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The standard dynamic energy budget model is widely used to describe the physiology of individual animals. It assumes that 
assimilation rate scales with body surface area, whereas maintenance rate scales with body volume. When the model is used 
as the building block of a population model, only limited dynamical behaviour, the so-called juvenile-driven cycles, emerges. 
The reason is that in the model juveniles are competitively superior over adults, because juveniles have a higher surface area-
to-volume ratio. Maintenance requirements for adults are therefore relatively large, and a reduced assimilation rate as a result 
of lowered food levels will easily become insufficient. Here, an alternative dynamic energy budget model is introduced that 
gives rise to adult-driven cycles, which may be closer to what is often observed in reality. However, this comes at the price of a 
rather odd description of the individual, in that maintenance scales with body area and assimilation rate with body volume, 
resulting in unbounded exponential body growth. I make a plea to solve the paradox and come up with reliable descriptions 
at both the individual and the population level.
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Introduction
The scope of conservation physiology includes the develop-
ment of mechanistic relationships between population 
declines and physiological processes (Cooke et al., 2013) or, as 
Metcalfe et al. (2012) stated, ‘conservation physiology is the 
study of physiological responses of organisms to environmen-
tal changes and human-induced impacts, and their implica-
tions for population … dynamics’. One example concerns the 
impact that increased temperatures, as a result of climate 
change, might have on the reproductive development of 
Pacific salmonids during their freshwater migration and, con-
sequently, on recruitment and stock size (Young et al., 2006).

To deduce population phenomena from physiological pro-
cesses at the individual level is, in fact, a general challenge in 
ecology, with many hidden pitfalls that are not widely recog-
nized. I believe that a major gap still exists between what we 
observe at the level of the individual and what we know about 
population dynamics. Almost all models of individual physiol-
ogy, when used as a building block in population models, will 
lead to so-called juvenile-driven cycles, which is a type of pop-
ulation dynamics that is not very often observed in nature. The 
basic reason is that the scaling coefficient for assimilation rate 
is generally assumed to be lower than the scaling rate for main-
tenance rate. The paradox is thus that descriptions at the indi-
vidual level do not directly lead to reliable descriptions at the 



population level. I will illustrate my point by confronting the 
theoretical framework of population ecology of ontogenetic 
development, worked out by de Roos and Persson (2013), with 
that of dynamic energy budget (DEB) theory, developed by 
Kooijman (Kooijman, 1993, 2010).

de Roos and Persson (2013) show that the most basic infor-
mation on the type of population dynamics one can expect is to 
be found in what they call ontogenetic asymmetry. By this, they 
mean that animals of different size are not equally efficient in 
acquiring food or in the use of assimilated energy. The ontoge-
netic asymmetry is best illustrated by the critical resource den-
sity R* vs. body size function, where R* is defined as the 
resource density at which energy intake is just enough to pay 
metabolic demands and at which somatic body growth equals 
zero. Ontogenetic symmetry is obtained only when the mass-
specific rate at which new biomass is produced does not depend 
upon body size. When the critical resource density R* increases 
with body size, small individuals (e.g. juveniles) have a com-
petitive advantage over larger individuals (e.g. adults). This 
occurs, for example, when assimilation rate scales with body 
area and maintenance rate with body volume. The opposite is 
true when R* decreases with body size. de Roos and Persson 
(2013) discuss in chapter 10 of their book a specific case where 
all animals have only one shared resource. Reproduction occurs 
as a discrete event at the start of each season. By varying one of 
the parameters of the function that relates intake rate to 
resource density, either juveniles or adults obtain competitive 
advantage. Juvenile advantage gives rise to a true single-cohort 
cycle driven by recruits, which means that each newborn cohort 
of recruits almost immediately depresses the resource density to 
such a low level that their parent cohort dies from starvation. 
The newborns will mature, reproduce and in turn be wiped out 
by their progeny. Adult advantage yields an entirely different 
type of cycle. New cohorts will not always be able to survive at 
the ambient food level. Only when the size of the dominant 
adult cohort decreases as a result of background mortality or 
ageing, with increasing resource levels as a result, do newborns 
have a chance to settle and mature into adulthood.

The DEB theory, developed by Kooijman (Kooijman, 1993, 
2010), is the most comprehensive theory that links the environ-
ment to the major physiological processes of individual organ-
isms, including those processes that are directly relevant for 
population dynamics, such as feeding, growth, reproduction and 
survival. The inclusion of reserves acting as metabolic memory, 
the full life cycle of individuals (embryo, juvenile and adult) and 
the explicit use of conservation laws (energy, chemical elements 
and isotopes) sets the DEB theory apart from other approaches. 
Over the last few years, a wealth of published [see, for example 
van der Meer et al. (2014) and references therein for recent con-
tributions] and unpublished (compiled at www.bio.vu.nl/thb/
deb) parameter estimations of the DEB model were done for a 
rapidly growing number of species. This collection of species, 
which comes under the name of the add_my_pet collection, has 
∼400 entries at present. Almost all larger animal phyla are rep-
resented, and all chordate classes. Within DEB theory, the indi-
vidual is considered the basic unit and its metabolism forms the 

basis of population dynamics. Much less attention has been paid 
to the population dynamics of individuals that follow the stan-
dard DEB model (Kooi and van der Meer, 2010).

The first aim here is to show what type of dynamics emerges 
from the standard DEB model, without additional assump-
tions at the individual level. Second, for illustrative purposes 
and for contrast, a rather unusual variant of the DEB model 
will be introduced. This peculiar model has opposite scaling 
relationships to the standard DEB model. The behaviour of the 
two models at the individual and at the population level will be 
compared and discussed, with the ideas on, for example, 
resource density functions, as provided by de Roos and Persson 
(2013), in mind. It will become clear (which may not come as 
a surprise to many readers) that the two models have very dif-
ferent resource density functions and population behaviour. 
The standard DEB model gives rise to juvenile-driven cycles 
and the alternative to adult-driven ones. But they also have 
very different behaviour at the individual level.

The environment in which the populations occur is a so-
called semi-chemostat, in which the inflowing food concentra-
tion is constant. Pulsed reproduction, with a constant period 
in between two reproductive events, is assumed as in Kooi and 
van der Meer (2010). Apart from death by starvation, addi-
tional background mortality is added. Given that the back-
ground mortality level strongly determines the type of 
dynamics, I perform a bifurcation analysis of this parameter.

In short, after an introduction of the individual models and 
the semi-chemostat model environment, some general model 
predictions at the population level will be shown and discussed 
in light of resource density functions. Finally, the physiological 
background of juvenile–adult competition will be discussed, 
and a plea for more detailed physiological studies will be made.

Materials and methods
Models for the individual
Below, I will give a short introduction to the standard DEB 
model for the individual organism and to its peculiar variant. 
A more extensive introduction is given in the Appendix, but I 
refer the reader also to Kooijman (2010) for a detailed 
description of underlying DEB assumptions and derivations 
or to van der Meer (2006), who provides a more easily acces-
sible introduction.

The organism has three succeeding life stages, as follows: the 
embryo, which neither feeds nor reproduces; the juvenile, which 
feeds but does not reproduce; and the adult, which feeds and 
reproduces. The organism is described by three state variables: 
(i) structural body volume; (ii) reserve density, which is the 
amount of reserves per unit of structural body volume; and (iii) 
maturity, which is the cumulative energy allocated to develop-
ment. Embryos and juveniles develop, i.e. they build up matu-
rity. Transitions between embryo and juvenile and between 
juvenile and adult occur at fixed levels of maturity. Once the 
animal has become adult, it has reached its maximal maturity 
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and starts to reproduce. In this study, I assume that the adult 
builds up a reproduction buffer, which is emptied at the end of 
each reproductive period. The sum of maturity and reproduc-
tion buffer are considered here as a single state variable.

A list of assumptions give rise to a set of coupled ordinary 
differential equations for the three state variables. 
Assumptions for the standard DEB model are, among other 
things, that (i) assimilation rate is proportional to the surface 
area of the structural body; (ii) all assimilated energy enters 
the reserves and is then mobilized from the reserves (the rate 
of changes of the reserves is thus the difference between the 
assimilation rate and the mobilization rate); (iii) a fixed frac-
tion, κ, of the mobilization rate is spent on maintenance, 
which is assumed to be proportional to structural body vol-
ume, and on growth, assuming fixed costs for growth per unit 
volume; and (iv) the rate of change of maturity equals 1 − κ 
times the mobilization rate minus the maturity maintenance 
costs, which are proportional to maturity.

The standard DEB model can be entirely rewritten in a 
dimensionless form; that is, all state variables and time are 
scaled by some quantity that has the same physical dimension 
as the original variable. For example, structural body length 
(the cubic root of structural body volume) is scaled by maximal 
body length. Such scaling has the advantage that the equations 
look much simpler, and the dynamical behaviour of the system 
of coupled differential equations (i.e. the equations for reserve 
dynamics, growth and maturity/reproduction) can be more 
easily studied without any loss of generality. The dynamics of 
the scaled reserve density, e, in scaled time, τ, are given by:
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where f is the so-called scaled functional response that relates 
the assimilation rate to the food density, and takes a value 
between zero (no food) and one (ad libitum). Note that food 
density is the only environmental variable. Growth is given by 
the differential equation for scaled length, l:
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where the compound parameter g is called the ‘energy invest-
ment ratio’. It stands for the energetic costs of new structural 
volume relative to the maximal energy within the reserves that 
is available for growth and maintenance. The sum of maturity 
and reproduction buffer is, after scaling, given by:
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where lp is the scaled length at puberty, i.e. at the transition 
from juvenile to adult.

Now assume some peculiar animal that has a specific 
appendix by which it takes up resources. Uptake (and 
assimilation) rate is proportional to the surface area of this 

appendix, and this surface area is proportional to the volume 
of the body proper. Maintenance costs, in contrast, are pro-
portional to the surface area of the body proper. The animal is 
depicted at different body sizes in Fig. 1. The dynamics of the 
first two dimensionless state variables, scaled reserve density e 
and scaled length l, are described by:
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Note that the length at equilibrium at constant f (l* = 1/f) can no 
longer be interpreted as the maximal length, as for the standard 
DEB model. A better interpretation is the theoretical minimal 
length of a juvenile. If e = 1 at hatching, then l should at least be 
larger than 1 in order to obtain a positive length growth rate.

Finally, the dimensionless form of the differential equation 
for maturity plus reproduction is as follows:
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where eH
p  is the maximal cumulative energy invested in matu-

rity. The predicted growth curve for the animal is rather pecu-
liar. When scaled length becomes much larger than 1, length 
growth rate becomes proportional to length. In other words, 
the body grows exponentially, until infinity or for as long food 
suffices, for which reason I call this animal the weird one.

The semi-chemostat
The semi-chemostat is a well-mixed environment and has a 
continuous inflow and outflow of food items. The dilution rate, 
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Figure 1:  The weird animal, for which the uptake rate of food is 
proportional to the area of the orange body part. Maintenance rate is 
proportional to the area of the yellow-coloured body proper. The 
surface area of the orange appendix is proportional to the volume of 
the yellow body proper.



which is defined as the flow rate in volume per time divided by 
the volume of the chemostat, is constant. The organisms do not 
flow out, contrary to what is usually assumed in chemostats; 
hence, the term semi-chemostat. It is further assumed that the 
organisms are iteroparous and reproduce at regular intervals, 
all at the same time. This is sometimes called pulsed reproduc-
tion (Tang and Chen, 2002). For convenience, I call the interval 
between reproductive events a year. The population thus con-
sists of clearly separated cohorts. All individuals within each 
cohort are exactly the same. They are born at the same time, 
grow and develop at the same rate, and reproduce at the same 
time. I assume that each animal can live for at most 3 years, 
after which it reproduces for the last time and dies from ageing. 
Other reasons for death are starvation, or to be more precise, I 
assume that an individual dies when κ times the mobilization 
rate drops below the required maintenance costs. Finally, I 
assume a constant background mortality rate, µ.

The system can thus be represented by a set of 13 differential 
equations, four equations for each of the three cohorts plus one 
extra equation for the food level. The four equations per cohort 
refer to scaled length (equation 2 or 5), scaled reserve density 
(equation 1 or 4), scaled maturity/reproduction (equation 3 or 
6) and the number of individuals. The differential equation for 
the number of individuals per cohort, i, is as follows:

	

d
d
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Within each reproductive season (or year), several events may 
happen. The individuals within a cohort may be born (the 
transition from embryo to juvenile), which means that feeding 

starts and f changes from 0 to some non-zero value. They may 
mature (the transition from juvenile to adult), which implies 
that a start is made with filling the reproduction buffer, or 
they may die from starvation. During integration, these state-
dependent switches are checked.

The differential equation for scaled food density, x, is given 
for DEB animals by:
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where x0 is the scaled food density of the inflowing water, h 
the scaled dilution rate, and q the scaled relative ingestion 
rate. For the weird individuals, the same equation is used, but 
with li

3  replacing li
2.  Underlying scaling factors also differ.

At the end of each year, integration stops. The sum of the 
reproduction buffers ( ),Σi n e l=1

3 3
i R i i  determines the size of the 

new cohort for the next integration period. See Kooi and van 
der Meer (2010) for mathematical details and a rigorous sta-
bility analysis. Parameter values used are given in Table 1. The 
choice of these values does not qualitatively affect the results.

Results
The semi-chemostat model population of DEB individuals 
started with a low number of individuals, distributed over 
three cohorts. The first cohort consisted of newly laid eggs 
with initial state e0, l0 and eH

0 ,  as given in Table 1, and the 
other two cohorts are adults with, for both cohorts, scaled 
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Table 1:  Parameter values of the semi-chemostat model for the standard dynamic energy budget individual and the weird individual

Symbol Interpretation Dynamic energy budget Weird

g Maintenance rate coefficient 1 1

κ Fraction of mobilization rate spent on maintenance plus growth 0.8 0.8

κR Reproductive efficiency 0.95 0.95

eH
b Scaled maturity at birth – 0.25

eH
p Scaled maturity at puberty – 6

lb Scaled length at birth 0.16 –

lp Scaled length at puberty 0.6 –

l0 Initial scaled length 0.001 0.001

e0 Initial scaled reserve density ( ) /1 3 4 3
0
3+ +g l l l/ b b 5 75 0

3. / l

eH
0 Initial scaled maturity ( )1 0

3−κ gl 0

x0 Scaled food input 5 500

q Scaled maximal feeding rate 0.01 10−8

h Scaled dilution rate 0.1 0.1

τR Length of the reproductive period in scaled time 10 40

µ Background mortality 0.01–0.25 0.01–0.35



reserve density e equal to 1, scaled length l equal to 0.6 for the 
first and 0.8 for the second adult cohort, and scaled maturity 
eH = (1−κ)gl3 equal to 0.04 and 0.10, respectively. At a low 
background mortality, µ, the population increases quickly at 
each reproductive event, up to the situation when the young-
est cohort, containing the smallest individuals, is so large that 
it depletes the food resource down to a level where the largest 
individuals can no longer pay their maintenance and die. 
Figure 2a shows a situation where this event happened half-
way through the second year. When the continuous blue line, 
indicating the reserve density, e, of the largest animals, drops 
below the line through the red dots, which shows the scaled 
length, l, of the same animals, the animals die. In other words, 
when e < l the animals can no longer pay their maintenance 
and die. Shortly after the beginning of the third year, the oldest 

cohort dies, quickly followed by the death of the second 
cohort and even before the end of the same year by the death 
of the cohort of newborns itself. Food level gets so low that 
growth and maturation (Fig. 3a) are severely retarded. The 
last cohort dies even before it matures, and the population 
goes extinct.

Stable periodic solutions occur only with larger back-
ground mortalities, as visualized by the bifurcation diagram 
of Fig.  4c. A stable period-n cycle (or period-n attractor) 
means a solution that repeats itself every nth year. With 
increasing background mortality, µ, attractors with longer 
periods appear. For example, at µ = 0.10, a period-3 attractor, 
and at µ = 0.12 even a period-16 attractor is observed. When 
mortality is higher, period-2 and period-1 attractors occur, 
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Figure 2:  Length (black dots for the first year, green for the second year and red for the third year of life), reserve density (continuous blue line) 
and food levels (continuous magenta line) and population size (thick continuous orange line, no axis) vs. time in years. The thin continuous black, 
green and red lines show length if the animals would not have died (but would neither have affected food levels any more). Upper left µ = 0.03 
(a), upper right µ = 0.17 (b), both for the standard DEB model. The two lower panels (c and d) refer to the weird animal. Left for µ = 0.04 (c) and 
right for µ = 0.2 (d).



and above µ = 0.25 a stable population is no longer possible. 
Figure 4a and b summarizes the dynamics in terms of a food–
numbers and a food–biovolume phase plane diagram for 
µ = 0.17, which provides a period-2 attractor. At each repro-
ductive period, one observes a sudden increase in numbers, 
initially followed by a steady increase in food level (recall that 
embryos do not feed) and a steady decrease in numbers. This 
gives rise to a more or less linear part in the trajectory through 
the phase plane. Shortly after hatching, when the newborns 
begin to feed, food level starts to drop quickly. The number of 
animals drops gradually (recall that background mortality is 
constant), but with additional discrete steps when an entire 
cohort dies from starvation. When enough animals have gone, 
food level starts to increase again until shortly after the second 

reproductive event. The two periods yield a similar pattern. 
The biovolume–food plot shows a related but different pat-
tern. The older cohorts play a more prominent role here. For 
example, at the two types of reproductive events, biovolume 
hardly changes or even goes down as a result of the death of 
the oldest cohort. Biovolume may also increase when numbers 
decrease. Figures 2b and 3b show more details of the two-
period cycle for µ = 0.17.

For the weird animal, the situation is completely different. 
At low background mortality (Figs 2c and 3c), the population 
goes extinct too, as in the DEB model, but for a different rea-
son. When population size increases, which already occurs in 
the second year after the start of the simulation, new cohorts do 
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Figure 3:  Maturity plus reproduction buffer (black dots for the first year, green for the second year and red for the third year of life) vs. time in 
years. The thin continuous black, green and red lines show maturity/reproduction if the animals would not have died (but would neither have 
affected food levels any more). The two lower panels (c and d) refer to the weird animal. Upper left µ = 0.03 (a), upper right µ = 0.17 (b), both for 
the standard DEB model. The two lower panels (c and d): left for µ = 0.04 (c) and right for µ = 0.2 (d). Horizontal black lines indicate the threshold 
maturity at birth and at puberty. Note that at the end of a year, the reproduction buffer, if present, is emptied to zero. Maturity plus reproduction 
buffer then equals the threshold maturity at puberty.



not get a chance to survive after birth. Food levels are too low 
for them to pay their relatively high maintenance costs. Only 
when the oldest cohort dies from ageing do these youngsters get 
an opportunity. Yet, when their number is too high, food levels 
might drop quickly below the required level for maintenance 
for the newly hatched generation. The newborns die before they 
are able to reproduce. Population size should thus not become 
too high, and this occurs only at higher background mortality 
(Figs 2d and 3d). Then the newborn juveniles survive, and for 
most values of µ a period-2 cycle is observed. (Fig. 4d).

Discussion
For the standard DEB model, the relationship between critical 
resource density expressed in terms of the scaled functional 
response, and scaled body length, immediately follows from 
equation 16: f* = l (assuming that the scaled reserve density, e, 

is in equilibrium with the scaled functional response, f, as pre-
dicted by equation 14). In the standard DEB model, f does not 
depend on the structural body volume, and follows the same 
strictly increasing function of resource density, whatever the 
size of the animal. Hence, the bigger you are, the higher the 
critical f* and the higher the critical resource density. The DEB 
juveniles are thus competitively superior over DEB adults. 
Basically, this observation is simply a consequence of assimila-
tion rate being a function of surface area and maintenance 
rate being a function of volume; or, stated otherwise, of the 
scaling coefficient for assimilation rate being smaller than the 
scaling rate for maintenance rate. It thus holds also for many 
other model approaches, such as for the growth model of the 
metabolic theory of ecology, the so-called ontogenetic growth 
model (Hou et al., 2008). It thus does not hold for the weird 
animal, for which the assimilation scaling coefficient is higher 
than the maintenance scaling coefficient. Indeed, equation 23 
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Figure 4:  Food vs. number of animals (a) and food vs. total biovolume of all animals (b), for the standard DEB model with µ = 0.17. (c and d) Total 
number of animals at the start of the season vs. background mortality µ for the standard DEB model (c) and the weird animal (d).



says that the critical resource density is a decreasing function 
of scaled body length, f* = 1/l.

de Roos and Persson (2013) already predict that the type of 
dynamics one can expect follows from the critical resource 
density function. Thus, it should not come as a surprise that 
the dynamics that I observed for the DEB animal and for the 
weird animal resemble the dynamics they describe in their 
chapter 10. But let us compare the two studies in some more 
detail. In the standard DEB model and in the model of my 
weird animal, food availability could be summarized by the 
scaled functional response, f, because f is independent of body 
size. The reason is that the searching rate (also called the attack 
rate) and the maximal ingestion rate (also considered as the 
handling rate or the inverse of the handling time) do have the 
same scaling coefficient with body size in these models. The 
model of chapter 10 of de Roos and Persson (2013) is more 
complicated. The maximal ingestion rate (or inverse handling 
time) in their model basically scales with body mass with an 
empirically based coefficient equal to 0.8. The maintenance 
rate scales with a coefficient equal to 0.75, which is lower. 
Their model individual thus very much resembles my weird 
animal. That is, in ad libitum food conditions (when attack 
rate does not play a role), the model predicts unbounded expo-
nential length growth towards infinity. Yet, in the model of de 
Roos and Persson (2013), the attack rate, which becomes 
important at low food levels, has a scaling coefficient that is 
not necessarily the same as that of the maximal ingestion rate. 
de Roos and Persson (2013) use three different values for the 
scaling coefficient, 0.6, 0.8 and 1.04. In fact, the function they 
use for relating attack rate to body size is slightly more compli-
cated than a simple allometric relationship and levels off at 
larger body size, but that is not really important for the present 
argument. What is important is that when the scaling coeffi-
cient for the attack rate is 0.6 and hence is much smaller than 
the scaling coefficient for the maintenance rate (which was 
0.75), the juveniles are competitively superior. The critical 
resource density increases with body size, with juvenile-driven 
cycles as a result. The opposite is true when the attack rate 
scaling coefficient is much higher, i.e. 1.04, than the mainte-
nance rate coefficient. Increasing body size then yields a lower 
critical resource density, and adults dominate.

By varying the scaling coefficient of the attack rate, de Roos 
and Persson (2013) are able to generate a range of dynamical 
behaviour, which cannot be predicted by the DEB model. Only 
by introducing a weird animal have I been able to create adult 
competitive superiority resulting in adult-driven cycles. Martin 
et al. (2013) used a parametrized DEB model of an individual 
water flea, Daphnia magna, as the building block of an indi-
vidual-based population model. They compared the predicted 
population dynamics with data from a semi-batch culture 
experiment. The experiments started with low number of neo-
nates and/or adults and lasted for ∼40 days (Preuss et  al., 
2009). The experimental population size increased quickly 
after an initial lag phase and declined again to low numbers in 
the second half of each experiment. The model predicted the 
observations rather well during the growth phase, but not 

during the decline phase. The authors had to induce extra star-
vation of the smaller individuals to obtain a better fit with 
observational data at the low food levels during the decline 
phase. In a similar study, McCauley et al. (2008) also had to 
impose increasing starvation tolerance with size. Such adult 
competitive superiority is sometimes even taken for granted in 
ecological textbooks. For example, Paul Colinvaux, author of 
an ecological textbook and essays on ecology (Colinvaux, 
1979), writes ‘when times are very hard through too much 
crowding … it is eggs, embryos and young that are starved … It 
is … the unfinished animal that succumbs’. Another example is 
the huge work of fishery biologists. For the post-recruitment 
phase, they generally assume a constant growth equation (usu-
ally the Bertalanffy) and a constant size-dependent reproduc-
tion, implicitly assuming constant food availability. At the 
same time, they assume a decelerating stock-recruitment rela-
tionship, implying that density dependence occurs only in the 
pre-recruitment phase. It is the pre-recruit that succumbs.

Here we have the paradox. The DEB model predicts juve-
nile advantage, and only the weird animal model predicts adult 
advantage. Students of the energetics of individual organisms 
have never come up with a description of the energetics that 
looks like that for the weird animal or for the de Roos–Persson 
animal. The scaling coefficient for assimilation rate is always 
smaller than for maintenance rate. Length growth curves 
always show a decelerating growth rate when the animal gets 
larger. This implies that adult competitive advantage should 
not occur. As we have seen, students of population dynamics 
might observe the opposite. But what then is the mechanistic, 
or physiological and/or behavioural if you like, explanation of 
adult dominance? In a theoretical study, Le Bourlot et  al. 
(2014) showed that size-related interference competition in 
favour of the larger animals can induce a type of adult-driven 
cycles in a population that otherwise experienced juvenile-
driven cycles. But can interference competition, or cannibalism 
as a more extreme form of interference, be a general explana-
tion for adult dominance? Another explanation might be 
related to food quality. Perhaps juveniles require higher-quality 
food than adults, making a model with only one food type 
mostly irrelevant. Or is DEB theory missing something else at 
the individual level?

I would like to make a plea for detailed physiological stud-
ies on adult–juvenile differences in survival during harsh food 
conditions, in order to see to what extent exploitative compe-
tition for a single food resource could result in adults being 
competitively superior over juveniles. A better understanding 
of adult–juvenile competition is urgently needed for individ-
ual-based population modelling, where both the individual 
and the population level are adequately described. A challenge 
for conservation physiologists!
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Appendix
Further details and derivations are given for the following: (i) 
the standard DEB model for the individual organism; (ii) the 
weird animal; and (iii) the chemostat model.

The standard dynamic energy budget 
model
The standard DEB model has three state variables: structural 
body volume, V; reserve density, [E] = E/V, which is the 
amount of reserves per unit of structural body volume; and 
maturity, EH, plus reproduction buffer, ER, which is the cumu-
lative energy allocated to development and reproduction. 
Thus, embryos and juveniles develop (build up maturity), and 
adults reproduce (build up a reproduction buffer). The sum of 
the latter two paramters, EH plus ER, is considered as a single 
state variable (Table 2). The most important environmental 
variable is the food density, X (Table 2).

A set of assumptions, e.g. that assimilation rate is propor-
tional to the surface area of the structural body, � �p p fVA AM= { } ,/2 3  
and others referring to specific types of homeostasis, give rise to 
the ordinary differential equation for reserve density:

	

d
d
[ ]

({ } [ ])./E
t

V p f v EAm= −−1 3 � �
	

(9)

The area-specific assimilation rate, { },�pAM  and the energy 
conductance, �v,  are so-called primary parameters of the stan-
dard DEB model. They are explained, together with quite a 
few others, such as { }�Fm  and κX, in Table 3; f is the so-called 
scaled functional response that relates the assimilation rate to 
the food density, and is given by:

	
f

X
p F XAm m X X

=
+{ } { }

,
)� �/( µ κ 	

and µX is the chemical potential of the food.

The growth equation, assuming that there are no heating 
costs involved, is given by:

	

d
d

M

G

V
t

v E V p V
E E

= −
+

κ
κ
� �[ ] [ ]

[ ] [ ]
.

/2 3

	
(10)

It follows from:

	

d
d

d
d A C

E
t

E V
t

p p= = −[ ]
,� �
	

(11)

which tells us that the rate of change of the reserves is the dif-
ference between the assimilation rate, �pA,  and the mobilization 
rate, �pC.  A fraction, κ, of the mobilization rate is spent on 
maintenance, which is assumed to be proportional to structural 
body volume, and on growth, assuming fixed costs for growth 
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Table 2:  State variables of the standard dynamic energy budget 
model and environmental variables

Symbol Dimension Interpretation

V L3 Structural body volume

[E] eL−3 Reserve density

EH + ER e Maturity plus reproduction buffer

T T Temperature

X #l−3 Food density in the environment

Abbreviations: L stands for the dimension length of the structural body, e for 
energy, # for mass measured in terms of moles of Carbon, and l for the dimen-
sion length of the environment.

Table 3:  Primary parameters of the standard dynamic energy budget model

Symbol Dimension Interpretation Process

{ }�pAM eL−2t−1 Surface-area-specific maximal assimilation rate Assimilation

{ }�Fm l3L−2t−1 Surface-area-specific searching rate Feeding

κX – Digestion efficiency Digestion

�v Lt−1 Energy conductance Mobilization

κ – Fraction of mobilization rate spent on maintenance plus growth Allocation

[ ]�pM eL−3t−1 Volume-specific maintenance rate Turnover/activity

{ }�pT eL−2t−1 Surface-area-specific maintenance rate Heating/osmosis

[EG] eL−3 Volume-specific costs of growth Growth
�kJ – Specific maturity maintenance Regulation/defence

κR – Reproductive efficiency Egg formation

EH
b e Maturity at birth Life history

EH
p e Maturity at puberty Life history

See the legend of Table 2 for an explanation of the abbreviations.



per unit volume. Using this so-called κ-rule and the product rule 
for differentiation, equation 11 can be rewritten as follows:

	
V

E
t

E
V
t

p fV p V E
V
t

d
d

d
d

d
dAm

/
M G

[ ]
[ ] { } [ ] [ ] .+ = − −� �2 3 1 1

κ κ
�

Combination with equation 9 and some re-arrangement yields 
the growth equation, equation 10.

The rate of change of maturity equals 1 − κ times the mobi-
lization rate minus the maturity maintenance costs, which are 
proportional to maturity. Hence:

	

d
d

H
C J H

E
t

p k E= − −( ) ,1 κ � �
	

(12)

for E EH H
p < ; otherwise, that is when the animals have become 

mature and E EH H
p= , maturity does not change any more and 

dEH/dt = 0.

In this study, I assume that once the animal has become 
mature, or in other words once it has turned into an adult, it 
starts to build up a reproduction buffer. The rate of change of 
the reproduction buffer is given by:

	

d
d

R
C J H

pE
t

p k E= − −( ) ,1 κ � �
	

(13)

for E EH H
p= . I further assume that at the end of each repro-

ductive period, when t = tR, the buffer is emptied and ER is set 
back to 0. The reproduction, i.e. the number of progeny after 
each reproductive period, equals:

	
R

E t
E

= κ R
R R( )

,
0 �

where κR is the reproductive efficiency and E0 the initial 
energy content of an egg. It can be shown that the mobiliza-
tion rate, �pC,  equals:

	
� � �p

E
E E

v E V p VC
G

G
/

M= + +[ ]
[ ] [ ]

( [ ] [ ] ).κ
2 3

�

The system of differential equations for reserve density (equa-
tion 9), structural volume (equation 10) and maturity/reproduc-
tion (equations 12 and 13) describe the standard DEB model.

The standard DEB model can be entirely rewritten in a 
dimensionless form. In order to arrive at a dimensionless 
model, one has to rescale all dimensions, i.e. energy, length (or 
volume) and time. The choice of scaling coefficients is rather 
arbitrary, as we will see. Yet, for energy an obvious choice is 
the maximal amount of energy in reserve, Em, and for volume 
it is the maximal volume of the structural body, 
V p pm AM M= ( { } / [ ]) .κ � � 3  The maximal amount of energy in 
reserve equals the product of the maximal reserve density and 
the maximal volume, Em = [Em]Vm, where [ ] { }E p vm Am /= � �  as 
follows from equation 9 with f = 1. These choices ensure that 
the new dimensionless state variables, which are scaled reserve 
density, e ≡ [E]/[Em], and scaled length, l ≡ (V/Vm)1/3, are easy 

to interpret and to remember. The same holds for scaled matu-
rity, eH ≡ EH/Em. The choice of a scaling coefficient for time is 
less obvious, but it helps to look first at power, which is given 
as energy per time. One option is to scale power by the maxi-
mal assimilation rate, which equals � �p p VAm Am m

/= { } .2 3  This 
choice implies that time is scaled to κ times the ratio of the 
maximal reserve density and the volume-specific maintenance 
rate, resulting in τ ≡ t p E[ ] / ( [ ])�

M mκ .

Not only the state variables, but also all parameters (Table 4) 
and model equations can now be rescaled. Equation 9, which 
describes the dynamics of the reserve density, turns into:

	

d
d

d
d m

m

M

e E
t E

E
p

f e
lτ

κ= = −[ ]
[ ]

[ ]
[ ]

.
1

�
�

(14)

Likewise, the growth equation, equation 10, becomes:

	

d
d

d
d m

m

M

l V
t V

E
p e g

l e l
3

21 1
τ

κ= = + −[ ]
[ ]

( ),�
	

(15)

which is equivalent ( ( )( ) )d /d d /d d /d d /dl l l l l l3 3 23τ τ τ= =  to:

	

d
d

l
e g

e l
τ = +

−1
3

,
�

(16)

where the compound parameter g is given by the ratio [EG]/
(κ[Em]). This is one of the most important compound param-
eters in DEB theory and is called the ‘energy investment ratio’. 
It stands for the energetic costs of new structural volume, 
[EG], relative to the maximal available energy for growth and 
maintenance, κ[Em]. Equations 12 and 13 are combined and 
rewritten as follows:

d
d

d
d

H R H R

m m

m

M

J

M

e e E E
t E V

E
p

l
e

e g
g l

k

k

+ = +

= − + + −

τ
κ

κ

1

1 2

[ ]
[ ]

[ ]

( ) ( )

�

�

� gg
e e emin H R H

p( , ),+
 
(17)
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Table 4:  Rescaling the primary parameters of the standard dynamic 
energy budget model written in an energy–length framework into a 
dimensionless framework

Energy-length Dimension Dimensionless

{ }�pAM eL−2t−1 1

�v Lt−1 1

[ ]�pM eL−3t−1 κ

{ }�pT eL−2t−1 κlT

[EG] eL−3 κg

EH
b e eH

b

EH
p e eH

p

Energy is scaled to the maximal energy in reserves [Em]Vm, volume to the maximal 
volume Vm, and power to the maximal assimilation rate { } .�p VAm m

/2 3  Hence, 
time is scaled to one over the product of the energy investment ratio and the 
maintenance rate coefficient ( )gk�M −1.



where the compound parameter �kM,  called the ‘maintenance 
rate coefficient’ is given by the ratio [ ] / [ ].�p EM G  It stands for 
the maintenance costs of structure relative to the investment. 
When � �k kJ M= ,  which means that the relative maintenance 
costs of maturity equal those of the somatic body, it can be 
shown that

	 E E VH G= −1 κ
κ [ ] �

or, in dimensionless form, eH = (1 − κ)gl3. The main result of 
setting � �k kJ M=  is thus that maturity occurs at a fixed length, 
that is e glH

p
p= −( ) .1 3κ  The consequence is that equation 17 

simplifies to:

	

d
d

minH R
p

e e e
e g

l g l l l
+ = − + + −



τ κ( ) ( ) ( , ) .1 2 3 3

	
(18)

The present analysis uses this simplification.

The weird animal
Now assume some weird animal that has a specific appendix 
by which it takes up resources. Uptake rate is proportional to 
the surface area of this appendix, and this surface area is pro-
portional to the volume of the body proper. Maintenance 
costs, in contrast, are proportional to the surface area of the 
body proper. These costs can therefore be considered as heat-
ing costs, and the volume-specific maintenance costs are neg-
ligible. Reserve density dynamics for this animal can be 
described by:

	

d
d Am E
[ ]

[ ] [ ],
E
t

p f k E= −� �
�

(19)

where the scaled functional response f is now given by:

	
f

X
p F X

=
+[ ] [ ]

.
)� �

Am m X X/( µ κ 	

The dimensionless form, using the scaling relationships 
e = [E]/[Em] and τ = tk�E  and the relationship [ ] [ ],� �p k EAm E m=  
looks like this:

	

d
d

d
d

m E

e E
t E k

f eτ = = −[ ]

[ ]
.

1
�

�
(20)

The growth equation follows, as before, from:

	

d
d

d
d

d
d

d
d A C

E
t

E V
t

V
E
t

E
V
t

p p= = + = −[ ] [ ]
[ ] ,� �

�

which here takes the form

	

V p f k E E
V
t

p fV p V

E
V
t

([ ] [ ]) [ ] [ ] { }

[ ] ,

� � � �
Am E Am T

/

G

d
d

d
d

− + = −

−

1

1

2 3
κ

κ �

which results in:

	

d
d

E T
/

G

V
t

k E V p V
E E

= −
+

κ
κ

� �[ ] { }
[ ] [ ]

.
2 3

�
(21)

This growth equation can also be written in a dimensionless 
form, using the earlier mentioned scaling and l = L/Lm, as:

	

d
d

d
d

m

E

l V
t

L

k

el
e g

l
3 3

21
τ = = −

+� ,
�

(22)

where Lm is, as for the standard DEB model, defined as the 
length for which the growth rate of a well-fed animal is zero. 
The dimensionless length growth equation is now:

	

d
d

l el
e gτ = −

+
1

3( )
.
�

(23)

Note that

	
L V

p

k E
m m

/ T

E m

= =1 3 { }

[ ]
,

�
�κ �

can no longer be interpreted as the maximal length. A better 
interpretation is the theoretical minimal length of a juvenile. 
If e = 1 at hatching, then l should at least be larger than 1 in 
order to obtain a positive length growth rate. The differential 
equation for maturity plus reproduction is as in the standard 
DEB model:

	

d
d

minH R
C J H R H

pE E
t

p k E E E
+ = − − +( ) ( , ),1 κ � �

	
(24)

but the mobilization rate is now given by:

	

� � �p
E

E E
k E V p VC

G
E G T

/= + +[ ]
[ ] [ ]

( [ ] { } ).κ
2 3

�

In dimensionless form it looks like this:

	

�
�

p
p V

e
e g

gl lC

Am m[ ]
( ),= + +3 2

�

and the dimensionless form of the differential equation for 
maturity plus reproduction becomes:

d
d

minH R J

E
H R H

pe e e
e g

gl l
k

k
e e e

+ = − + + − +τ κ( ) ( ) ( , ).1 3 2
�

�
	
(25)

The assumption that � �k kJ E=  is made for the rest of the paper 
(Table 5).

The predicted growth curve for the weird animal is rather 
peculiar. When scaled length becomes much larger than 1, length 
growth rate becomes proportional to length; in other words, the 
body grows exponentially, until infinity or for as long food suf-
fices, for which reason I called this animal the weird one.
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The semi-chemostat
The differential equation for food density, X, expressed as the 
number of food items per volume, is given by:

	

d
d i X i
X
t

h X X
A

n J
i

= − −
=
∑� �( ) ,,0

1

3
1

	
(26)

where X0 is the food density of the inflowing water, A the 
volume of the chemostat, and �JX i,  the feeding rate of an indi-
vidual of cohort i. The feeding rate of a DEB individual with 
volume V is given by:

	
� �J J V fX Xm

/= { } ,2 3

	

where { }�JXm  is the maximal surface-area-specific feeding rate. 
When multiplied by the assimilation efficiency, κX, and the chem-
ical potential of the food, µX, it equals the maximal surface-area-
specific assimilation rate { },�pAM  i.e. { } { }.� �p JAm X X Xm= κ µ  The 
scaled functional response is f = X/(XK + X), where the half-
saturation coefficient, XK, equals { } { }.� �J FXm m/  A weird individual 
feeds at a rate � �J J VfX Xm= [ ] ,  and the half-saturation coefficient, 
XK, equals [ ] [ ]� �J FXm m/ .

A dimensionless DEB version looks, after scaling the food 
density with the half-saturation coefficient (x = X/XK) and 
scaling time as before,

	

d
d

d
d

Xm

m

m

M

x X
t

J
F

E
pτ

κ= { }
{ }

[ ]
[ ]

,
�
� �

�

like this:

	

d
d i i

x
h x x n ql f

i
τ = − −

=
∑( ) ,0

1

3
2

	
(27)

with scaled dilution rate h h E p= � �κ [ ] [ ],m M/  scaled relative 
ingestion rate q F V Av= { } ( )� �m m /  and scaled functional response 
f = x/(1 + x). For the weird individuals it is:

	

d
d i i

x
h x x n ql f

i
τ = − −

=
∑( ) ,0

1

3
3

�
(28)

with h h k= � �/ E[ ]  and q F V Ak= [ ] ( )� �
m m E/ .
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Table 5:  Extra parameters of the model for the weird individual

Symbol Dimension Interpretation Process

[ ]�pAM eL−3t−1 Volume-specific maximal 
assimilation rate

Assimilation

[ ]�Fm l3L−3t−1 Volume-specific searching 
rate

Feeding

�kE
t−1 Specific energy 

conductance
Mobilization
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