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The ribosome is one of the major targets for therapeutic antibiotics;
however, the rise in multidrug resistance is a growing threat to the
utility of our current arsenal. The orthosomycin antibiotics evernimicin
(EVN) and avilamycin (AVI) target the ribosome and do not display
cross-resistance with any other classes of antibiotics, suggesting that
they bind to a unique site on the ribosome and may therefore
represent an avenue for development of new antimicrobial agents.
Here we present cryo-EM structures of EVN and AVI in complex with
the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures
reveal that EVN and AVI bind to a single site on the large subunit that
is distinct from other known antibiotic binding sites on the ribosome.
Both antibiotics adopt an extended conformation spanning the minor
grooves of helices 89 and 91 of the 23S rRNA and interacting with
arginine residues of ribosomal protein L16. This binding site overlaps
with the elbow region of A-site bound tRNA. Consistent with this
finding, single-molecule FRET (smFRET) experiments show that both
antibiotics interfere with late steps in the accommodation process,
wherein aminoacyl-tRNA enters the peptidyltransferase center of
the large ribosomal subunit. These data provide a structural and
mechanistic rationale for how these antibiotics inhibit the elongation
phase of protein synthesis.
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Many clinically used antibiotics target the ribosome to inhibit
bacterial growth (1). X-ray crystallography structures have

revealed that the majority of antibiotics that target the large ribo-
somal subunit bind at or near the peptidyl-transferase center (PTC),
the active site for peptide bond formation (1, 2). The emergence of
multidrug resistance in pathogenic bacteria, which has the potential
to render our current arsenal of antibiotics obsolete, highlights the
need for the development of new antibiotics that target distinct sites
on the ribosome. Although structurally uncharacterized, biochemical
and resistance studies indicate that one such class of antibiotics is the
orthosomycins (3), which includes evernimicin (originally termed
everninomicin, and hereafter referred to as EVN) and avilamy-
cin (AVI) (2).
AVI is produced by Streptomyces virdochromogenes strain Tü57

(4), whereas EVN was identified and isolated from the producer
Micromonospora carbonacea (5, 6). EVN and AVI display excellent
antimicrobial activity against Gram-positive bacteria (3), including
methicillin-resistant Staphylococcus aureus (7), as well as some
Gram-negative bacteria, such as Borrelia burgdorferi (8). Importantly,
strains resistant to EVN and AVI do not display cross-resistance to
any other known antimicrobial agents, including ribosome-targeting
antibiotics, such as chloramphenicol, tetracycline, or erythromycin
(9, 10).
EVN/AVI resistance in Streptococcus pneumoniae and in the

archaeon Halobacterium halobium arises via mutations within helix
89 (H89) and H91 of the 23S rRNA (10–12). Resistance to EVN
and AVI also occurs via the action of methyltransferases that

modify H89 and H91 (13, 14). Consistently, both EVN/AVI protect
nucleotides within H89 and H91 from chemical modification (11,
12), suggesting that these two rRNA helices comprise at least part
of the orthosomycin binding site. Additionally, EVN/AVI resistance
has been associated with mutations in Arg-51, Ile-52, and Arg-56
of the ribosomal protein L16 in Enterococcus faecalis, E. faecium,
S. pneumoniae, and S. aureus (15–18). However, it remains unclear
whether these effects are direct consequences of EVN/AVI inter-
acting with L16 or are mediated indirectly via changes in the 23S
rRNA, as observed for other ribosomal protein-derived resistance
mechanisms (2).
As expected based on the locations of the reported resistance

mutations, both AVI and EVN bind to the ribosomal 50S subunit
(19) and inhibit protein synthesis in vivo and in vitro (19, 20). Sub-
sequent in vitro studies revealed that EVN inhibits IF2-dependent
70S initiation complex formation (11, 21); however, the inhibitory
effect of EVN is not restricted to translation initiation because toe-
printing assays indicate that EVN also inhibits translation elongation
(22). EVN and AVI do not inhibit puromycin reaction (11, 12) and
do not compete for binding with antibiotics that target PTC of the
ribosome, such as chloramphenicol, linezolid, lincomycin, or
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clindamycin (19). Moreover, EVN has no inhibitory effect on the
ribosome-dependent GTPase activity of EF-G (21). EVN and AVI
are hypothesized to inhibit elongation by preventing tRNA binding
to the A site (12, 20); however, this model remains to be
conclusively demonstrated.
AVI has long been used in animal feed as a growth promoter

(Surmax/Maxus; Elanco Animal Health), thereby limiting its clinical
usefulness. However, EVN (SCH27899; Ziracin) underwent phase
II/III clinical trials before being dropped in 2000 by Schering-Plough
because of side effects and poor solubility. Nevertheless, the lack of
cross-resistance between AVI/EVN and other clinically used ribo-
some-targeting antibiotics makes the orthosomycins attractive for
further investigation (9, 10). The total chemical synthesis of EVN (23)
and the biosynthesis of novel AVI derivatives with improved solubility
(24) provide a good basis for further drug development; however, a
structural understanding of how these antibiotics interact with the
ribosome is necessary to facilitate rational design of improved
orthosomycin derivatives.
Here we present two cryo-EM structures of EVN or AVI in

complex with the Escherichia coli 70S ribosome at 3.6- to 3.9-Å
resolution. These structures reveal that the conserved hepta-
saccharide core of both orthosomycins spans across the minor
grooves of H89 and H91 of the 23S rRNA, whereas the terminal
dichloro-ring interacts with the arginine residues of ribosomal
protein L16. The binding positions of EVN and AVI overlap
with the elbow region of a tRNA bound in the A site. Consis-
tently, single-molecule FRET (smFRET) imaging of the tRNA
selection process demonstrates that EVN and AVI allow initial

binding of aminoacyl-tRNA (aa-tRNA) at the A site, but prevent
complete accommodation of the incoming aa-tRNA, thus pro-
viding a structural explanation of how orthosomycin antibiotics
inhibit translation elongation.

Results and Discussion
Cryo-EM Structures of EVN and AVI in Complex with the E. coli 70S
Ribosome. To determine the structures of EVN and AVI on the
ribosome, we prepared Erm-stalled ribosome complexes (SRCs) as
reported (25, 26). The SRCs were incubated with either 100 μM
EVN or AVI, and the complexes were then subjected to single-
particle cryo-EM analysis (Materials and Methods). The resulting
cryo-EM reconstructions of the EVN- and AVI-SRC had an average
resolution of 3.9 and 3.6 Å, respectively, with local resolution
extending to 3.5 Å within the core of the ribosome (Fig. S1). Careful
analysis of the cryo-EM maps revealed only a single binding site of
EVN on the 50S subunit of the 70S ribosome, consistent with
previous biochemical studies showing a 1:1 stoichiometry of EVN
with the 50S subunit (19). In contrast to early reports that AVI
binds to the 30S subunit (20), we observed only a single AVI
binding site on the 50S subunit at the same location as EVN, a
result that is consistent with the competition between these two
antibiotics for ribosome binding (19).
AVI has a terminal dichloroisoeverninic acid moiety (ring A)

linked to a linear heptasaccharide chain consisting of D-olivose
(rings B and C), 2-deoxy-D-evalose (ring D), 4-O-methyl-D-fucose
(ring E), 2,6-di-O-methyl-D-mannose (ring F), the unusual pentose
L-lyxose (ring G), and the bicyclic eurekanate (ring H) (ref. 27;
Fig. 1A). Similar to AVI, EVN contains a nearly identical core
heptasaccharide chain, but, unlike AVI, EVN is branched by a
2-deoxy-β-glycoside nitrosugar (ring A′) attached to ring B, and
also contains an additional terminal benzyl moiety (ring I) attached
to eurekanate ring H (28) (Fig. 1B). The presence of distinct elec-
tron density corresponding to the additional rings A′ and I of EVN
in the cryo-EM map of the EVN-SRC, and absence of the same
features in the AVI-SRC map, enabled us to unambiguously orient
both AVI and EVN on the ribosome (Fig. 1 C and D). Despite the
good fit of the refined molecular models to the cryo-EM electron
density maps, higher resolution will be required to provide an un-
ambiguous description of the hydrogen-bond interactions of the

Fig. 1. Cryo-EM reconstructions of EVN- and AVI-SRC. (A and B) Chemical
structures of the orthosomycins AVI (A) and EVN (B), with compositional
differences highlighted. (C and D) Cryo-EM electron densities (gray mesh)
with fitted models for AVI (red; C ) and EVN (yellow; D). (E ) Overview of
EVN/AVI binding site on the 70S ribosome (50S, gray, and 30S subunit
omitted for clarity). Binding position of EVN/AVI (yellow) is shown relative
to the P-site tRNA (blue), ribosomal protein L16 (cyan), H89 (green), and
H91 (red).
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Fig. 2. Interactions of EVN and AVI with the ribosomal protein L16.
(A) Overview of L16 (blue) interactions with EVN (gold) and AVI (red). (B and C)
Close-up views of showing interactions between Arg-51, -55, and -59 of L16
(blue) and ring A of AVI (B) and rings A and A′ of EVN (C). (D) Sequence
alignment of the L16 from E. coli (E.c), B. subtilis (B.s), E. faecalis (E.fl),
E. faecium (E.fc), S. aureus (S.a), and S. pneumoniae (S.p), with residues
conferring resistance to EVN and AVI highlighted in red.
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drugs with the ribosome. Nevertheless, these structures reveal that
both drugs adopt elongated conformations on the ribosome, with
the heptasaccharide rings B-H of both orthosomycins inserting into
the minor grooves of H89 and H91 of the 23S rRNA (Fig. 1E and
Movie S1) and the terminal ring A interacting with ribosomal
protein L16 (Fig. 2A).

Interactions of EVN/AVI with Arginine Residues of L16. The terminal
dichloroisoeverninic acid moiety (ring A) of AVI establishes stacking
interactions with the side chain of Arg-51 of L16 (Fig. 2 A and B and
Movie S1). In addition, the side chains of Arg-55 and -59 also ap-
proach ring A of AVI (Fig. 2B); however, the density for these side
chains is less well defined. In contrast to AVI, the electron density for
the terminal region of EVN is bifurcated (Fig. 1D), consistent with
the presence of the additional 2-deoxy-β-glycoside nitrosugar (ring A′)
(Fig. 1B). Unfortunately, the resolution does not allow unambiguous
assignment of ring A and A′ to the bifurcated density. Therefore, our
current model is based on the rationale that ring A of EVN occupies
the same position as ring A of AVI, and the remaining density is
then assigned to the ring A′ (Fig. 2C). Sequence alignments (Fig.
2D), as well as comparison with the structures of the B. subtilis 70S
ribosome (29) and S. aureus 50S subunit (30) (Fig. S2), reveals that
E. coli Arg-51 and -55 are equivalent to Ile-52 and Arg-56 in most
Gram-positive bacteria. Consistently, mutations of Arg-56–His
or Ile-52–Ser/Thr/Asn in L16 render E. faecalis, E. faecium, and
S. pneumoniae isolates resistant to EVN and AVI (15–17). Chemical
mutagenesis experiments in S. aureus led to the identification of
strains with Arg-51–Cys or Arg-51–His mutations in L16 that con-
ferred increased resistance to both compounds (18). In our structure,
residue Arg-50 (E. coli), equivalent to residue Arg-51 in S. aureus,
does not contact the drug (Fig. 2 B and C and Fig. S2). This finding
suggests that the Arg-51–Cys/His mutations may indirectly confer
EVN/AVI resistance in S. aureus, possibly by affecting the neigh-
boring Ile-52 residue. Alternatively, EVN/AVI may interact with
S. aureus ribosomes using a slightly different binding mode that
enables direct interaction between Arg-51 and the drugs. Never-
theless, the finding that both EVN and AVI directly interact with
L16 in the region where EVN/AVI resistance mutations occur il-
lustrates the importance of this interaction for drug binding. More-
over, it also reveals that resistance occurs because the mutations
directly perturb drug binding, rather than indirectly preventing drug
binding by distorting the local rRNA conformation of H89/H91.

Interaction of EVN and AVI with H89 and H91 of the 23S rRNA.Within
the limits of the present resolution, we observed no significant
difference between the interaction of the conserved heptasaccharide
cores of EVN and AVI with H89 and H91 of the 23S rRNA (Fig. 3
A–D). The largest interaction surface between the drugs and the
ribosome encompasses rings B–F of EVN/AVI and the minor groove
of H89, specifically, nucleotides A2468-G2472 and A2478-A2482
(Fig. 3 A–D), which base pair to form the stem of H89 (Fig. 3E).
Additional interactions were observed between rings G and H of
EVN/AVI with the minor groove of H91 (Fig. 3 A–D) formed by
nucleotides G2527–U2528 and A2534–G2536 (Fig. 3F). This
interaction pattern is consistent with footprinting data on E. coli,
E. feacium, and H. halobium ribosomes showing that EVN pro-
tects multiple nucleotides within H89, including A2468, A2469,
A2471, A2476, A2478, and A2482, as well as nucleotide A2534 in
H91, from chemical modification by dimethyl sulfate (DMS) (11,
13) (Fig. 3 A, E, and F). Similarly, AVI protects A2482 in H89 and
A2534 in H91 from chemical modification by DMS on E. coli 70S
ribosomes (12) (Fig. 3 B, E, and F). The terminal benzyl moiety
(ring I) of EVN establishes additional interactions with nucleo-
tides within the loop of H91 (Fig. 3 A and C), which may con-
tribute to the higher potency of EVN compared with AVI.

Resistance to EVN/AVI via 23S rRNA Mutations. A striking correlation
exists between the nucleotides that comprise the EVN/AVI binding
site observed here and the reported mutations in 23S rRNA that
confer resistance to these two drugs (Fig. 3 C–F). In S. pneumoniae,
selection for EVN resistance led to the identification of 23S rRNA
mutations A2469C, C2480U (in H89), G2535A, or G2536C (in
H91) (ref. 10; Fig. 3 C, E, and F). The G2535A mutation was also
subsequently reported to confer EVN resistance in E. faecalis (16).
The archaeon H. halobium has also been used to select for EVN
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Fig. 3. Interactions of EVN and AVI with H89 and H91 of the 23S rRNA.
(A and B) Binding site of EVN (gold) (A) and AVI (red) (B), with nucleotides
in H89 and H91 protected from DMS modification highlighted in red and
orange, respectively. (C and D) Binding site of EVN (gold) (C ) and AVI (red)
(D), with resistance mutations in H89 and H91 highlighted in blue and
green, respectively. (E and F ) Secondary structure of 23S rRNA with zoom
on H89 (E ) and H91 (F), with nucleotides protected by EVN (red) and AVI
(orange), EVN (blue) and AVI (green) resistance mutations and methyla-
tions (blue star) as indicated (10–18).
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resistance, producing A2471G/C, A2478C, U2479C, and C2480A/U
mutations in H89 and G2527A, U2528A, and G2535A mutations in
H91 (11) (Fig. 3 C, E, and F). In contrast, selection for AVI using
H. halobium only led to the identification of mutations within H89,
namely, G2470U, A2471G, G2473U, U2479C, and C2480U (12)
(Fig. 3 D and E). The increased frequency of resistance mutations
located in H89, as well as the higher resistance conferred by these
mutations compared with H91 mutations (11, 12), emphasizes the
importance of the extensive interaction surface between rings B-F
of EVN/AVI and nucleotides comprising the minor groove of H89.
Because all of the reported mutations are expected to alter base-
pairing potential, resistance is likely to arise from distortions of the
helical geometry of H89 and H91, which thereby reduce the affinity
of the drugs for their binding site.

Resistance to EVN/AVI via Methylation of the 23S rRNA. Analysis of
the binding site of EVN and AVI reveals a structural basis for the
resistance obtained via posttranslational modifications of nucleotides
within H89 and H91 (13, 14) (Fig. 4). S. virdochromogenes Tü57, the
producer of AVI, expresses two methyltransferases, AviRa and
AviRb, which confer resistance to EVN/AVI. Whereas AviRb
methylates the ribose 2′OH of U2479 within H89 to confer high-level
AVI resistance, AviRa methylates the N7 position of G2535 within
H91 to confer low-level resistance (14, 31). Inspection of the EVN/
AVI binding site reveals that a 2′O-methylation of U2479 would lead
to a direct clash with ring F of the drug (Fig. 4A). In contrast, N7-
methylation of G2535 appears to neither interfere with the drug
binding (Fig. 4B) nor disrupt base pairing with U2528, suggesting that
methylation at this position indirectly confers resistance by inducing
local conformational changes, possibly during ribosome assembly. We
note that both AviRa and AviRb are required to obtain full protection
against the AVI (31), suggesting that they function in a synergistic
manner, similar to the methyltransferases that cause resistance
to tylosin (32). The EVN methyltransferase EmtA, which was
identified on a plasmid-borne insertion element in EVN-resistant
E. faecium strains (isolated from animals given AVI as a growth
promotant), was shown to methylate G2470 of H89 (13). Although
the exact site of the modification has not been identified, we note
that methylation of the N2 position of G2470 or the ribose 2′OH
would lead to a direct clash with rings D and C, respectively, of
EVN/AVI (Fig. 4C), whereas an N7-methylation would most
likely confer resistance indirectly via conformational changes.

Inhibition of IF2 and A-tRNA Accommodation by EVN and AVI. EVN
has been reported to inhibit formation of the IF2-dependent 70S
initiation complex (70S-IC) (11, 21). Therefore, we compared the
binding sites of EVN/AVI relative to structures of IF2 on the 70S
ribosome (33) and 30S subunit (34, 35). No overlap was observed
between EVN/AVI and IF2 on the 70S, with the shortest dis-
tance between ring E of EVN/AVI being 2–3 Å away from the linker

between domains III and IV of IF2 (Fig. S3). In contrast, alignment
of IF2-30S complex to the AVI/EVN-SRC reveals a slight overlap
between EVN/AVI and domain IV of IF2 (Fig. S3), suggesting that
EVN/AVI may interfere with IF2-dependent 70S-IC formation by
blocking a transient intermediate state of IF2 that arises upon
subunit binding and transition from the 30S-IC to the 70S-IC.
EVN and AVI have also been suggested to inhibit translation

elongation by interfering with the tRNA binding to the A site of the
ribosome (12, 20, 22). Therefore, we compared the binding position
of EVN/AVI relative to the tRNA in the A/T state observed during
decoding when the aa-tRNA is bound to the ribosome but still
remains in complex with EF-Tu (36, 37), as well as with the tRNA
in the classical A/A state in which the acceptor arm of the aa-tRNA
is released from EF-Tu and has accommodated at the PTC on
the large ribosomal subunit (38). These comparisons show that the
EVN/AVI binding site does not overlap with aa-tRNA within the
A/T state, whereas there is direct clash between rings A-C of EVN/
AVI and nucleotides 51–53 within the stem region of the TΨC-loop
(elbow region) of fully accommodated aa-tRNA (Fig. 5A, Fig. S4,
and Movie S1).
To investigate the impact of EVN and AVI on the selection and

accommodation of aa-tRNA, we used pre-steady-state smFRET
measurements that enable real-time visualization of tRNA motion
during EF-Tu–catalyzed delivery of aa-tRNA to surface-immobilized
ribosomes (39–41) (Fig. 5B). Here, the time evolution of FRET
efficiency was monitored at 10 ms per frame time resolution within
individual 70S ribosomes bound with (Cy3-s4U8)-labeled fMet-
tRNAi

Met in the P site upon stopped-flow injection of ternary
complex containing EF-Tu, GTP and (LD650-acp3U47)-labeled
Phe-tRNAPhe (Fig. 5B). As expected from previous studies (40, 41),
in the absence of the drug, productive FRET events leading to the
incorporation of aa-tRNA at the A site evolved from a low (∼0.2) to
high (∼0.63) FRET state via the reversible transit of at least one
intermediate (∼0.35) FRET configuration, which reflects the A/T
state of the A-site tRNA (Fig. 5 B and C) (39, 40). Consistent with
rapid aa-tRNA progression through the selection process, the time
delay between the initial observation of low FRET and formation of
the stable, high-FRET state, corresponding to the fully accommo-
dated, classically configured A/A-tRNA position, was ∼60 ms
(∼16 s−1) (Fig. 5 B and C and Fig. S5).
In the presence of saturating concentrations (20 μM) of EVN or

AVI, aa-tRNA progression into the ribosome was strongly and
specifically blocked during the transition between the A/T state
(∼0.35 FRET) and the fully accommodated A/A state (∼0.63
FRET) (Fig. 5 D and E and Fig. S5). To examine the dynamics
underlying this inhibition, we visualized the ensemble of observed
molecular transitions using transition density plots (42). In this
representation, observed transitions appear as peaks in a 2D his-
togram of initial and final FRET efficiencies (Fig. 5 F–H). The peak
corresponding to reverse transitions from high to intermediate

Fig. 4. Structural basis for EVN/AVI resistance via methylation of the 23S rRNA residues. (A) The 2′O-methylation of U2479 in H89 by AviRb (14) clashes with
the ring F of the drug. (B) N7 methylation of G2535 in H91 by AviRa (14) is located distal from the AVI binding site. (C) Methylation of the 2′OH of the ribose or
N2 position in the nucleobase of G2470 by EmtA (13) clashes with EVN (gold), whereas the N7 position is distal to the drug-binding site.
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FRET is significantly enhanced in the presence of both EVN or
AVI (arrows in Fig. 5 F–H), confirming that inhibition was char-
acterized by an exacerbation of the reversible excursions between
A/T and accommodated positions that normally accompany proof-
reading (40) (Fig. S4). These findings are in agreement with toe-
printing experiments demonstrating that 70S ribosomes initiated on
the AUG start codon of mRNA do not proceed into the elongation
phase of translation when increasing concentrations of EVN or AVI
are present (Fig. S6). Our findings contrast with a previous report
(22) in which Evn did not appear to significantly affect the first
elongation cycle, but, rather, allowed successive rounds of elonga-
tion before inhibition was observed. One possibility for this dis-
crepancy is that the strength of the inhibition of the orthosomycins
depends on the nature of the aa-tRNA that is being accommodated.

Conclusion
The cryo-EM structures of EVN- and AVI-SRC reported here re-
veal that both orthosomycins bind to a single site on the large subunit
that is distinct from other known antibiotic binding sites on the ri-
bosome (Fig. S7), explaining the lack of cross-resistance with other
ribosome-targeting antibiotics (9, 10). The orthosomycin binding site
comprises the minor grooves of H89 and H91 of the 23S rRNA, as
well as arginine residues of L16 (Fig. 1E), consistent with available
chemical protection and resistance data (Figs. 2–4) (10–18). The
binding position for EVN and AVI provides a structural explanation
for how the orthosomycins inhibit IF2-dependent 70S-IC formation
(11, 21)—namely, by interfering with the transition from the IF2-30S
conformation to the IF2-70S that occurs upon subunit joining (Fig.
S3). Additionally, our smFRET data demonstrate that both EVN
and AVI interfere with the accommodation of aa-tRNA at the A site
of the ribosome (Fig. 5 C–H), consistent with the overlap between
EVN/AVI and the elbow region of a fully accommodated A-tRNA
(Fig. 5A). Overall, our study also demonstrates that cryo-EM can be

used to determine de novo the binding site of antibiotics on the
bacterial ribosome, as was also recently demonstrated for the
antiprotozoan drug emetine in complex with the Plasmodium fal-
ciparum 80S ribosome (43).

Materials and Methods
The SRCs were prepared essentially as described (25, 44). Cryo-EM data
collection was performed on the Titan Krios (FEI) 300-kV TEM equipped
with a Falcon II direct electron detector. Images of individual ribosome
particles were aligned by using Motion Correction software (45), and then
particles were selected automatically by using SIGNATURE (46). All images
were processed by using a frequency-limited refinement protocol that
prevents overfitting (47) using the SPIDER software package (48), as de-
scribed (25, 44). The final maps were subjected to the program EM-
BFACTOR (49) to apply an automatically determined negative B factor for
sharpening of the map, and local resolution was calculated by using
ResMap (50). Molecular models were fitted and adjusted by using COOT
(51) and refined in Phenix (52). Model validation was carried out by using
the MolProbity server (53), and the final model statistics are presented in
Table S1. All figures showing atomic models as well as Movie S1 were
generated by using PyMOL (Schrödinger). Fig. S1 was generated by using
Chimera (54). The smFRET experiments were performed as described (39–
41, 55). Further details can be found in SI Materials and Methods. The cryo-
EM maps and models for the EVN- and AVI-SRC have been deposited in the
EMDatabank (accession nos. EMD-8238 and EMD-8237) and the Protein
Data Bank (PDB ID codes 5KCS and 5KCR).
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Fig. 5. EVN/AVI inhibit accommodation of tRNA
into the A site. (A) Comparison of the relative
binding positions on the ribosome of AVI (red), EF-
Tu (blue), A/T-tRNA (green) (36, 56), and A/A-tRNA
(teal) (38). (B) Schematic diagram of smFRET mea-
surements of tRNA selection. After delivery of EF-
Tu·GTP·tRNA ternary complex containing cognate
Phe-tRNAPhe(LD650) to the A site of E. coli 70S ri-
bosomes containing tRNAi

Met(Cy3) in the P site,
tRNA motion can be tracked through the progres-
sion of FRET efficiencies from low (0.2) to intermediate
(0.35) FRET during initial steps of selection to high
(0.63) FRET upon A-site tRNA accommodation, which is
inhibited by AVI/EVN. (C–E) Ensemble smFRET histo-
grams showing the time course of aa-tRNA selection,
imaged in the absence of drugs (C) or in the presence
of 20 μM AVI (D) or 20 μM EVN (E). The histograms
were postsynchronized by aligning each observed
event to the first appearance of nonzero FRET states.
(F–H) Transition density plots for the data shown in C–E,
respectively. These 2D histograms juxtapose the FRET
efficiencies immediately before and after FRET tran-
sitions. As indicated by arrows, EVN and AVI promote
reversible transitions between high and intermedi-
ate FRET.
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