events and their occu-
pancy times on the ribosome (Table S3). Most strikingly, neither
Vio nor Spc had perceptible effects on rotation of EF-GBR429-436,
domain III, when the A site was empty (Fig. S11), strongly suggesting
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that tRNA must be present in the A site for Vio and Spc to hinder
the large rotational motions of EF-G domain III. The simplest ex-
planation of this result is that when the tRNAs cannot move due to
the action of the antibiotics, they become a physical barrier that
blocks domain III’s local motion as well, consistent with the notion

introduced above that such local motion is directly correlated with
tRNA translational movement.
Whether EF-G functions as a force-generating power-stroke

motor or the pawl of a Brownian ratchet that blocks reversal of
ribosome and tRNA/mRNA thermal fluctuations has long been
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Fig. 4. Two possible translocation models. The initial effect of EF-G after GTP hydrolysis is to apply a force to unlock the ribosome. After that first power
stroke (A, Power Stroke Model), EF-G keeps actively pushing tRNAs and mRNA until translocation is completed, or (B, Hybrid Model) a series of sequential
conformational changes of EF-G and the ribosome promote the final translocation of tRNAs and mRNA driven by thermal fluctuations and blocked reversal.
Steps blocked by antibiotics are indicated. Brackets are used to mark short-lived intermediates during normal translocation, similar to states captured by time-
resolved cryo-EM along the translocation pathway (9). In the hybrid model, these intermediates have similar free energies in the absence of EF-G; they can
spontaneously interconvert until their thermally driven fluctuations are blocked by conformational changes within EF-G that complete translocation (2). Both
of these models include a power stroke early in translocation. Final motions of domain IV (triangle) are indicated as a translation without rotation, consistent
with the present data.
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debated (20, 30, 40–42). We illustrate these two ideas by the
simplified schematic energy landscapes in Fig. 3B. The reaction
coordinate here is conceptually the translocation distance of the
mRNA and tRNAs between their PRE- and POST-translocation
positions. In the power-stroke model (Fig. 3B, Upper), EF-G
converts biochemical energy of GTP hydrolysis and product re-
lease to mechanical work. The force generated by EF-G along the
reaction coordinate tilts the energy landscape by slope ΔG/Δx =
Force (blue line), which decreases the energy barrier (red curve
before force generation vs. green curve after application of
force) and actively promotes movements of tRNAs and mRNA
from the PRE-translocation state. In the Brownian-ratchet
model, the energy barrier between initial and final states is lower,
and thermal energy drives fluctuations between initial and final
states of translocation. In this model conformational changes in
EF-G and/or the ribosome, triggered by the transiently formed
POST-translocation state, cause domain IV of EF-G to act as a
pawl (blue line), suppressing the backward reaction and thereby
stabilizing the POST state (2). In the Brownian-ratchet model of
translocation, the role of GTP hydrolysis is mainly to facilitate
EF-G dissociation after translocation.
Vio and Spc at the low concentrations used here stabilize the

ribosome in PRE conformational states, with the Vio-stabilized
state occurring earlier in the translocation process than the Spc-
stabilized state (14, 19, 33–37, 43, 44). Such stabilizations cor-
respond to large energy barriers (shown in magenta for Vio in
Fig. 3) between the initial and final states (33, 45). According to
the Brownian-ratchet model, the induced barrier blocks ther-
mally driven fluctuations of the ribosomal complex between the
PRE- and POST-translocation states without affecting the po-
sition of the energy minimum in the initial state. EF-G confor-
mational changes, required for blocking the back reaction, would
not take place in the presence of Vio or Spc. In contrast, we find
that EF-G domains, including domain III, undergo similar ro-
tations in the presence of Vio and Spc (Fig. 3A and Fig. S12). In
the power-stroke model, the force generated by EF-G–catalyzed
GTPase can still tilt the energy landscape of the initial state
before the antibiotic-generated energy barrier is encountered,
thus shifting the position of the energy minimum in the PRE
state (black arrow in Fig. 3B). The EF-G–bound ribosome
complex moving along the reaction coordinate to this new energy
minimum would exhibit small global structural changes, including
in EF-G domain III, as we detect in the presence of Vio and Spc.
Therefore, our findings strongly suggest that, at least for the initial
portion of translocation, EF-G tilts the energy landscape, by
generating a force (Figs. 3B and 4). In the presence of Vio and
Spc, A-site–bound peptidyl-tRNA presents a physical barrier that
suppresses large motions of EF-G.
Disrupting the interactions between the mRNA–tRNA duplex

and ribosomal RNA in the decoding center (bases A1492 and
A1493) by the tip of EF-G domain IV is thought to be a critical
step that reduces the energy barrier for tRNA and mRNA
movement (29, 46). Binding of Vio to the 30S subunit affects the
positioning of A1492 and A1493, which presumably strengthens
interactions of the mRNA–tRNA duplex with the decoding
center (43). If the effect of EF-G’s initial stroke is to accelerate
disruption of mRNA–tRNA interactions, then Vio would be
expected to slow EF-G’s motions. Our observation that rates of
EF-G rotational motions on the ribosome are unaffected by

Vio implies that the initial power-stroke motion of EF-G does
not act directly to disrupt interactions between mRNA, tRNA,
A1492, and A1493. Instead, the power-stroke force is likely to
foster structural rearrangements in the ribosome before tRNA
and mRNA movements. Therefore, force applied by the ribo-
some on mRNA to unwind downstream secondary structures
(47–49) is unlikely to be directly generated by the initial power
stroke of EF-G. This is consistent with earlier suggestions that
GTP hydrolysis triggers an “unlocking process” in the ribosome
that enables further translocation steps, including ribosomal
subunit rotation, tRNA and mRNA motion, and 30S head
movement (18).
After the initial power stroke, EF-G undergoes further steps

to complete translocation. During these steps, domain IV is
likely to escort the A-site tRNA into the P site in the 30S subunit
or follow it after spontaneous tRNA arrival. Domain IV does not
exhibit the large rotations of domain III, indicating that they are
not rigidly coupled during the rotation of domain III. These later
motions of EF-G could proceed by either the power-stroke or
Brownian-ratchet mechanism (Fig. 4). Recent evidence obtained
from the force dependence of translational velocity in an optical
trap favors the latter (48), consistent with the proposal these
later steps are mainly driven by the energetics of the ribosome
itself (20). Holtkamp et al. (24) also suggested a hybrid model
combining power-stroke and Brownian-ratchet mechanisms.
Using Vio and Spc, we were able to trap EF-G motions at early
and later intermediate states, respectively. The dissociation rates
of EF-G from the states trapped by Vio and Spc are almost
the same as the ones during normal translocation, implying that
EF-G can naturally dissociate before translocation is com-
pleted. The variability of domain III rotational motions indi-
cates that EF-G may adopt various structures in different
ribosomes after its abrupt conformational change (Fig. 1C),
which is in line with various translocation intermediates that
have been described (9, 15, 29). A hybrid model (Fig. 4), in
which EF-G functions as a Brownian-ratchet pawl after its
initial force generation, could rationalize the multiple struc-
tures and reaction pathways of EF-G.

Summary
Our studies directly capture previously undetected rotational
motions of EF-G on the ribosome during normal translocation.
Neither Vio, nor Spc, nor an empty A site completely abolishes
motions of EF-G on the ribosome. Vio, which prevents trans-
location by increasing the affinity of tRNA to the A site ∼1,000
fold, barely affects kinetic rates of EF-G conformational changes,
but markedly reduces the magnitude of EF-G domain III rotation.
These findings suggest that conformational changes of EF-G on
the ribosome that follow GTP hydrolysis early in translocation
generate a mechanical force that either moves the mRNA and
tRNAs directly or facilitates an “unlocking” of the ribosome that
enables movement. Combining our results with those of others, we
conclude that the ribosome and EF-G make use of both power-
stroke and Brownian-ratchet mechanisms to ensure the efficiency
and accuracy of translocation.
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