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Abstract

Much is known about vertebrate DNA methylation and oxidation; however, much less is known 

about how modified cytosine residues within particular sequences are recognized. Among the 

known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is 

the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 

fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their 

sequence specificity but also on their sensitivity to various DNA modifications. Rather than 

following published methods of refolding insoluble ZnF arrays, we have expressed and purified 

soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven 

different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity 

with oligonucleotides containing various modifications and our approaches for cocrystallization of 

ZnFs with oligonucleotides.

 1. INTRODUCTION

The control of gene expression in mammals relies significantly on the modification status of 

DNA cytosine residues. DNA cytosine modification is a dynamic process catalyzed by 

specific DNA methyltransferases (DNMTs) that convert cytosine (C) to 5-methylcytosine 

(abbreviated 5mC or M; Bestor, Laudano, Mattaliano, & Ingram, 1988; Okano, Xie, & Li, 

1998), usually within the sequence context of CpG (Bestor et al., 1988; Okano, Bell, Haber, 

& Li, 1999; Okano et al., 1998) or CpA (Gowher & Jeltsch, 2001; Kubo et al., 2015; Lister 

et al., 2013, 2009; Ramsahoye et al., 2000; Vlachogiannis et al., 2015). A subset of 5mC 

may then be oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-

carboxylcytosine (5caC) by the ten-eleven translocation (Tet) dioxygenases in three 

consecutive Fe(II) and α-ketoglutarate-dependent oxidation reactions (He et al., 2011; Ito et 

al., 2010, 2011; Tahiliani et al., 2009).

The best-known modified DNA-recognition domains are two that recognize methylated 

cytosine: methyl-binding domains (MBDs) recognize fully methylated CpG dinucleotides 

(Dhasarathy & Wade, 2008; Guy, Cheval, Selfridge, & Bird, 2011), and “SET and RING 

finger-associated” (SRA) domains that bind hemimethylated CpG sites generated transiently 

by DNA replication (Hashimoto, Horton, Zhang, & Cheng, 2009; Sharif & Koseki, 2011; 

reviewed in Hashimoto, Zhang, Vertino, & Cheng, 2015; Liu, Zhang, Blumenthal, & Cheng, 
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2013). Both MBD and SRA domains have been structurally characterized in complexes with 

5mC (Arita, Ariyoshi, Tochio, Nakamura, & Shirakawa, 2008; Avvakumov et al., 2008; 

Hashimoto et al., 2008; Ho et al., 2008; Ohki et al., 2001; Scarsdale, Webb, Ginder, & 

Williams, 2011).

A third class of mammalian proteins that can recognize methylated DNA is the Cys2-His2 

(C2H2) zinc finger (ZnF) proteins, which can preferentially bind to methylated CpG within 

a longer specific sequence (Sasai, Nakao, & Defossez, 2010). Kaiso is the first known 

methyl-binding ZnF protein that belongs to the BTB/POZ family (Prokhortchouk et al., 

2001), which also includes ZBTB24, whose mutations are associated with 

immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome (Cerbone et 

al., 2012; Chouery et al., 2012; de Greef et al., 2011; Nitta et al., 2013), a disease also 

caused by mutations in a DNA methyl-transferase gene, DNMT3B (Hansen et al., 1999; 

Okano et al., 1999; Shirohzu et al., 2002; Xu et al., 1999). Recently, ZnF DNA-binding 

domains from five proteins, Kaiso, Zfp57, Klf4, Egr1, and WT1, have been structurally 

analyzed in complex with their respective methylated DNA elements (Buck-Koehntop et al., 

2012; Hashimoto et al., 2014; Liu et al., 2014; Liu, Toh, Sasaki, Zhang, & Cheng, 2012; 

Zandarashvili, White, Esadze, & Iwahara, 2015), allowing comparison to other 5mC-binding 

proteins. In addition, WT1 binds 5caC DNA, as does a mutant Zfp57 (Hashimoto et al., 

2014; Liu, Olanrewaju, Zhang, & Cheng, 2013).

Among the C2H2 ZnF proteins, KRAB-ZnF transcription factors (KRAB-ZnFs) act mostly 

as chromatin-modulating transcription repressors (Meylan et al., 2011). Of the >300 human 

or mouse KRAB-ZnF proteins examined, the number of tandem ZnFs ranges from 3 to 35, 

with a mode of around 11–13 fingers (Liu, Zhang, et al., 2013; Fig. 1A and B). The domain 

structures of a few examples of mammalian KRAB-ZnF proteins with known biological 

roles are shown (Fig. 1C). ZFP57 mutations have been found in patients with transient 

neonatal diabetes (Mackay et al., 2008). Zfp809 restricts retroviral transposition in 

embryonic stem cells (Wolf & Goff, 2009), and retroviral silencing has been suggested to be 

the ancestral role of KRAB-ZnFs (Thomas & Schneider, 2011). Regulator of sex limitation 

(Rsl1) regulates sex- and tissue-specific promoter methylation (Krebs, Schultz, & Robins, 

2012). Zfp568 regulates extraembryonic tissue morphogenesis (Garcia-Garcia, Shibata, & 

Anderson, 2008). Like Zfp57 (Quenneville et al., 2011; Zuo et al., 2012), ZNF274 recruits 

the histone H3 lysine 9 methyltransferase SETDB1 (SET domain, bifurcated 1; Frietze, 

O’Geen, Blahnik, Jin, & Farnham, 2010) via the corepressor TRIM28 (tripartite motif-

containing 28; also known as KAP1 for Krüppel-associated protein), an essential regulator 

of genomic imprinting (Messerschmidt et al., 2012). PRDM9 (PR domain zinc finger protein 

9), a major determinant of meiotic recombination hotspots, contains a SET domain that 

methylates histone H3 lysine 4 (Mihola, Trachtulec, Vlcek, Schimenti, & Forejt, 2009). 

These examples further illustrate the coordinated chromatin controls between DNA 

methylation and the lysine methylation status of histone H3 (at residues 4 and 9; Cheng & 

Blumenthal, 2010).

In the last few years, we have biochemically and structurally characterized mouse Zfp57 (2 

ZnFs) (Liu, Olanrewaju, et al., 2013; Liu et al., 2012), mouse Krüppel-like factor 4 (Klf4) (3 

ZnFs) (Liu et al., 2014), human early growth response protein (Egr1, also known as Zif268) 
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(3 ZnFs) (Hashimoto et al., 2014), human Wilms tumor protein (WT1) (3 ZnFs) (Hashimoto 

et al., 2014), human PRDM9 allele-A (5 ZnFs) (Patel, Horton, Wilson, Zhang, & Cheng, 

2016), human PRDM9 allele-C (6 ZnFs) (Patel et al., unpublished), and human CTCF (4 

ZnFs) (Hashimoto et al., unpublished). Rather than following published methods of 

refolding insoluble proteins, such as WT1 (Laity, Chung, Dyson, & Wright, 2000) and Egr1/

Zif268 (Pavletich & Pabo, 1991), we expressed and purified the tandem array of ZnF DNA-

binding domains in soluble form as fusion proteins with glutathione S-transferase (GST). 

One key to our success in obtaining quality ZnF protein suitable for biochemistry analysis 

and crystallization is the use of polyethylenimine (PEI), a polymer with repeating unit 

composed of the amine and two carbon aliphatic spacer, and anion exchange column to 

completely remove bacterial nucleic acids associated with the ZnF proteins.

 2. SOLUBLE EXPRESSION AND PURIFICATION OF ZnF PROTEINS

ZnF cDNA fragments were cloned into the BamHI site of pGEX6p-1 vector (GE 

Healthcare), leaving five extra residues at the N-terminal, Gly-Pro-Leu-Gly-Ser, after 

PreScission protease cleavage.

 2.1 Expression

1. Day 1: Inoculate 15 mL of noninducing MDAG media (Studier, 2005) 

supplemented with 100 µg/mL sterile ampicillin, with a single colony or 

glycerol freezer stock of Escherichia coli BL21 (DE3) Codon-plus RIL 

cells containing the expression plasmid. Incubate overnight with shaking 

at 37°C.

2. Day 2: Inoculate 1 L LB medium supplemented with 100 µg/mL 

ampicillin with 2 mL of the starter culture. Grow at 37°C with shaking at 

200 rpm until the A600 reaches ~0.5 when the shaker temperature is 

reduced to 16°C.

Note: Monitor the liquid temperature with a thermometer until it 

has reached 16°C, which can take 0.5–1.5 h depending on shaker. 

Add 200 µL of 0.5 M ZnCl2 (to a final concentration of 100 µM) 

and induce the expression of protein by adding isopropyl β-D-1-

thiogalactopyranoside (IPTG) to 0.2 mM final concentration. 

Incubate overnight with shaking at 16°C.

3. Day 3: Harvest the cells by centrifugation at 3500 rpm for 30 min at 4°C 

and freeze the pellets at −20°C until purification.

 2.2 Purification

The general scheme involves four-column chromatography (Fig. 2A).

 Day 1

1. Resuspend cells from 6 L culture into 120 mL of lysis buffer [20 mM Tris 

(pH 7.5), 5% (v/v) glycerol, 25 µM ZnCl2, 0.5mM tris(2-carboxyethyl) 
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phosphine (TCEP), and 0.1 mM phenylmethylsulfonyl fluoride (PMSF)] 

containing 250–700 mM NaCl.

Note: The salt concentration needs to be individually determined 

to assure maximum solubility.

2. Lyse cells by sonication with 1 s on and 2 s off cycles for 8 min in total.

3. Treat the lysate with PEI (Sigma—408727) neutralized by HCl to pH 7.

Note: Slowly add 6 mL of 2% (w/v) PEI solution drop by drop 

into the lysate to a final concentration of 0.1% while stirring on 

an ice bath.

4. Clear the lysate by centrifugation at 16,500 rpm for 45 min at 4°C.

5. Load the supernatant onto a Glutathione Sepharose 4B column (GE 

Healthcare) with 5 mL bed volume equilibrated with 250–700 mM NaCl 

lysis buffer (see Step 1) at ~0.7 mL/min flow rate. Wash the column with 

40 mL of lysis buffer followed by 25 mL of washing buffer containing 100 

mM Tris (pH 8.0), 500 mM NaCl, 5% glycerol, 25 µM ZnCl2, and 0.5 mM 
TCEP. Elute the GST-tagged protein with 50 mL of elution buffer 

(washing buffer + 20 mM reduced glutathione) into fractions of 10 mL 

(Fig. 2B).

6. Remove the GST tag by treating the eluted protein with ~100 µg of 

PreScission protease (GE Healthcare 27-0843-01 or purified in-house) at 

4°C overnight.

 Day 2

1. Load the protein onto 5 mL HiTrap Q-SP columns connected in tandem 

(GE Healthcare; Fig. 2A), equilibrated with column buffer (lysis buffer 

minus PMSF) with 500 mM NaCl. After washing 20 mL with the same 

buffer, disconnect the Q and SP columns and elute separately with a 50 

mL (or 75) linear gradient of 0.5–1 M NaCl (Fig. 2C and D).

Note: DNA-free protein flows through the Q column and binds 

the SP column, while the DNA-containing protein binds to the Q 

column along with free DNA (Fig. 2C).

2. Concentrate the protein eluted from the SP column to ~2 mL using a 

centrifugal concentrator such as Vivaspin. Load onto a Superdex-200 

(16/60) column equilibrated with column buffer with 500 mM NaCl. 

Collect the protein eluted as a single peak (Fig. 2E). Concentrate to about 

5 mg/mL and flash freeze with liquid nitrogen and store at −80°C in 

aliquots. Final yields of the protein range from 10 to 15 mg/6 L culture.
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 3. FLUORESCENCE POLARIZATION ASSAY FOR ANALYSIS OF DNA 

BINDING

1. Synthesize 5′-FAM (6-carboxyfluorescein)-labeled oligonucleotides 

containing various cytosine modifications. Only one strand is labeled.

Note: Generally, blunt-ended DNA duplex is preferred, although 

sometimes labeling at one (or two) base overhang at the 5′-end 

yields better signal (Hashimoto et al., 2014; Liu et al., 2014, 

2012). The FAM label may not be compatible with 5caC 

modification within the same strand due to currently available 

synthesis chemistry.

2. Mix twofold serially diluted protein solutions (1–10 µMstarting 

concentration, 10–15 points) with 1–5 nMfinal concentration of DNA 

probe in a Corning 3575 plate, using binding buffer of 20 mM Tris–HCl, 

pH 7.5, 5% glycerol, and 0.5 mM TCEP with varying NaCl concentration 

(150–300 mM). Incubate the mixture for 10 min at room temperature. 

Perform at least two duplicate experiments.

3. Measure fluorescence polarization at 25°C on a Synergy 4 Microplate 

Reader (BioTek) using 485/20 nm and 528/20 nm filters for emission and 

excitation, respectively.

Note: The presence of protein should cause no change in 

fluorescence intensity.

4. Calculate the dissociation constants (KD) by fitting the experimental data 

to the following equation using GraphPad Prism software (version 6.0): 

[mP]=[maximum mP] × [C] / (KD + [C]) + [baseline mP], then replot the 

curve using % of saturation calculated as ([mP] − [baseline mP])/

([maximum mP] − [baseline mP]), where mP is millipolarization and [C] 

is protein concentration.

Note: The maximum increase of mP observed is protein and/or 

oligonucleotide dependent, and is most commonly between 50 

and 100 mP. Very large mP change (>200) at high protein 

concentration (>1 µM) often indicates nonspecific binding.

5. Effect of NaCl concentration: The KD values are extremely sensitive to the 

ionic strength of the binding buffer. Fig. 3 illustrated that the WT1 + KTS 

isoform binds most strongly to 5caC-containing DNA. Affinity is 

uniformly low in 300 mM NaCl (Fig. 3A) but considerably higher (>10-

fold) in 200 mM NaCl (Fig. 3B; Hashimoto et al., 2014). The effect is 

even more pronounced for human PRDM9 allele-A: increasing NaCl 

concentration by 20 mM can result in as much as 3-fold increase in KD 

value (Fig. 3C), and a 50 mM increase of NaCl resulted in an 18-fold 

reduction in affinity. As documented in previous studies (Jantz & Berg, 
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2010), the double-logarithmic plot of KD as a function of NaCl 

concentration is linear (Fig. 3D).

Note: Due to extreme salt sensitivity of the assay, different 

batches of the same buffer formulation can give noticeably 

different KD values. When possible, use the same batch of buffer 

for all assays in one study.

 4. CRYSTALLIZATION OF ZnF PROTEINS IN COMPLEX WITH DNA

1. Design of oligonucleotide suitable for cocrystallization: both the length 

and the ends must be considered. Fig. 4 illustrates the process of obtaining 

diffraction quality crystals for human PRDM9 allele-A ZnF 8–12 by 

varying oligonucleotides. We started with a 15 + 1 base pairs (bp) double-

stranded oligonucleotide (oligo)—the minimum length required for 

recognition by five ZnFs—plus a 5′-overhanging thymine or adenine on 

either strand (Fig. 4). This design was then lengthened 1 or 2 bp at a time 

to become 16 + 1 (1 bp increase on one end), 17 + 1 (1 bp increase on both 

ends), 18-, 19-, and 20-bp blunt ends, and 18 + 1, 19 + 1, and 20 + 1 bp 

with 5′-overhangs. In the end, only the 20 + 1 oligo yielded high-

diffraction quality crystals. Alternatively, 3′-overhangings or asymmetric 

overhanging only on one strand could also be used.

2. Purification of crude oligonucleotides: Due to cost consideration, we use 

crude unmodified oligos to screen the length and ends. Resuspend each 

single-stranded DNA into annealing buffer containing 10 mM Tris (pH 

8.0), 50 mM NaCl, and 1 mM EDTA (ethylenediaminetetraacetic acid) to 

final concentration of ~1 mM. Mix complimentary stands of DNA in 

equimolar ratio, heat in a boiling water bath that is slowly cooled 

overnight to room temperature. Load the annealed double-stranded (ds) 

DNA to a 5 mL HiTrap Q column with 20 mM Tris (pH 8.0) as buffer A 

and 20 mM Tris (pH 8.0) and 1 M NaCl as buffer B. Collect DNA eluted 

as a single large peak between 0.55 and 0.65 MNaCl using a linear 

gradient of NaCl from 0.1 to 1 M. Pool peak fractions and measure DNA 

concentration by absorbance at 260 nm.

3. Protein–DNA complex formation by dialysis: Mix ZnF protein with 

purified dsDNA in 1:1 molar ratio to a final concentration of 25 µM each 

in buffer containing 20 mM Tris (7.5), 500 mM NaCl, 5% glycerol, 25 µM 
ZnCl2, and 0.5 mM TCEP. Dialyze the mixture against low salt buffer 

(150–250 mM NaCl) at 4°C with two 500 mL changes of buffer every 6–8 

h. The slow exchange to low salt buffer can potentially reduce nonspecific 

binding and promote specific complex formation between DNA and 

protein. [Alternatively, modified oligos are often HPLC or PAGE purified 

after synthesis, thus can be directly mixed with protein at high 

concentration (~1 mM).] After dialysis, centrifuge the protein–DNA 

complex at 4000 rpm for 15 min to remove any precipitate. Concentrate 
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the supernatant to desired concentration and centrifuge at 13,000 rpm for 

10 min before crystallization trial.
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Fig. 1. 
KRAB-ZnF proteins. The SysZNF database was examined for Krüppel-associated box 

(KRAB)-ZnF proteins in human (A) or mouse (B). In each case, the distribution of KRAB-

ZnF proteins containing a given number of ZnF repeats is shown. (C) Examples of 

mammalian KRAB-ZnF proteins with known biologic roles. The size of each protein (in 

amino acids) is shown on the right. The classic C2H2 ZnF motifs are shown in blue (gray in 

the print version) boxes and the gray or open boxes indicate degenerate ZnFs that contain 

mutations affecting zinc coordination. The red (gray in the print version) boxes of mouse 

Zfp57 and human PRDM9 indicate the structurally characterized ZnFs in complex with their 

recognition sequences shown below. The amino acids within the red (gray in the print 

version) box indicate the three or four residues of each ZnF involved in base specific 

interactions. The SCAN box, a leucine-rich region, was named after SRE-ZBP, CTfin51, 

AW-1 (ZNF174), Number 18 cDNA (ZnF20) (Williams, Khachigian, Shows, & Collins, 

1995). The SET domain was named after Su(var)3–9, Enhancer of zeste, Trithorax 

(Jenuwein, Laible, Dorn, & Reuter, 1998). Modified from Liu, Y., Zhang, X., Blumenthal, R. 

M., & Cheng, X. (2013). A common mode of recognition for methylated CpG. Trends in 

Biochemical Sciences, 38, 177–183.
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Fig. 2. 
One example of ZnF protein purification. (A) The general scheme of four-column 

chromatography. Inserted is a picture of tandem Q-SP columns. (B) A 12% SDS-PAGE 

showing total lysate (lane 2), supernatant after PEI treatment (lane 3), flowthrough (FT; lane 

4), and washing through the GST column (lanes 5 and 6), five elutions by GSH (lanes 7–11), 

and before and after PreScission protease cleavage (lanes 12 and 13). Note that more soluble 

protein appears after PEI treatment (comparing lanes 2 and 3). (C) Elution profile of the 

HiTrap Q column. (D) Elution profile of the HiTrap SP column and an accompanying SDS-

PAGE showing the fractions. (E) Elution profile of a Superdex-200 (16/60 GL) column and 

an accompanying SDS-PAGE showing the fractions.
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Fig. 3. 
The effect of NaCl on binding affinity. The DNA-binding affinity of WT1 + KTS isoform is 

uniformly low in 300 mM NaCl (A) but increases markedly in 200 mM NaCl (B). (C) The 

DNA-binding affinity (KD) of human PRDM9 allele-A under NaCl concentrations from 260 

to 310 mM with 10–20 mM increments. (D) The linear correlation of double-logarithmic 

plot of KD values and NaCl concentrations. Panel (B): Adopted from Hashimoto, H., 

Olanrewaju, Y. O., Zheng, Y., Wilson, G. G., Zhang, X., & Cheng, X. (2014). Wilms tumor 
protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes & 

Development, 28, 2304–2313.
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Fig. 4. 
Examples of DNA oligonucleotide sequences used for cocrystallization with human PRDM9 

allele-A, crystals observed, and quality of X-ray diffractions. Five examples of crystals and 

corresponding conditions were shown (A–E).

Patel et al. Page 14

Methods Enzymol. Author manuscript; available in PMC 2016 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. INTRODUCTION
	2. SOLUBLE EXPRESSION AND PURIFICATION OF ZnF PROTEINS
	2.1 Expression
	2.2 Purification
	Day 1
	Day 2


	3. FLUORESCENCE POLARIZATION ASSAY FOR ANALYSIS OF DNA BINDING
	4. CRYSTALLIZATION OF ZnF PROTEINS IN COMPLEX WITH DNA
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

