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 1. West Nile virus infection in North America

West Nile virus (WNV) is a mosquito-borne enveloped positive-strand RNA virus belonging 

to the family Flaviviridae, which includes Yellow fever, hepatitis C, and Dengue viruses.1 

WNV was first isolated in Uganda in 1937, and emerged into the United States in 1999. 

From 1999–2014, WNV spread across North America, South America, and the Caribbean 

leading to > 41,000 cases, including 1,753 fatalities. While the majority of WNV infections 

are asymptomatic (~80%), some infected patients develop mild symptoms of West Nile fever 

(~20%), and a small subset (<1%) develop severe neuroinvasive disease, including 

meningitis, encephalitis, and acute flaccid paralysis.2 Currently, no vaccine or specific 

antiviral treatments against WNV are available. Notably, advanced age remains a dominant 

risk factor for WNV infection and elderly individuals are more susceptible to severe 

infection with neurological involvement.3,4 Among patients over 70 years of age, the case-

fatality rate ranges from 15% to 29%.5

The world’s population is aging and the global human population over age 60 is predicted to 

increase to over 2 billion by 2050.6 With aging, elderly individuals are increasingly 

susceptible to infectious diseases and have reduced efficiency of responses to vaccination. 

While individuals over age of 65 currently constitute approximately 15% of the population 

in the US, the aged population accounts for a disproportionate use of medical resources. Age 

related changes in both innate and adaptive immune responses, termed immunosenescence, 

lead to inappropriate elevations, decreases, and dysregulated immune responses.7 Here, we 

will review age-related immune dysregulation relevant to host susceptibility to WNV 

infection. We will also highlight novel areas for investigation and emerging technical 

approaches (e.g., mass cytometry and miRNA profiling) that promise to advance our 

understanding of the complexity of aging and foster discovery of novel therapeutic 

approaches.

 2. Effects of aging on innate immune responses to WNV infection

Numerous studies in elderly humans have revealed that aging has a profound impact on the 

phenotype and functions of innate immune cells7,8 and these cell types-neutrophils, 

monocytes/macrophages, and dendritic cells- have central roles in initiating immune 

responses to control WNV replication.9–11 Dysregulation of two other innate immune cell 
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types, natural killer (NK) and γδ T cells, although studied in aging, have not been examined 

for their role in immune susceptibility to WNV in elderly individuals. Here, we will 

summarize recent findings on age-dependent innate immune dysregulation of neutrophils, 

macrophages, dendritic cells in response to WNV infection, as well as age-related alterations 

in NK cells and γδ T cells that may contribute to WNV susceptibility in the elderly.

 2.1 Impaired neutrophil function in aging

Neutrophils are the most abundant leukocytes in human blood circulation and the first 

immune cells to arrive at the sites of inflammation.12 At the inflamed sites, neutrophils 

exhibit potent antimicrobial activities by engulfing pathogens, generating reactive oxygen 

and nitrogen species, releasing granules containing proteolytic enzymes and antimicrobial 

peptides, and extruding neutrophil extracellular traps.13–15 Once the invading pathogens are 

cleared, neutrophils undergo apoptosis.16 A variety of neutrophil functions are impaired 

during aging, including chemotaxis, phagocytosis, superoxide production, NET formation, 

and apoptosis.17–20 Alterations of neutrophil signaling pathways and receptors have also 

been observed in aged individuals. Prominent affected pathways are the MAP kinases, the 

Jak/STAT and the PI3K-Akt pathways, which are important regulators of neutrophil 

functions.21,22 The decline of signal transduction in these pathways contributes to age-

associated neutrophil dysfunction such as directional chemotaxis. Moreover, neutrophils in 

older adults have reduced bioenergetics, and lower expression of TLR1, leading to 

impairment of various neutrophil functions, including activation of integrins (CD18 and 

CD11b), and production of IL-8.22

Neutrophils play a dual functional role in response to WNV infection. Neutrophils serve as 

reservoirs for WNV replication and dissemination in the early stages of infection, but 

contribute to WNV clearance later in the infection process.9 The shift in neutrophils from 

early pro-viral state to later anti-viral state may result from the effects of cellular context 

such as the robust production of type I interferon by macrophages in the context of WNV 

infection. In vitro pretreatment of neutrophils with type I interferon significantly reduced 

their WNV viral load.9 In spite of the supporting evidence in the role of neutrophils in WNV 

infection, the effects of aging on neutrophil functions in response to WNV remain unknown. 

Age-associated alterations in chemotaxis, phagocytosis, signal transduction and expression 

of TLR receptors likely contribute to the reduced clearance of WNV infection in older 

subjects.

 2.2 Reduced Macrophage function in aging

Macrophages are professional phagocytes and antigen-presenting cells and many of their 

functions become compromised in aged individuals, including chemotaxis, phagocytosis, 

intracellular killing, production of reactive oxygen species and cytokines (e.g., TNF-α and 

IL-12), as well as expression of MHC class II and co-stimulatory molecules (Table 1).7,8 In 

addition, production of prostaglandin E2 is increased in activated macrophages from aged 

human and mice, which suppresses MHC class II expression and IL-12 production, leading 

to impaired antigen presentation associated with age.8 Alterations in TLR expression have 

been found in aged macrophages. The baseline level of TLR3 is lower in macrophages from 

elderly individuals.23 A few studies have also shown an age-dependent reduction in the 
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levels of p38 MAPK, NF-κB, and MyD88, as well as in the phosphorylation capacity of 

STAT-1α.24 The changes of these key signaling molecules are critical factors in the decrease 

in macrophage activation and cytokine responses in aging.

Following mosquito inoculation of WNV in skin, macrophages are early responders from 

the innate immune system to control initial WNV replication5. They efficiently ingest WNV 

through receptor-mediated endocytosis, and become activated to produce a large amount of 

proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, as well as type I interferons. 

These cytokines are critical for restriction of WNV replication and spread and for 

recruitment of more innate immune cells into the site of infection25–27. However, excessive 

inflammation and cytokine production upon WNV infection can increase permeability of 

blood-brain barrier, leading to viral infection of the central nervous system, and severe 

neurological disease.26 Our recent studies indicate some interesting clues in this regard. In 

contrast to WNV-induced downregulation of TLR3 expression in macrophages from young 

donors, in elderly donors the expression of TLR3 remains elevated in WNV-infected 

macrophages and leads to elevated production of proinflammatory cytokines.23 This TLR3 

dysregulation results from impaired signaling between DC-SIGN and STAT1, which also 

leads to an early and sustained elevation of IL-6 and IFN-β1 in the elderly23. This alteration 

of the macrophage response with aging detected in vitro may be relevant to cytokine-

mediated elevated permeability of blood-brain barrier and increased severity of WNV 

infection in older individuals.26

 2.3 Dendritic cell function is diminished in aging

Dendritic cells (DCs) are potent antigen presenting cells which act as a bridge between the 

innate and the adaptive immune systems.28 Studies have shown dysregulation of several 

functions in both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) with aging. DCs 

display an age-related decline in chemotaxis, endocytosis, and global reduction in 

expression of expression of Toll-like receptors (TLR) 1, 3, 5, 7, and 8, production of IL-12, 

and antigen presentation, leading to impaired activation of naïve T cells (Table 1).8,29 

Paradoxically, DCs from elderly individuals produce a higher basal level of cytokines (e.g., 

TNF-α, IL-6, and IL-23). In pDCs, reduced expression of TLR7, decreased production of 

IFN-α by TLR stimulation, and impaired phosphorylation of IRF-7 have been shown in 

older individuals.30,31 DCs from aged adults have reduced expression of co-stimulatory 

molecules CD80 and CD86, diminished induction of TLR7 expression, as well as decreased 

production of IFN-α and IFN-β following WNV infection. This dysregulation is suggested 

to result from impaired STAT-1 phosphorylation, diminished induction of IRF-1 and IRF-7, 

and enhanced expression of negative signaling molecules Axl, SOCS1 and PIAS1 in DCs 

from elderly subjects.32 These deficits in critical signaling pathways in DC antiviral 

responses may contribute to the increased susceptibility to WNV infections in the elderly.

 2.4 Natural Killer cell anti-viral activity wanes with aging

Natural Killer (NK) cells are large granular lymphocytes, 10–15% of the circulating 

lymphocyte pool, that specialize in early defense against virus infections and tumor cells.33 

NK cells recognize abnormal or infected cells through a complex recognition pathway 

involving both MHC and a repertoire of invariant activating and inhibitory NK receptors. 
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NK cells maintain extraordinary their functional diversity determined from combinatorial 

expression of multiple activating and inhibitory receptors.33,34 NK cells are classically 

divided into two major functional subsets (immature and mature) based on the differential 

expression of surface markers CD56 and CD16: CD56brightCD16− (immature) and 

CD56dimCD16+ (mature).35,36 Immature NK subsets secrete cytokines and chemokines on 

activation and following maturation exhibit high cytotoxic capacity.37 NK cells control viral 

replication by killing infected cells during the earliest stage of infection, and shape adaptive 

immune responses through cytokine release or by direct interaction with DCs.38–40 An 

important role for NK cells has been noted previously in many viral infections, such as 

HIV-1, influenza virus, cytomegalovirus, and hepatitis C virus.41–43 In aging, frequency of 

the immature CD56bright NK cell subset is reduced (Table 1) which may contribute to the 

impaired production of cytokines and chemokines observed in NK cells of aged subjects.44 

NK cells from older subjects show upregulation of the maturation marker CD57, reduced 

expression of activating receptors DNAM-1 and NKp30 and NKp46, as well as impaired 

cytotoxicity and decreased production of granzyme A.24,45

Primary human NK cell responses to WNV include activation following interaction of 

NKp44 receptor with WNV envelope protein46,47; however deficiency of NK cells did not 

change morbidity in the murine model.48,49 It has been challenging to identify precise 

changes within the NK cell population in humans since current platforms of flow cytometry 

are limiting for interrogation of the more than 20 NK receptors expressed per cell. However, 

the recent development of mass cytometry (CyTOF) provided the first opportunity to 

simultaneously evaluate NK cell phenotype and function within the context of the overall 

immune response. Recent studies have used high-dimensional single-cell data to highlight 

the extreme diversity of the NK cell repertoire as well as to discover the functional 

significance of NK cell diversity in viral infection.50 Indeed, the diversity of the NK 

repertoire increases following infection with either HIV or WNV, leading to terminal 

differentiation and reduced degranulation and an increased risk of viral acquisition.51 Thus 

NK cell diversity may serve as a measure of immunological age and susceptibility, which 

may precede chronological aging.

 2.5 Gamma-Delta T cells in aging

γδ T Cells an intriguing and enigmatic T cell subset, are present in humans as less than 10% 

of lymphocytes in the peripheral blood (Vδ1 subset) and in diverse tissues, such as skin, 

liver, gut epithelial tissue and bronchial epithelia (Vδ2 subset).52 γδ T cells respond rapidly 

to antigens from bacteria, parasites and viruses, do not require antigen processing and MHC 

presentation of peptide epitopes, and produce pro-inflammatory cytokines IFN-γ, TNF-α, 

and IL-17.53–55 Numbers of γδ T cells in the blood increase in patients with viral infections 

and potent anti-viral responses include IFN-γ production and CCR5-mediated 

migration.53,56–58 In mouse models of WNV infections, although γδ T cells produce 

cytokines involved in inflammation and pathogenesis (IL-17, IL-10 and TGF-β), deficient 

mice (TCRδ−/−) are nevertheless more susceptible, showing elevated viremia and more 

severe encephalitis. This suggests an important role for γδ T cells in resistance to WNV 

infection which remains incompletely understood.54 In aging, both the frequency and 

absolute number of γδ T cells are reduced (Table 1), stimulated expansion is reduced, and 
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apoptosis is increased, which may contribute to increased susceptibility of older people to 

WNV infection.59–61

 3. Adaptive immunity shows decreased responses to WNV in aging

Decline of the adaptive immunity with age has been well established. These changes include 

decreased pools of naïve T and B cells accompanied by increased memory and effector T 

and B cells, decreased diversity of antigen receptor repertoire, defective signal transduction 

in T cells with dysregulated cytokine production pattern, reduced class switching of B cells, 

and decreased clonal expansion and function of antigen-specific T and B cells.62,63 The age-

associated deficits in the CD4 and CD8 T cell response against WNV including impaired 

production of cytokines and lytic granules, contributing to increased WNV viral titers in the 

brain of aged mice.64 Moreover, aged mice show lower levels of primary and memory T and 

B cell responses induced by vaccination with West Nile encephalitis vaccine, and repeated in 

vivo restimulation is needed to generate protective cellular and humoral immunity in older 

populations.65 Collectively, these observations suggest age-related alterations of adaptive 

immunity are also relevant for increased WNV susceptibility in the elderly.

 4. New directions for aging-related investigation

Recent advances in technology hold the promise for increasing our understanding of 

essential changes in immune cells associated with aging, and fostering new discoveries for 

prevention and therapeutic approaches to improve health. In particular, we highlight mass 

cytometry to characterize in depth phenotypic and functional changes in multiple cell types 

simultaneously; and micro RNA (miRNA) profiling to identify miRNAs that regulate 

expression of pivotal genes relevant to aging-associated conditions.66,67

 4.1 Mass cytometry (CyTOF): novel multidimensional single cell phenotyping

Mass cytometry, or cytometry by time-of-flight (CyTOF), is a novel technology for 

multiparametric single cell analysis based on detection of metal-conjugated antibodies.68 

CyTOF improves on fluorescence flow cytometry and has greater dimensionality (40 

parameters vs 8–10 by flow cytometry) and resolution of compensation issues. Furthermore, 

CyTOF can efficiently detect as few as 10,000 cells, which supports investigation from 

limited samples available through translational and clinical studies.69 High dimensional data 

generated from CyTOF requires specialized computational methods for dimensionality 

reduction, clustering, visualization, and single cell resolution.70–72 CyTOF technology is 

leading to advances in biology and medicine, such as cancer, autoimmune diseases, and 

infectious diseases.73–76 Emerging studies have employed CyTOF to characterize single cell 

immune responses to viral infections and vaccination,77–79 and promising results in studies 

of aging advance our understanding of age-associated changes in immune responses.80,81

 4.2 microRNA regulation of gene expression

Recent studies have identified an important role for non-coding short microRNAs (miRNAs, 

~22 nucleotides) in posttranscriptional regulation of gene expression by binding to specific 

mRNA targets and facilitating their degradation and/or translational inhibition. The human 
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genome is believed to encode ~1,000 miRNAs, each of which may regulate expression of 

hundreds of genes.67 Emerging evidence has shown that expression of dozens of miRNAs 

are altered with aging in different tissues and organisms, which may be associated with age-

dependent diseases and disorders.82,83 Interestingly, several key immune-regulated miRNAs 

such as miR-21, -146a, and -155, also show alterations during aging, suggesting that 

miRNAs may contribute to the age-associated basal inflammation.82,84–86 Cellular miRNAs 

have also been implicated in restriction or promotion of infection of various viruses, 

including Hepatitis C virus (miR-122) and retrovirus primate foamy virus type 1 

(miR-32).87,88 Several miRNAs including miR-196a, -202-3p, -449c, and -125a-3p have 

been shown to be differentially expressed following WNV infection, suggesting their 

potential role in WNV resistance and pathogenesis.89,90 miRNA profiling will lead us to a 

better understanding of miRNA regulation in aging and viral infections as well as new 

discoveries for miRNA-based therapeutic intervention.

 5. Concluding remarks

Aging remains a dominant risk factor for susceptibility to infection with WNV4, and aging-

associated changes in innate and adaptive immunity may contribute to increased illness 

among the elderly. As reviewed here, dysregulation of TLR pathways in macrophages23, 

reduced production of IFN by dendritic cells32, and reduced efficiency of PMN clearance of 

virus9 may contribute to the increased susceptibility to WNV infection in elderly 

individuals. In addition, in-depth investigations are needed to identify whether age-related 

differences in NK cells and γδ T cells may also be relevant to control of WNV infection in 

humans. Emerging technologies including single cell CyTOF and miRNA profiling provide 

multidimensional, high-throughput, genome- and proteome-wide analysis of age-associated 

changes in cell function and may offer new insights into pathogenesis of age-related diseases 

or disorders for development of promising preventive and therapeutic approaches.
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Figure 1. 
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