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We review concepts, principles, and tools that unify current ap-
proaches to causal analysis and attend to new challenges presented
by big data. In particular, we address the problem of data fusion—
piecing together multiple datasets collected under heterogeneous
conditions (i.e., different populations, regimes, and sampling meth-
ods) to obtain valid answers to queries of interest. The availability of
multiple heterogeneous datasets presents new opportunities to big
data analysts, because the knowledge that can be acquired from
combined data would not be possible from any individual source
alone. However, the biases that emerge in heterogeneous environ-
ments require new analytical tools. Some of these biases, including
confounding, sampling selection, and cross-population biases, have
been addressed in isolation, largely in restricted parametric models.
We here present a general, nonparametric framework for handling
these biases and, ultimately, a theoretical solution to the problem of
data fusion in causal inference tasks.

causal inference | counterfactuals | external validity | selection bias |
transportability

The exponential growth of electronically accessible information
has led some to conjecture that data alone can replace sub-

stantive knowledge in practical decision making and scientific
explorations. In this paper, we argue that traditional scientific
methodologies that have been successful in the natural and bio-
medical sciences would still be necessary for big data applications,
albeit tasked with new challenges: to go beyond predictions and,
using information from multiple sources, provide users with rea-
soned recommendations for actions and policies. The feasibility of
meeting these challenges is demonstrated here using specific data
fusion tasks, following a brief introduction to the structural causal
model (SCM) framework (1–3).

Introduction—Causal Inference and Big Data
The SCM framework invoked in this paper constitutes a symbiosis
between the counterfactual (or potential outcome) framework of
Neyman, Rubin, and Robins with the econometric tradition of
Haavelmo, Marschak, and Heckman (1). In this symbiosis, coun-
terfactuals are viewed as properties of structural equations and
serve to formally articulate research questions of interest. Graphical
models, on the other hand, are used to encode scientific assump-
tions in a qualitative (i.e., nonparametric) and transparent language
as well as to derive the logical ramifications of these assumptions, in
particular, their testable implications and how they shape be-
havior under interventions.
One unique feature of the SCM framework, essential in big data

applications, is the ability to encode mathematically the method by
which data are acquired, often referred to generically as the “de-
sign.” This sensibility to design, which we can label proverbially as
“not all data are created equal,” is illustrated schematically through
a series of scenarios depicted in Fig. 1. Each design (shown in Fig. 1,
Bottom) represents a triplet specifying the population, the regime
(observational vs. experimental), and the sampling method by which
each dataset is generated. This formal encoding allows us to de-
lineate the inferences that one can draw from each design to answer
the query of interest (Fig. 1, Top).
Consider the task of predicting the distribution of outcomes Y

after intervening on a variable X, written Q=PðY = yjdoðX = xÞÞ.

Assume that the information available to us comes from an
observational study, in which X, Y, Z, and W are measured, and
samples are selected at random. We ask for conditions under
which the query Q can be inferred from the information
available, which takes the form Pðy, x, z,wÞ, where Z and W are
sets of observed covariates. This represents the standard task of
policy evaluation, where controlling for confounding bias is the
major issue (Fig. 1, task 1).
Consider now Fig. 1, task 2, in which the goal is again to estimate

the effect of the intervention doðX = xÞ but the data available to the
investigator were collected in an experimental study in which vari-
able Z, more accessible to manipulation than X, is randomized.
[Instrumental variables (4) are special cases of this task.] The gen-
eral question in this scenario is under what conditions can ran-
domization of variable Z be used to infer how the population
would react to interventions over X. Formally, our problem is
to infer PðY = yjdoðX = xÞÞ from Pð y, x,wjdoðZ= zÞÞ. A non-
parametric solution to these two problems is presented in Policy
Evaluation and the Problem of Confounding.
In each of the two previous tasks we assumed that a perfect

random sample from the underlying population was drawn, which
may not always be realizable. Task 3 in Fig. 1 represents a ran-
domized clinical trial conducted on a nonrepresentative sample of
the population. Here, the information available takes the syntactic
form Pð y, z,wjdoðX = xÞ, S= 1Þ, and possibly Pð y, x, z,wjS= 1Þ,
where S is a sample selection indicator, with S= 1 indicating
inclusion in the sample. The challenge is to estimate the effect of
interest from this imperfect sampling condition. Formally, we ask
when the target quantity Pð yjdoðX = xÞÞ is derivable from the
available information (i.e., sampling-biased distributions). Sam-
ple Selection Bias presents a solution to this problem.
Finally, the previous examples assumed that the population

from which data were collected is the same as the one for
which inference was intended. This is often not the case (Fig. 1,
task 4). For example, biological experiments often use animals
as substitutes for human subjects. Or, in a less obvious exam-
ple, data may be available from an experimental study that
took place several years ago, and the current population has
changed in a set S of (possibly unmeasured) attributes. Our
task then is to infer the causal effect at the target population,
Pð yjdoðX = xÞ, S= sÞ from the information available, which now
takes the form Pð y, z,wjdoðX = xÞÞ and Pð y, x, z,wjS= sÞ. The
second expression represents information obtainable from
nonexperimental studies on the current population, where
S= s.
The problems represented in these archetypal examples are

known as confounding bias (Fig. 1, tasks 1 and 2), sample selection
bias (Fig. 1, task 3), and transportability bias (Fig. 1, task 4). The
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information available in each of these tasks is characterized by a
different syntactic form, representing a different design, and, nat-
urally, each of these designs should lead to different inferences.
What we shall see in subsequent sections of this paper is that the
strategy of going from design to a query is the same across tasks; it
follows simple rules of inference and decides, using syntactic ma-
nipulations, whether the type of data available is sufficient for the
task and, if so, how.*
Empowered by this strategy, the central goal of this paper is to

explicate the conditions under which causal effects can be estimated
nonparametrically from multiple heterogeneous datasets. These
conditions constitute the formal basis for many big data inferences
because, in practice, data are never collected under idealized con-
ditions, ready for use. The rest of this paper is organized as follows.
We start by defining SCMs and stating the two fundamental laws of
causal inference. We then consider respectively the problem of
policy evaluation in observational and experimental settings, sam-
pling selection bias, and data fusion from multiple populations.

The Structural Causal Model
At the center of the structural theory of causation lies a “structural
model,”M, consisting of two sets of variables, U and V, and a set F
of functions that determine or simulate how values are assigned to
each variable Vi ∈V . Thus, for example, the equation

vi = fiðv, uÞ
describes a physical process by which variable Vi is assigned the value
vi = fiðv, uÞ in response to the current values, v and u, of the variables
in V and U. Formally, the triplet hU,V ,Fi defines a SCM, and the
diagram that captures the relationships among the variables is called
the causal graph G (of M).† The variables in U are considered
“exogenous,” namely, background conditions for which no explana-
tory mechanism is encoded in modelM. Every instantiation U = u of
the exogenous variables uniquely determines the values of all vari-
ables in V and, hence, if we assign a probability PðuÞ to U, it induces
a probability function PðvÞ on V. The vector U = u can also be
interpreted as an experimental “unit” that can stand for an individual
subject, agricultural lot, or time of day. Conceptually, a unit U = u
should be thought of as the sum total of all relevant factors that
govern the behavior of an individual or experimental circumstances.
The basic counterfactual entity in structural models is the sen-

tence, “Y would be y had X been x in unit (or situation) U = u,”
denoted YxðuÞ= y. Letting Mx stand for a modified version of M,
with the equation(s) of set X replaced by X = x, the formal defi-
nition of the counterfactual YxðuÞ reads

YxðuÞ≜YMxðuÞ. [1]

In words, the counterfactual YxðuÞ in model M is defined as the
solution for Y in the “modified” submodel Mx. Refs. 6 and 7 give a
complete axiomatization of structural counterfactuals, embracing
both recursive and nonrecursive models (ref. 1, chap. 7).‡ Remark-
ably, the axioms that characterize counterfactuals in the SCM co-
incide with those that govern potential outcomes in Rubin’s causal
model (9) where YxðuÞ stands for the potential outcome of unit u,
had u been assigned treatment X = x. This axiomatic agreement
implies a logical equivalence of the two systems; namely, any valid
inference in one is also valid in the other. Their differences lie in
the way assumptions are articulated and the ability of the researcher
to scrutinize those assumptions and to infer their implications (2).

Eq. 1 implies that the distribution PðuÞ induces a well-defined
probability on the counterfactual event Yx = y, written PðYx = yÞ,
which is equal to the probability that a random unit u would
satisfy the equation YxðuÞ= y. By the same reasoning, the model
hU,V ,F,PðuÞi assigns a probability to every counterfactual or
combination of counterfactuals defined on the variables in V.

The Two Principles of Causal Inference. Before describing how the
structural theory applies to big data inferences, it will be useful to
summarize its implications in the form of two “principles,” from which
all other results follow: principle 1, “the law of structural counter-
factuals,” and principle 2, “the law of structural independences.”
The first principle described in Eq. 1 constitutes the semantics

of counterfactuals and instructs us how to compute counterfac-
tuals and probabilities of counterfactuals from both the structural
model and the observed data.
Principle 2 defines how features of the model affect the observed

data. Remarkably, regardless of the functional form of the equations
in the model (F) and regardless of the distribution of the exogenous
variables (U), if the model is recursive, the distribution PðvÞ of the
endogenous variables must obey certain conditional indepen-
dence relations, stated roughly as follows: Whenever sets X and
Y are separated by a set Z in the graph, X is independent of Y
given Z in the probability distribution. This “separation” condi-
tion, called d-separation (10), constitutes the link between the
causal assumptions encoded in the graph (in the form of missing
arrows) and the observed data.

Definition 1 (d-separation): A set Z of nodes is said to “block” a
path p if either

(i) p contains at least one arrow-emitting node that is in Z or
(ii) p contains at least one collision node that is outside Z and

has no descendant in Z.

If Z blocks all paths from set X to set Y, it is said to “d-separate X
and Y ,” and then variables X and Y are independent given Z,
written X╨Y

��Z.§

Fig. 1. Prototypical generalization tasks where the goal is, for example, to es-
timate a causal effect in a target population (Top). Let V = fX,Y , Z,Wg. There
are different designs (Bottom) showing that data come from nonidealized con-
ditions, specifically: (1) from the same population under an observational regime,
PðvÞ; (2) from the same population under an experimental regime when Z is
randomized, PðvjdoðzÞÞ; (3) from the same population under sampling selection
bias, PðvjS= 1Þ or PðvjdoðxÞ, S= 1Þ; and (4) from a different population that is
submitted to an experimental regime when X is randomized, PðvjdoðxÞ, S= sÞ,
and observational studies in the target population.

*An important issue that is not discussed in this paper is “measurement bias” (5).
†Following ref. 1, we denote variables by uppercase letters and their realized values by
lowercase letters. We used family relations (e.g., children, parents, descendants) to de-
note the corresponding graphical relations, and we focus on directed acyclic graphs
(DAGs), although many features of the SCM apply to nonrecursive systems as well.

‡The structural definition of counterfactual given in Eq. 1 was first introduced in ref. 8.

§By a path we mean a consecutive edges in the graph regardless of direction. Dependen-
cies among the U variables are represented by double-arrowed arcs; see Fig. 3.
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D-separation implies conditional independencies for every distri-
bution PðvÞ that can be generated by assigning functions (F) to the
variables in the graph. To illustrate, the diagram in Fig. 2A implies
Z1╨Y

��fX ,Z3,W2g, because the conditioning set Z= fX ,Z3,W2g
blocks all paths between Z1 and Y. The set Z= fX ,Z3,W3g, how-
ever, leaves the path ðZ1 →Z3 ←Z2 →W2 →Y Þ unblocked [by virtue
of the converging arrows (collider) at Z3] and, so, the independence
Z1╨Y

��ðX ,Z3,W3Þ is not implied by the diagram.
In the sequel, we show how these independencies help us eval-

uate the effect of interventions and overcome the problem of
confounding bias.{ Clearly, any attempt to predict the effects of
interventions from nonexperimental data must rely on causal as-
sumptions. One of the most attractive features of the SCM
framework is that those assumptions are all encoded parsimoni-
ously in the diagram; thus, unlike “ignorability”-type assumptions
(11, 12), they can be meaningfully scrutinized for scientific plau-
sibility or be submitted to statistical tests.

Policy Evaluation and the Problem of Confounding
A central question in causal analysis is that of predicting the results
of interventions, such as those resulting frommedical treatments or
social programs, which we denote by the symbol doðxÞ and define
using the counterfactual Yx as#

PðyjdoðxÞÞ≜PðYx = yÞ. [2]

Fig. 2B illustrates the submodel Mx created by the atomic interven-
tion doðxÞ; it sets the value of X to x and thus removes the influence
(Fig. 2B, arrows) of fW1,Z3g on X. The set of incoming arrows
toward X is sometimes called the assignment mechanism and may
also represent how the decision X = x is made by an individual in
response to natural predilections (i.e., fW1,Z3g), as opposed to an
externally imposed assignment in a controlled experiment.k Further-
more, we can similarly define the result of stratum-specific interven-
tions by

Pð yjdoðxÞ, zÞ≜Pð y, zjdoðxÞÞ=PðzjdoðxÞÞ=PðYx = yjZx = zÞ. [3]

PðyjdoðxÞ, zÞ captures the z-specific effect of X on Y, that is, Y’s
response to setting X to x among those units only for which Z
responds with z. [For pretreatment Z (e.g., sex, age, or ethnicity),
those units would remain invariant to X (i.e., Zx =Z).]
Recalling that any counterfactual quantity can be computed from

a fully specified model hU,V ,F,PðuÞi, it follows that the interven-
tional distributions defined in Eqs. 2 and 3 can be computed directly
from such a model. In practice, however, only a partially specified
model is available, in the form of a graph G, and the problem arises
whether the data collected can make up for our ignorance of the
functions F and the probabilities PðuÞ. This is the problem of
identification, which asks whether the interventional distribution,
PðyjdoðxÞÞ, can be estimated from the available data and the as-
sumptions embodied in the model’s graph.
In parametric settings, the question of identification amounts to

asking whether some model parameter, θ, has a unique solution in
terms of the parameters of P. In the nonparametric formulation,
quantities such as Q=PðyjdoðxÞÞ should have unique solutions.
The following definition captures this requirement.

Definition 2 (identifiability) (ref. 1, p. 77): A causal query Q is iden-
tifiable from distribution PðvÞ compatible with a causal graph G, if

for any two (fully specified) models M1 and M2 that satisfy the
assumptions in G, we have

P1ðvÞ=P2ðvÞ⇒QðM1Þ=QðM2Þ. [4]

In words, equality in the probabilities P1ðvÞ and P2ðvÞ induced by
modelsM1 andM2, respectively, entails equality in the answers that
these two models give to query Q. When this happens, Q depends
on PðvÞ andG only and can therefore be expressible in terms of the
parameters of PðvÞ [i.e., regardless of the true underlying mecha-
nisms F and randomness PðuÞ].
For queries in the form of a do-expression, for example

Q=PðyjdoðxÞ, zÞ, identifiability can be decided systematically using
an algebraic procedure known as the do-calculus (14), discussed
next. It consists of three inference rules that permit us to manip-
ulate interventional and observational distributions whenever cer-
tain separation conditions hold in the causal diagram G.

The Rules of do-Calculus. Let X, Y, Z, andW be arbitrary disjoint sets
of nodes in a causal DAGG. We denote byGX the graph obtained
by deleting from G all arrows pointing to nodes in X (e.g., Fig. 2B).
Likewise, we denote by GX the graph obtained by deleting from G
all arrows emerging from nodes in X (e.g., Fig. 2C). To represent
the deletion of both incoming and outgoing arrows, we use the
notation GX Z.
The following three rules are valid for every interventional

distribution compatible with G.

Rule 1 (insertion/deletion of observations):

Pð yjdoðxÞ, z,wÞ=Pð yjdoðxÞ,wÞ if ðY╨ZjX ,W ÞG
X
. [5]

Rule 2 (action/observation exchange):

Pð yjdoðxÞ, doðzÞ,wÞ=Pð yjdoðxÞ, z,wÞ if ðY╨ZjX ,W ÞG
X Z
.

[6]

Rule 3 (insertion/deletion of actions):

Pð yjdoðxÞ, doðzÞ,wÞ=Pð yjdoðxÞ,wÞ if ðY╨ZjX ,W ÞG
X Zp

,

[7]

where Z* is the set of Z nodes that are not ancestors of any W
node in GX.

To establish identifiability of a causal query Q, one needs to re-
peatedly apply the rules of do-calculus to Q, until an expression is
obtained that no longer contains a do-operator**; this renders Q
consistently “estimable” from nonexperimental data (henceforth,
estimable or “unbiased” for short). The do-calculus was proved to
be complete for queries in the formQ=PðyjdoðxÞ, zÞ (15, 16), which

A B C

Fig. 2. (A) Graphical model illustrating d-separation and the backdoor cri-
terion. U terms are not shown explicitly. (B) Illustration of the intervention
doðX = xÞ with arrows toward X cut. (C) Illustration of the spurious paths,
which pop out when we cut the outgoing edges from X and need to be
blocked if one wants to use adjustment.

{These and other constraints implied by principle 1 also facilitate model testing and
learning (1).

#Alternative definitions of doðxÞ not invoking counterfactuals are given in ref. 1, p. 24,
and ref. 12, which are also compatible with the results presented in this paper.

kThis primitive operator can be used for handling stratum-specific interventions (ref. 1,
Chap. 4) as well as noncompliance (ref. 1, Chap. 8) and compound interventions (ref. 1,
Chap. 11.4).

**Such derivations are illustrated in graphical detail in ref. 1, p. 87, and in the next
section.
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means that if Q cannot be reduced to probabilities of observables by
repeated application of these three rules, Q is not identifiable. We
show next concrete examples of the application of the do-calculus.

Covariate Selection: The Backdoor Criterion. Consider an observa-
tional study, where we wish to find the effect of treatment ðXÞ on
outcome ðY Þ, and assume that the factors deemed relevant to the
problem are structured as in Fig. 2A; some are affecting the out-
come, some are affecting the treatment, and some are affecting
both treatment and response. Some of these factors may be un-
measurable, such as genetic trait or lifestyle, whereas others are
measurable, such as gender, age, and salary level. Our problem is to
select a subset of these factors for measurement and adjustment
such that if we compare treated vs. untreated subjects having the
same values of the selected factors, we get the correct treatment
effect in that subpopulation of subjects. Such a set of factors is
called a “sufficient set,” an “admissible set,” or a set “appropriate
for adjustment” (2, 17). The following criterion, named “backdoor”
(18), provides a graphical method of selecting such a set of factors
for adjustment.
Definition 3 (admissible sets—the backdoor criterion): A set Z is ad-
missible (or “sufficient”) for estimating the causal effect of X on Y
if two conditions hold:

(i) No element of Z is a descendant of X and

(ii) the elements of Z “block” all backdoor paths from X to
Y—i.e., all paths that end with an arrow pointing to X.

Based on this criterion we see, for example, that in Fig. 2, the sets
fZ1,Z2,Z3g, fZ1,Z3g, fW1,Z3g, and fW2,Z3g are each sufficient
for adjustment, because each blocks all backdoor paths between X
and Y. The set fZ3g, however, is not sufficient for adjustment because
it does not block the path X ←W1 ←Z1 →Z3 ←Z2 →W2 →Y .
The intuition behind the backdoor criterion is simple. The back-

door paths in the diagram carry the “spurious associations” from X
to Y, whereas the paths directed along the arrows from X to Y carry
“causative associations.” If we remove the latter paths as shown in
Fig. 2C, checking whether X and Y are separated by Z amounts to
verifying that Z blocks all spurious paths. This ensures that the
measured association between X and Y is purely causal; namely, it
correctly represents the causal effect of X on Y. Conditions for
relaxing and generalizing Definition 3 are given in ref. 1, p. 338, and
refs. 19–21.††

The implication of finding a sufficient set, Z, is that stratifying
on Z is guaranteed to remove all confounding bias relative to the
causal effect of X on Y. In other words, it renders the effect of X
on Y identifiable, via the adjustment formula‡‡

PðY = yjdoðX = xÞÞ=
X

z

Pð yjx,Z= zÞPðZ= zÞ. [8]

Because all factors on the right-hand side of the equation are
estimable (e.g., by regression) from nonexperimental data, the
causal effect can likewise be estimated from such data without
bias. Eq. 8 differs from the conditional distribution of Y given X,
which can be written as

PðY = yjX = xÞ=
X

s

Pðyjx,Z= zÞPðZ= zjxÞ; [9]

the difference between these two distributions defines con-
founding bias.

Moreover, the backdoor criterion implies an independence
known as “conditional ignorability” (11), X╨Yx

��Z, and provides
therefore the scientific basis for most inferences in the potential
outcome framework. For example, the set of covariates that enter
“propensity score” analysis (11) must constitute a backdoor suffi-
cient set, or confounding bias will arise.
The backdoor criterion can be applied systematically to dia-

grams of any size and shape, thus freeing analysts from judging
whether “X is conditionally ignorable given Z,” a formidable
mental task required in the potential-outcome framework. The
criterion also enables the analyst to search for an optimal set of
covariates—namely, a set, Z, that minimizes measurement cost
or sampling variability (22, 23).
Despite its importance, adjustment for covariates (or for

propensity scores) is only one tool available for estimating the
effects of interventions in observational studies; more refined
strategies exist that go beyond adjustment. For instance, as-
sume that only variables fX ,Y ,W3g are observed in Fig. 2A, so
only the observational distribution Pðx, y,w3Þmay be estimated
from the samples. In this case, backdoor admissibility (or
conditional ignorability) does not hold, but an alternative
strategy known as the front-door criterion (ref. 1, p. 83) can be
used to yield identification. Specifically, the calculus permits
rewriting the experimental distribution as

PðY = yjdoðX = xÞÞ=
X

w3

Pðw3jxÞ
X

x′
Pð yjx′,w3ÞPðx′Þ, [10]

which is almost always different from Eq. 8.
Finally, in case W3 is also not observed, only the observational

distribution Pðx, yÞ can be estimated from the samples, and the
calculus will discover that no reduction is feasible, which implies (by
virtue of its completeness) that the target quantity is not identifiable
(without further assumptions).

Identification Through Auxiliary Experiments. In many applications,
it is not uncommon that the quantity Q=PðyjdoðxÞÞ is not
identifiable from the observational data alone. Imagine a re-
searcher interested in assessing the effect (Q) of cholesterol
levels (X) on heart disease (Y), assuming data about a subject’s
diet (Z) are also collected (Fig. 3A). In practice, it is infeasible to
control a subject’s cholesterol level by intervention, so PðyjdoðxÞÞ
cannot be obtained from a randomized trial. Assuming, how-
ever, that an experiment can be conducted in which Z is ran-
domized, would Q be computable given this piece of experimental
information?
This question represents what we call task 2 in Fig. 1 and leads to

a natural extension of the identifiability problem (Definition 2) in
which, in addition to the standard input [PðvÞ and G], an inter-
ventional distribution PðvjdoðzÞÞ is also available to help establish
Q=PðyjdoðxÞÞ. This task can be seen as the nonparametric version

12

Y Y YY

Z

X X X

ZZZZ

X

A C DB

Fig. 3. Graphical models illustrating identification of Q= PðyjdoðxÞÞ through
the use of experiments over an auxiliary variable Z. Identifiability follows from
Pðx, yjdoðZ = zÞÞ in A, and it also requires PðvÞ in B. Identifiability in models A
and B follows from the identifiability of Q in GZ.

††In particular, the criterion devised by ref. 20 simply adds to condition ii of Definition 3
the requirement that X and its nondescendants (in Z) separate its descendants (in Z)
from Y.

‡‡Summations should be replaced by integration when applied to continuous variables.
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of identification with instrumental variables and is named z-iden-
tification in ref. 24.§§

Using the do-calculus and the assumptions embedded in Fig. 3A,
it can readily be shown that the target query Q can be transformed
to read

PðY = yjdoðX = xÞÞ=Pð y, xjdoðzÞÞ=PðxjdoðzÞÞ, [11]

for any level Z= z. Because all do-terms in Eq. 11 apply only to Z,
Q is estimable from the available data. In general, it can be shown
(24) that z-identifiability is feasible if and only if X intercepts all
directed paths from Z to Y and PðyjdoðxÞÞ is identifiable in GZ.
Note that, due to the nonparametric nature of the problem, these
conditions are stronger than those needed for local average treat-
ment effect (LATE) (4) or other functionally restricted instrumen-
tal variables applications.
Fig. 3B demonstrates this graphical criterion. Here Z1 can serve

as an auxiliary variable because (i) there is no directed path from Z1
to Y in GX and (ii) Z2 is a sufficient set in GZ1

. The resulting ex-
pression for Q becomes

PðY = yjdoðX = xÞÞ=
X

z2

Pð yjx, doðz1Þ, z2ÞPðz2Þ. [12]

The first factor is estimable from the experimental dataset and the
second factor from the observational dataset.
Fig. 3 C and D demonstrate negative examples in which Q is not

estimable even when both distributions (observational and experi-
mental) are available; each model violates the necessary conditions
stated above. [Note: contrary to intuition, non-confoundedness of X
and Y in GZ is not sufficient.]

Summary Result 1 (Identification in Policy Evaluation). The analysis
of policy evaluation problems has reached a fairly satisfactory state
of maturity. We now possess a complete solution to the problem of
identification whenever assumptions are expressible in DAG form. This
entails (i) graphical and algorithmic criteria for deciding identifiability
of policy questions, (ii) automated procedures for extracting each and
every identifiable estimand, and (iii) extensions to models invoking
sequential dynamic decisions with unmeasured confounders. These
results were developed in several stages over the past 20 years (14, 16,
18, 24, 26).

Sample Selection Bias
In this section, we consider the bias associated with the data-
gathering process, as opposed to confounding bias that is asso-
ciated with the treatment assignment mechanism. Sample selection
bias (or selection bias for short) is induced by preferential selection
of units for data analysis, usually governed by unknown factors in-
cluding treatment, outcome, and their consequences, and repre-
sents a major obstacle to valid statistical and causal inferences. For
instance, in a typical study of the effect of a training program on
earnings, subjects achieving higher incomes tend to report their
earnings more frequently than those who earn less, resulting in
biased inferences.
Selection bias challenges the validity of inferences in several tasks

in artificial intelligence (27, 28) and statistics (29, 30) as well as in
the empirical sciences [e.g., genetics (31, 32), economics (33, 34),
and epidemiology (35, 36)].
To illustrate the nature of preferential selection, consider

the data-generating model in Fig. 4A in which X represents a
treatment, Y represents an outcome, and S is a special (indicator)
variable representing entry into the data pool—S= 1 means that
the unit is in the sample and S= 0 otherwise. If our goal is, for

example, to compute the population-level experimental distri-
bution Q=PðyjdoðxÞÞ, and the samples available are collected
under preferential selection, only Pðy, xjS= 1Þ is accessible for
use. Under what conditions can Q be recovered from data
available under selection bias?
In the model G in Fig. 4B the selection process is treat-

ment dependent (i.e., X → S), and the selection mechanism S
is d-separated from Y by X; hence, PðyjxÞ=Pðyjx,S= 1Þ. More-
over, given that X and Y are unconfounded, we can rewrite
the left-hand side as PðyjxÞ=PðyjdoðxÞÞ, and it follows that
the experimental distribution is recoverable and given by
PðyjdoðxÞÞ=Pðyjx, S= 1Þ (37, 38). On the other hand, if the se-
lection process is also outcome dependent (Fig. 4A), S is not
separable from Y by X in G, and Q is not recoverable by any
method (without stronger assumptions) (39).
In practical settings, however, the data-gathering process may be

embedded in more intricate scenarios as shown in Fig. 4 C–F,
where covariates such as age, sex, and socioeconomic status also
affect the sampling probabilities. In the model in Fig. 4C, for ex-
ample, W1 (sex) is a driver of the treatment while also affecting the
sampling process. In this case, both confounding and selection
biases need to be controlled for. We can see based on Definition 3
that fW1,W2g, fW1,W2,Zg, fW1,Zg, fW2,Zg, and fZg are all
backdoor admissible sets and thus proper for controlling con-
founding bias. However, only the set fZg is appropriate for con-
trolling for selection bias. The reason is that when using the
adjusting formula (Eq. 8) with any set, say T, the prior distribution
PðtÞ also needs to be estimable, which is clearly not feasible for
sets different from fZg (the only set independent of S). The
proper adjustment in this case would be written as PðyjdoðxÞÞ=P
z
Pðyjx, z, S= 1ÞPðzjS= 1Þ, where both factors are estimable from

the biased dataset.
If we apply the same rationale to Fig. 4D and search for a set Z

that is both admissible for adjustment and available from the bi-
ased dataset, we will fail. In a big data reality, however, additional
datasets with measurements at the population level (over subsets of
the variables) may be available to help in computing these effects.
For instance, Pðage, sex, raceÞ is usually estimable from census data
without selection bias.

A

D E F

B C

Fig. 4. Canonical models where selection is treatment dependent in A and B
and also outcome dependent in A. More complex models in which fW1,W2g
and fZg are sufficient for adjustment, but only the latter is adequate for re-
covering from selection bias, are shown in C. There is no sufficient set for
adjustment without external data in D–F. (D) Example of S-backdoor
admissible set. (E and F) Structures with no S-admissible sets that require
more involved recoverability strategies involving posttreatment variables.

§§The scope of this paper is circumscribed to nonparametric analysis. Additional results
can be derived whenever the researcher is willing to make parametric or functional
restrictions (3, 24).
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Definition 4 (below) provides a simple extension of the backdoor
condition that allows us to control both selection and confounding
biases by an adjustment formula.
Conditions 1 and 2 ensure that Z is backdoor admissible, con-

dition 3 acts to separate the sampling mechanism S from Y, and
condition 4 guarantees that Z is measured in both population-level
data and biased data.

Definition 4 [Selection backdoor criterion (39)]: Let a set Z of vari-
ables be partitioned into Z+ ∪Z− such that Z+ contains all non-
descendants of X and Z− the descendants of X, and letGs stand for
the graph that includes the sampling mechanism S. Z is said to
satisfy the selection backdoor criterion (S-backdoor, for short) if it
satisfies the following conditions:

(i) Z+ blocks all backdoor paths from X to Y in Gs;

(ii) X and Z+ block all paths between Z− and Y in Gs, namely,
ðZ−

╨Y
��X ,Z+Þ;

(iii) X and Z block all paths between S and Y in Gs, namely,
ðY╨S

��X ,ZÞ; and
(iv) Z and Z∪ fX ,Yg are measured in the unbiased and biased

studies, respectively.

Theorem 1. If Z is S-backdoor admissible, then causal effects are
identified by

PðyjdoðxÞÞ=
X

z

Pðyjx, z, S= 1ÞPðzÞ. [13]

To illustrate the use of this criterion, note that any one of
the sets fT1,Z3g, fZ1,Z3g, fZ2,Z3g, fW2,Z3g in Fig. 4D sat-
isfies conditions i and ii of Definition 4. However, the first
three sets clearly do not satisfy condition iii, but fW2,Z3g
does (because Y╨S

��fW2,Z3g in G). If census data are avail-
able with measurements of fW2,Z3g (and biased data over
fX ,Y ,W2,Z3g), condition iv will be satisfied, and the experi-
mental distribution PðyjdoðxÞÞ is estimable through the expressionP

w2,  z3Pðyjx,w2, z3, S= 1ÞPðw2, z3Þ.
We note that S-backdoor is a sufficient although not neces-

sary condition for recoverability. In Fig. 4E, for example, con-
dition i is never satisfied. Nevertheless, a do-calculus derivation
allows for the estimation of the experimental distribution
even without an unbiased dataset (40), leading to the expressionP

w1
ðP ðx, y,w1,w2,w3jS= 1Þ=Pðw2jw1, S= 1ÞÞ=Py,w1

ðP ðvjS= 1Þ=
Pðw2jw1, S= 1ÞÞ, for any level W2 =w2.
We also should note that the odds ratio can be recovered from

selection bias even in settings where the risk difference cannot
(37, 38, 41).

The Generalizabiity of Clinical Trials. The simple model in Fig. 4F
illustrates a common pattern that assists in generalizing experi-
mental findings from clinical trials. In such trials, confounding
need not be controlled for and the major task is to general-
ize from nonrepresentative samples (S= 1) to the population
at large.
This disparity is indeed a major threat to the validity of ran-

domized trials. Because participation cannot be mandated, we
cannot guarantee that the study population would be the same as
the population of interest. Specifically, the study population may
consist of volunteers, who respond to financial and medical in-
centives offered by pharmaceutical firms or experimental teams,
so the distribution of outcomes in the study may differ sub-
stantially from the distribution of outcomes under the policy
of interest.
Bearing in mind that we are in a big data context, it is not

unreasonable to assume that both S-biased experimental dis-
tribution [i.e., Pðy, zjdoðxÞ, S= 1Þ] and unbiased observational

distribution [i.e., Pðx, z, yÞ] are available, and the following deri-
vation shows how the target query in the model in Fig. 4F can be
transformed to match these two datasets:

PðyjdoðxÞÞ=
X

z

Pð yjdoðxÞ, zÞPðzjdoðxÞÞ

=
X

z

Pð yjdoðxÞ, zÞPðzjxÞ

=
X

z

Pð yjdoðxÞ, z, S= 1ÞPðzjxÞ.
[14]

The two factors in the final expression are estimable from the
available data: the first one from the trial’s (biased) dataset and
the second one from the population-level dataset.
This example demonstrates the important role that post-

treatment variables (Z) play in facilitating generalizations from
clinical trials. Previous analyses (12, 42, 43) have invariably relied
on an assumption called “S-ignorability,” i.e., Yx╨S

��Z, which
states that the potential outcome Yx is independent of the se-
lection mechanism S in every stratum Z= z. When Z satisfies this
assumption, generalizabiity can be accomplished by reweighing
(or recalibrating) PðzÞ. Recently, however, it was shown that
S-ignorability is rarely satisfied by posttreatment variables and,
even when it is, reweighting will not give the correct result
(44).{{

The derivation of Eq. 14 demonstrates that posttreatment vari-
ables can nevertheless be leveraged for the task albeit through
nonconventional reweighting formulas (43). Valid generalization
requires only S-admissibility, i.e., S Y╨Z, X, and that P(z|do(x)) be
identified; both are readily discernible from the graph. The general
reweighting estimator then becomes Eq. 14, with P(z|do(x))
replacing P(z|x).

Summary Result 2 (Recoverability from Selection Bias). The S-back-
door criterion (Definition 4) provides a sufficient condition simul-
taneously controlling for both confounding and sampling selection
biases. In clinical trials, causal effects can be recovered from se-
lection bias through using simple graphical conditions, leveraging
both pretreatment and posttreatment variables. More powerful
recoverability methods have been developed for special classes of
models (39–41).

Transportability and the Problem of Data Fusion
In this section, we consider task 4 (Fig. 1), the problem of ex-
trapolating experimental findings across domains (i.e., settings,
populations, environments) that differ both in their distribu-
tions and in their inherent causal characteristics. This prob-
lem, called “transportability” in ref. 45, lies at the heart of
every scientific investigation because, invariably, experiments
performed in one environment are intended to be used elsewhere,

S

SZ

X YYXYX

Z S

YX

Z S

Z

A B C D

Fig. 5. Selection diagrams depicting differences between source and target
populations. In A, the two populations differ in age (Z) distributions (so S
points to Z). In B, the populations differ in how reading skills (Z) depend on
age (an unmeasured variable, represented by the open circle) and the age
distributions are the same. In C, the populations differ in how Z depends on
X. In D, the unmeasured confounder (bidirected arrow) between Z and Y
precludes transportability.

{{In general, the language of ignorability is too coarse for handling posttreatment var-
iables (44).
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where conditions are likely to be different. Special cases of
transportability can be found in the literature under different
rubrics such as “lack of external validity” (46, 47), “hetero-
geneity” (48), and “meta-analysis” (49, 50). We formalize the
transportability problem in nonparametric settings and show
that despite glaring differences between the two populations,
it might still be possible to infer causal effects at the target
population by borrowing experimental knowledge from the
source populations.
For instance, assume our goal is to infer the causal effect at

one population from experiments conducted in a different
population after noticing that the two age distributions are
different. To illustrate how this task should be formally tackled,
consider the data-generating model in Fig. 5A in which X
represents a treatment, Y represents an outcome, Z represents
age, and S (graphically depicted as a square) is a special vari-
able representing the set of all unaccounted factors (e.g.,
proximity to the beach) that creates differences in Z (age in this
case), between the source (π) and target (π* ) populations. For-
mally, conditioning on the event S= s* would mean that we are
considering population π* ; otherwise population π is being con-
sidered. This graphical representation is called “selection dia-
grams.”##

Our task is then to express the query Q=PðyjdoðxÞ, S= s*Þ=
P* ðyjdoðxÞÞ in terms of the experiments conducted in π and the
observations collected in π* , that is, Pðy, zjdoðxÞÞ and P* ðy, x, zÞ.
Conditions for accomplishing this task are derived in refs.
45, 51, and 52. To illustrate how these conditions work in the
model in Fig. 5A, note that the target quantity can be re-
written as

Q=
X

z

Pð yjdoðxÞ, S= s*, zÞPðzjS= s*, doðxÞÞ

=
X

z

Pð yjdoðxÞ, zÞPðzjS= s*, doðxÞÞ

=
X

z

Pð yjdoðxÞ, zÞPðzjS= s*Þ

=
X

z

Pð yjdoðxÞ, zÞP* ðzÞ,

[15]

where the first line of the derivation follows after conditioning on
Z, the second line from the independence ðS╨Y

��ZÞG
X
(called

“S-admissibility”—the graphical mirror of S-ignorability), the third line
is from the third rule of the do-calculus, and the last line is from the
definition of S-node. Eq. 15 is called a transport formula because
it explicates how experimental findings in π are transported over to
π* ; the first factor is estimable from π and the second one from π* .
Consider Fig. 5B where Z now corresponds to “language

skills” (a proxy for the original variable, age, which is unmea-
sured). A simple derivation yields a transport equation that is
different from Eq. 15 (ref. 45), namely,

Q=PðyjdoðxÞÞ. [16]

In a similar fashion, one can derive a transport formula for Fig.
5C in which Z represents a posttreatment variable (e.g., “bio-
marker”), giving

Q=
X

z

PðyjdoðxÞ, zÞP* ðzjxÞ. [17]

The transport formula in Eq. 17 states that to estimate the causal
effect of X on Y in the target population π* , we must estimate the
z-specific effect PðyjdoðxÞ, zÞ in π and average it over z, weighted
by the conditional probability P* ðzjxÞ estimated at π* [instead of
the traditional P* ðzÞ]. Interestingly, Fig. 5D represents a scenario
in which Q is not transportable regardless of the number of
samples collected.
The models in Fig. 5 are special cases of the more general

theme of deciding transportability under any causal diagram. It
can be shown that transportability is feasible if and only if there
exists a sequence of rules that transforms the query expression
Q=PðyjdoðxÞ, s* Þ into a form where the do-operator is separated
from the S-variables (51). A complete and effective procedure was
devised by refs. 51 and 52, which, given any selection diagram,
decides whether such a sequence exists and synthesizes a transport
formula whenever possible. Each transport formula determines
what information needs to be extracted from the experimental and
observational studies and how they should be combined to yield an
estimate of Q.

Transportability from Multiple Populations. A generalization of
transportability theory to multienvironments when limited ex-
periments are available in each environment led to a princi-
pled solution to the data-fusion problem. Data fusion aims to
combine results from many experimental and observational
studies, each conducted on a different population and under a
different set of conditions in order to synthesize an aggregate
measure of targeted effect size that is “better,” in some sense,
than any one study in isolation. This fusion problem has re-
ceived enormous attention in the health and social sciences
and is typically handled by “averaging out” differences (e.g.,
using inverse-variance weighting), which, in general, tends to
blur, rather than exploit design distinctions among the avail-
able studies.
Nevertheless, using multiple selection diagrams to encode com-

monalities among studies, we (53) “synthesized” an estimator that is
guaranteed to provide an unbiased estimate of the desired quantity,
whenever such an estimate exists. It is based on information that
each study shares with the target environment. Remarkably, a
consistent estimator can be constructed from multiple sources with
a limited experiment even in cases where it is not constructable
from any subset of sources considered separately (54). We sum-
marize these results as follows:

Summary Result 3 (Transportability and Data Fusion).We now possess
complete solutions to the problem of transportability and data fu-
sion, which entail the following: graphical and algorithmic criteria
for deciding transportability and data fusion in nonparametric
models; automated procedures for extracting transport formulas
specifying what needs to be collected in each of the underlying
studies; and an assurance that, when the algorithm fails, fusion is
infeasible regardless of the sample size. For detailed discussions of
these results, see refs. 45, 52, and 54.

Conclusion
The unification of the structural, counterfactual, and graphical ap-
proaches to causal analysis gave rise to mathematical tools that have
helped to resolve a wide variety of causal inference problems,
including the control of confounding, sampling bias, and gener-
alization across populations. In this paper, we present a general
approach to these problems, based on a syntactic transformation of
the query of interest into a format derivable from the available
information. Tuned to nuances in design, this approach enables us
to address a crucial problem in big data applications: the need to

##Each diagram shown in Fig. 5 constitutes indeed the overlapping of the causal
diagrams of the source and target populations. More formally, each variable Vi

should be supplemented with an S-node whenever the underlying function fi or
background factor Ui is different between π and π* . If knowledge about common-
alities and disparities is not available, transport across domains cannot, of course,
be justified.
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combine datasets collected under heterogeneous conditions so
as to synthesize consistent estimates of causal effects in a target
population. As a by-product of this analysis, we arrived at so-
lutions to two other long-held problems: recovery from sam-
pling selection bias and generalization of randomized clinical
trials. These two problems which, taken together, make up the

formidable problem called “external validity” (refs. 45 and 46),
have been given a complete formal characterization and can
thus be considered “solved” (55). We hope that the framework
laid out in this paper will stimulate further research to enhance
the arsenal of techniques for drawing causal inferences from
big data.
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