1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Semin Liver Dis. Author manuscript; available in PMC 2016 July 12.

-, HHS Public Access
«

Published in final edited form as:
Semin Liver Dis. 2015 November ; 35(4): 375-391. doi:10.1055/s-0035-1567870.

Insights from Genome-Wide Association Analyses of
Nonalcoholic Fatty Liver Disease

Bratati Kahali, PhD1, Brian Halligan, PhD?, and Elizabeth K. Speliotes, MD, PhD, MPH!

1 Division of Gastroenterology, Department of Internal Medicine, Department of Computational
Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan

Abstract

Nonalcoholic fatty liver disease (NAFLD) is caused by hepatic steatosis, which can progress to
nonalcoholic steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma in the absence of
excessive alcohol consumption. Nonalcoholic fatty liver disease will become the number one
cause of liver disease worldwide by 2020. Nonalcoholic fatty liver disease is correlated albeit
imperfectly with obesity and other metabolic diseases such as diabetes, hyperlipidemia, and
cardiovascular disease, but exactly how having one of these diseases contributes to the
development of other metabolic diseases is only now being elucidated. Development of NAFLD
and related metabolic diseases is genetically influenced in the population, and recent genome-wide
association studies (GWASs) have discovered genetic variants that associate with these diseases.
These GWAS-associated variants cannot only help us to identify individuals at high risk of
developing NAFLD, but also to better understand its pathophysiology so that we can develop more
effective treatments for this disease and related metabolic diseases in the future.
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With the rise in obesity, we are seeing an increase in nonalcoholic fatty liver disease
(NAFLD) which is reaching epidemic proportions. Nonalcoholic fatty liver disease is
expected to become the number one cause of liver disease worldwide by 2020.1
Nonalcoholic fatty liver disease is correlated with the presence of other metabolic diseases
including obesity, diabetes, dyslipidemia, hypertension, and cardiovascular disease, but
imperfectly s0.23 The extent to which these correlated metabolic diseases contribute to the
development of NAFLD or to which NAFLD contributes to the development of these
correlated metabolic diseases is currently being investigated. Like obesity, NAFLD is very
common in the United States, with an overall prevalence of approximately 30%.3-5
Nonalcoholic fatty liver disease varies in prevalence across ancestries, however.4= In the
United States, the prevalence of NAFLD in individuals of Hispanic ancestry is higher (34—
58%) than in individuals of European ancestry (28-45%) than in individuals of African
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ancestry (19-35%).4-% The majority of this difference in the prevalence of disease across
ancestries is due to genetic differences in the predisposition to develop this disease.”8

Nonalcoholic fatty liver disease is a spectrum of disease that includes steatosis (fat
deposition in hepatocytes), nonalcoholic steatohepatitis (NASH; inflammation around the
hepatic fat), and fibrosis/cirrhosis (scarring of the liver) in individuals that do not drink
significant amounts of alcohol.® In some individuals, NAFLD can predispose to the
development of hepatocellular carcinoma (HCC).10 Steatosis is the hallmark of the disease,
but can be absent in advanced stages of the disease. As a consequence, many causes of
cryptogenic cirrhosis may actually be due to NAFLD that was not previously recognized as
NAFLD.

To develop NAFLD there must be an imbalance in hepatic lipid homeostasis between fatty
acid inputs and outputs. Inputs include fatty acids from dietary sources, adipose breakdown,
de novo lipogenesis, and diet, while outputs include fatty acid oxidation and fatty acid
export in the form of very low-density lipoprotein (VLDL; reviewed in 11). Some studies
have shown that lipotoxicity and mitochondrial dysfunction may contribute to hepatocyte
toxicity and death.1 Furthermore, there is evidence that activation of Kupffer cells and
stellate cells can initiate the inflammatory and fibrotic processes, respectively, that lead to
progressive liver disease in the form of NASH and fibrosis. Although it was thought in the
past that hepatic steatosis was “benign,” more evidence suggests that hepatic steatosis can
cause hepatocyte toxicity and trigger development of advanced liver disease. Indeed, HCC
can develop in patients who do not have cirrhosis? and some cases of HCC develop in the
presence of just “simple steatosis,”1314 suggesting that even hepatic steatosis may merit
intervention to prevent development of subsequent liver disease.

NAFLD Measurement

Nonalcoholic fatty liver disease can be measured using various modalities. It can be
measured using liver histology, which is the gold standard for the diagnosis of the disease.
With histology, the complete range of the disease can be measured including steatosis,
inflammation, and fibrosis/cirrhosis. Because liver biopsies carry a risk of complications,
they are not usually performed on normal individuals unless there is an indication.
Indications for biopsy may include many risk factors for development of advanced liver
disease, including advanced age and concomitant metabolic disease. Thus, studies based on
using histology may not accurately reflect population-based NAFLD. Hepatic steatosis can
also be measured using noninvasive imaging, but these imaging modalities are not very
sensitive for detection of NASH or early fibrosis. Magnetic resonance spectroscopy (MRS)
is the most sensitive and specific for measuring triglycerides in liver, but requires specialized
expertise to implement and is not widely used in clinical practice.1> Magnetic resonance
imaging (MRI), computed tomography (CT), or ultrasound imaging are affordable, widely
available, and confer minimal risk to the patient; thus, they are most often used in clinical
practice and in the population for evaluating for the presence of hepatic steatosis.1® The
sensitivity and specificity of MRI is greater for quantifying hepatic steatosis than CT, which
is greater than ultrasound.1® Finally, elevations in serum ala-nine aminotransferase (ALT)
can be seen with NAFLD, but this biomarker is not sensitive or specific for NAFLD16 (e.g.,
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it can fail to be elevated in people with NAFLD or be elevated without NAFLD as a
consequence of many other liver diseases) . Therefore, they require further follow-up to
confirm that the elevations are due to NAFLD and not some other liver disease.

Heritability Estimates for NAFLD

Population-based NAFLD has been found to be heritable, or genetic, in various twin and
family studies. In individuals of Hispanic ancestry, the heritability of population-based
NAFLD has been found to be 31 to 38%.17:18 In the first study, 44 children (probands) and
their parents were characterized for the presence of hepatic steatosis using MRI and
histology; the heritability of NAFLD was found to be 38%.17 In the second, 843 individuals
from the Insulin Resistance Atherosclerosis Study (IRAS) family study were measured for
hepatic steatosis using CT-measured liver attenuation and heritability determined to be
31%.18 In 6,629 individuals from three European ancestry family-based studies (Family
Heart Study, The Old Order Amish, and The Framingham Heart Study) liver steatosis was
measured using computed tomography liver attenuation and heritability was calculated to be
26 t0 27%.19 Finally, in individuals of African ancestry from the Insulin Resistance and
Atherosclerosis Study, Family Heart Study, and Genetic Epidemiology of Arteriopathy
(GENOA) Study the heritability was found to be 22 to 34%.” Thus in all ancestries
examined there is a substantial heritable component to the disease, ranging from 22 to 38%.
Because there is statistical variation in these heritability measures, it cannot be determined
that the heritability is more in one ancestry than the other. A recent study of 60 pairs of twins
revealed that the heritability of hepatic steatosis and fibrosis using MRI proton-based fat
fraction was 52% and 509, respectively.20 The slightly higher estimate of steatosis
heritability in this study compared with the family-based studies noted above is likely due to
an overestimate of heritability in twin studies. In particular, heritability estimates based on
phenotypic resemblance that may be due to unmeasured environmental variables which are
more likely to be shared by monozygotic twins (because they often do live in the same
environment and may be treated more similarly) than more distantly related individuals
often inflate the heritability calculated for traits in twin studies.?!

Candidate Gene Studies

Many studies have tested genetic variants in or near candidate genes for association with
NAFLD measures.22 These include associations with single nucleotide polymorphisms
(SNPs) in or near /RS1, ENPP1, SOD2, p21, USF1, KLF6, INFL4, IL28B, and
APOC322-29 These associations have not been reproduced in completely independent
studies to date; thus, their validity remains to be determined. Some associations have,
however, already turned out to be false-positives. In 2010 Peterson et al reported an
association with variants near APOC3,2° but reports by others since then have not
substantiated this association.3%:31 Similarly, the association of variants in or near /L288
with NAFLD has been challenged.32 In this latter case, authors of the original study suggest
that the /L28B allele may have a larger effect in individuals that do not have many other
NAFLD predisposing risk factors as the reason for discrepancy between studies,33 but this
remains to be substantiated.
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GWASs for Nonalcoholic Fatty Liver Disease

To identify specific genetic elements that associate with NAFLD in an unbiased way, several
genome-wide association studies (GWASSs) of NAFLD have been performed (»Table 1).
Romeo et al used a custom chip of over 9,000 nonsynonymous variants across the genome to
genotype individuals of European, Hispanic, and African American ancestries who had liver
fat measured by proton MRS.8 They found that one variant in the gene PNPLA3, the G-
allele at rs738409, encoding an 1148M missense mutation, increased hepatic fat levels across
European American, African American, and Hispanic American ancestries. The frequency
of this variant was highest in individuals of Hispanic ancestry, followed by those of
European and African American ancestries, respectively, a finding consistent with the
known prevalence of NAFLD in these ethnic groups.® Since the discovery of this variant,
other groups have replicated the association of this variant with hepatic steatosis as well as
other measures of NAFLD. Specifically, associations have been noted with elevated serum
ALT levels,3*-38 imaging-based steatosis,*1%:39 or with histologic NAFLD including
steatosis, NASH, and fibrosis/cirrhosis (»Table 2).1940-44 A recent meta-analysis of up to
2,937 individuals with NAFLD measured by histology revealed that individuals with GG at
rs738409 in PNPLAS3 had 73% higher lipid fat content, 3.24-fold greater risk of higher
necroinflammatory scores, 3.2-fold greater risk of developing fibrosis, and 3.44 higher odds
of developing NASH compared with CC individuals.*> More than 70% of the difference in
prevalence between individuals of diverse ancestries is likely due to genetic influence—and
most of that is due to variation in the prevalence of fatty liver promoting the PNPLA3
allele.”8

Two different GWASs of liver function tests identified variants at four loci that associated
with elevated ALT levels. These are in or near the PNPLA3 (rs2281135, rs738409)—
SAMMS50 (rs2143571) genomic locus,3*3% the CPN1-ERLIN1-CHUK gene cluster
(rs10883437, rs11597390, rs11591741, rs11597086),34:35 TRIB1 (rs2954021),343% and near
HSD17B13/MAPK10 (rs6834314).3° The SNPs in the genomic region of PNPLA3-
SAMMSO0 are correlated with each other, suggesting that they may represent the same
genetic signal (e.g., are in moderate to high linkage disequilibrium [LD] with each other
with a r2 [correlation]= 0.34 between rs738409 and rs2143571, r? = 0.63 between rs2281135
and rs2143571 and r2 = 0.86 between rs2281135 and rs738409). Follow-up studies by
independent groups found that variants in PNPLA3rs738409 (see last paragraph) and near
TRIBI1 (rs2954021) reproducibly affect the development of NAFLD.4? Specifically, variants
(rs2954021) near 7R/B1 have been found to associate with histologic NAFLD in a Japanese
population.#® Further, a SNP (rs6982502) in an enhancer near TRIB1 was significantly (p=
9.39 x 1077) associated with ultrasonographically diagnosed NAFLD in a population of
5,570 individuals.59 These two SNPs that are located in or near TRIB1 are highly correlated
with each other with an LD r2 = 0.94.

Another GWAS on NAFLD focused on 236 non-Hispanic white women that were genotyped
with the llumina CNV370 platform and assessed for various histologic parameters related to
NAFLD.5! After correcting for multiple hypothesis testing, however, none of the SNPs
managed to pass the genome-wide significance threshold of a pvalue less than 5 x 1078,
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One of the largest GWASs was a meta-analysis across four groups, all of European ancestry,
that were genotyped either on the Affymetrix or Illumina platforms, imputed to the 2.8
million SNPs in HapMap.1® These SNPs were tested for associations with hepatic steatosis
measured by CT in each of the four groups separately and combined by meta-analysis for a
total of 7,176 assayed individuals!® controlling for age, gender, and principal components.
Top associating variants from this meta-analysis were taken forward for assessment of
effects on 592 cases of histology proven NASHY/ fibrosis genotypically matched to 1405
controls, all of European ancestry.19 Variants in or near the genes PNPLA3, LYPLALI,
PPP1R3B, NCAN/TM6SF2, and GCKR were found to be associated with hepatic
steatosis.1? Variants that increased hepatic steatosis at all loci except PPPIR3B were also
found to be associated with NASH/fibrosis (»Table 2).1° The associations of variants at
PNPLAZ3 have been confirmed in subsequent studies as noted above. The association of
variants at GCKR and NCAN/TM6SF2 with NAFLD/NASH/fibrosis have also been
confirmed by independent subsequent studies.#8:49:52

The most significant variants at PNPLA3and GCKR either were themselves missense
variants or in high-linkage disequilibrium with missense variants in those genes.1? Indeed,
fine mapping of these loci across ancestries suggests that the PNPLA3Z(1148M) and
GCKR(P446L ) are the variants most likely to be causally related to development of
NAFLD.” Variants at NCAN/TM6SF2 have been fine mapped to likely a missense variant in
TM6SF2(E167K) as possibly the causal variant in promoting NAFLD in a recent study of
exonic variants (variants in the coding parts of genes). These were assayed using the
Illumina Human Exome chip for association with NAFLD measured using MRS in the
Dallas Heart Study.*8 This variant can account for the association signal with NAFLD seen
at this locus, which in the literature also goes by the name NCAN, CILPZ, and the 19p13.11
locus.8 The TM6SF2 variant rs58542926 that causes a nucleotide change of C to T, is a
nonsynonymous change causing a glutamate to lysine amino acid substitution at residue 167
(E167K); the glutamate is highly conserved across mammals.*8 The putative causal variant
is suggested to cause a decreased function in TM6SF2to promote NAFLD.*8 The NAFLD-
associated variants at LYPLALZ or PPPIR3B fall in noncoding regions near these genes.
The best associating NALFD promoting variant at PPP1R3B increases PPP1R3B
expression, suggesting that this could be a functional expression quantitative trait locus
(eQTL) variant.1?

Pleiotropies

Effects on Related Metabolic Traits and Diseases

Some but not all NAFLD-associated variants affect the risk of developing related metabolic
diseases (»Table 2). The G allele at rs738409 in PNPLA3 has not been found to associate
with measures of obesity, impaired fasting glucose, diabetes, low-serum high-density
lipoprotein cholesterol (HDL-C), high-serum triglycerides, and hypertension.”-34 One study
did find some associations of this allele with decreased total cholesterol levels in a study of
> 100,000 individuals,>3 but this remains to be replicated. The fatty liver promoting allele at
TM6SF2/NCAN associates not only with decreased serum low-density lipoprotein
cholesterol (LDL-C), serum triglycerides, and increased serum HDL-C levels, but also with
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decreased risk of coronary artery disease.14:54 The fatty liver increasing allele at GCKR
associates with increased serum LDL-C, increased serum triglycerides, serum gamma-
glutamy!l transferase, and decreased fasting glucose and homeostatic model assessment
insulin resistance levels.14:3% The fatty liver increasing variant near PPP1R3B exhibited
similar behavior to GCKR in associating significantly with increased serum LDL-C,
increased serum HDL-C, and decreased fasting glucose,14 but also associated with increased
alkaline phosphatase.3® The serum ALT level increasing allele at TRIB1 (rs2954021)
significantly associates with increased serum levels of total cholesterol, serum LDL-C,
serum triglycerides, and serum alkaline phosphatase, but decreased levels of serum HDL-
C.3553 variants near TRIB1 have also been associated with adiponectin.®®

The finding that some, but not all genetic variants that predispose to development of NAFLD
predispose to related metabolic disease, suggests that genetics may help explain in part the
imperfect correlation of these traits with each other. That is, some of the correlation seen
between developing metabolic disease may be due to having shared genetic elements that
predispose to more than one metabolic abnormality. The finding that not all genetic variants
that predispose the NAFLD equally affect related metabolic disease suggests, however, that
depending on the sets of genetic variants individuals carry, they may have different risks of
developing NAFLD and concomitant related metabolic diseases. The exciting thing is that
now with this new genetic information we may in the future be able to make more precise
predictions on who will not only develop NAFLD but also related metabolic diseases.
Because some genetic changes result in patterns of effects across traits that are similar to
each other, but different from those of other variants, we may in the future also be able to
use these genetic changes to subclassify individuals into disease types. These pleiotropy data
are also interesting and useful from a therapeutic standpoint because they suggest that
interfering with the function of some of these genes may lead to pleiotropic effects, whether
desired or undesired, if targeted for medical intervention. For example, if one were to
decrease the function of TM6SF2 globally to decrease serum lipid levels to prevent heart
attacks, there is ample data for these studies to suggest that this would cause hepatic
steatosis and advanced liver disease. Thus, this approach to reducing cardiovascular disease
risk may not be optimal. The other striking finding from these genetic data is that most
genes, when targeted, will have pleiotropic effects (i.e., side effects). Thus, a better strategy
suggested from the genetic work is to make weak agonists and antagonists (which is what
nature has done in creating these variants of small effect) that when used together, may
maximally affect the desired phenotype, but have low if not canceling effects on related
traits and thus can maximally affect the targeted phenotype while minimizing side effects.

Effects in Other Liver Diseases

Alcoholic liver disease (ALD), more than any other liver disease, has a similar spectrum of
histopathologic features as NAFLD. This includes the development of alcoholic steatosis,
alcoholic hepatitis, alcoholic fibrosis, alcoholic cirrhosis, and a predisposition to the
development of HCC.64:65 The inciting event is the development of alcoholic fatty liver,
which is a pathologic condition that shares many features with NAFLD.56 To try to
distinguish ALD from NAFLD, cutoffs of drinking > 21 drinks a week for men and > 14 for
women have been suggested as a guideline for determining what constitutes significant
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alcohol consumption.®” Nevertheless, given the high prevalence of metabolic disease in the
population and the high prevalence of alcohol consumption in the population, it is likely that
in clinical practice the two diseases often coexist, even though by formal definition they are
mutually exclusive. Indeed, there is evidence to suggest that ALD can be exacerbated by the
presence of obesity and that some of the pathophysiology of the two conditions may
overlap.66.68,69

To date, the 1148M at PNPLA3 has been most extensively studied for effects on ALD. A
recent meta-analysis shows that this allele does affect development of ALD.%6 More than
4,000 cases of ALD and 4,000 controls without ALD across 10 studies#5:49.50.56.67-72 \yere
analyzed.58 The PNPLA3 G-allele at rs738409 has been found to increase the risk of
alcoholic liver injury with an odds ratio (OR) of 1.45 (95% confidence interval [CI] 1.24—
1.69) and increase the risk for development of alcoholic cirrhosis 2.09 (95% CI 1.79—
2.44).56 There was not a clear association of the 1148M PNPLA3 allele with the
development of alcoholic fatty liver, however.56 This could be because the allele may not
have an effect in alcoholic fatty liver, but could also be due to this analysis being
underpowered (with only 239 individuals being assessed) or to fatty liver being so prominent
in ALD that the genetic change was not of large enough magnitude to be statistically
significant across groups. A recent GWAS study has also found that variants at PNPLA3 and
TMB6SF2 affect development of alcoholic cirrhosis at genome-wide significance levels.14

Infection with both hepatitis B and C virus can lead to hepatitis, fibrosis, and cirrhosis and
can predispose to the development of HCC (reviewed in 70.71). Association of hepatic
steatosis with hepatitis C infection is well documented and most pronounced for hepatitis C
genotype 3, which induces hepatic steatosis more than the other subtypes.’? Hepatic
steatosis has been found to promote liver disease progression from hepatitis C, but not from
hepatitis B (reviewed in 73). Hepatic steatosis has been found to exacerbate liver disease
progression from nongenotype 3 hepatitis C.>’ Obesity and insulin resistance seems to also
exacerbate hepatitis C disease progression in most studies examined (reviewed in 73).
Steatosis is not a prominent feature of hepatitis B infection,”* but concomitant presence of
metabolic syndrome with hepatitis B infection does lead to exacerbated liver disease
development.”® For hepatitis C, it has also been shown that hepatic steatosis can affect the
ability of patients to attain sustained virologic response in nondiabetic, but not diabetic
patients.’® Given the exacerbation of hepatitis C- and hepatitis B-caused liver disease by
metabolic disease, genetic variants that affect NAFLD may have effects on liver disease in
patients with hepatitis B and C.

The first study to assess NAFLD-associated genetic variants for effects in hepatitis C was of
819 patients from Italy with chronic hepatitis C.>7 They found that the rs738409 GG
genotype was associated with steatosis independently of age, sex, body mass index (BMI),
diabetes, alcohol intake, and viral genotype (OR = 1.90, 95% CI 1.4-2.7; p< 0.001).%” The
association with rs738409 genotype was confirmed for severe steatosis, was independent of
serum liver function test levels for ALT and gamma-glutamy| transferase (GGT), and was
observed in all viral genotypes but genotype 3.57 There was a trend toward the same pattern
of effect also in genotype 3 hepatitis C, which was their smallest subgroup, and thus may
have been underpowered to see a statistical significance. The rs738409 GG genotype was
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also associated with fibrosis stage and cirrhosis (OR = 1.47, 95% CI 1.2-1.9; p=0.002) and
with worse treatment response in terms of attaining sustained virologic response (17 = 470;
OR =0.63, 95% CI 0.4-0.8; p=0.006). Around the same time, another large study from
Belgium, Germany, and France (7= 537) of mostly genotype 1 hepatitis C patients showed
that after adjustment for age, sex, BMI, alcohol consumption, and diabetes, rs738409 mutant
G allele homozygote carriers remained at higher risk for steatosis (OR = 2.55, 95% CI 1.08-
6.03; p=0.034), fibrosis (OR = 3.13, 95% CI 1.50-6.51; p=0.002), and fibrosis
progression (OR = 2.64, 95% Cl 1.22-5.67; p=0.013).” They found that rs738409 was not
independently associated with treatment failure (OR = 1.07, 95% CI 0.46-2.49; p = 0.875)
and did not influence clinical or biologic variables.”” More recent studies have confirmed
that the PNPLA3 1148M variant is a risk factor for the development of severe steatosis or
fibrosis progression in chronic hepatitis C in individuals of European ancestry.’8:79
Similarly, in 276 Japanese patients with chronic hepatitis C, the GG genotype for rs738409
was independently associated with the presence of steatosis (OR = 2.58, 95% CI 1.37-4.84;
p=0.003), severe necroinflammatory activity (OR = 2.16, 95% CI 1.12-4.16; p=0.02), and
advanced fibrosis (OR = 2.10, 95% CI 1.07-4.11; p= 0.03), after adjustment for age, sex,
BMI, and diabetes.80 The effect of the 1148M allele on sustained viro-logic response,
however, is controversial. Valenti et al>’ noted that the G allele at rs738409 was significantly
associated with a lower sustained virologic response (SVR) rate in patients with genotype 1
and 4 hepatitis C virus (HCV) infection.®’ In a subsequent study, they noted that the 1148M
variant associated with SVR in patients with genotype 1 and 4 HCV and bridging fibrosis,
but not in genotypes 1 and 4 HCV without bridging fibrosis or in those with genotypes 2 and
3 HCV.8L Trepo et al,”” as well as various other groups,>3:82 have not found an association of
the 1148M allele and SVR, however. Whether these differences are due to power or to
uncorrected confounders remains to be determined.

The E167K variant at TM6SF2 has also been associated with histologic liver disease in
chronic hepatitis C. One study of 148 consecutive patients from southern Italy with biopsy
proven anti-HCV/HCV-RNA-positive chronic hepatitis, mostly of genotype 1 and 2, naive
for antiviral therapy, were genotyped for TM6SF2 E167K.>* The liver steatosis score was
higher in the 18 patients with TM6SF2 E167K variant than in the 130 homozygotes for
TM6SF2 167E allele.>* There was no difference in necroinflammatory or fibrosis scores
found between the two groups.®* In another study of 815 Italian patients mostly of genotype
1 and 2 with replication in 645 Swiss/German patients, the authors found that TM6SF2
E167K was associated with histologic severity of steatosis, necroinflammation, and
fibrosis.83 After adjustment for steatosis severity, the E167K variant associated with
cirrhosis (OR = 2.22, 95% CI 1.20-4.03; p=0.010). The association with clinically
significant fibrosis (F2-F4) was replicated in 645 Swiss/German patients (OR = 1.81, 95%
Cl 1.12-3.02; p=0.016). A third recent study of 694 chronic hepatitis C patients from Italy,
however, did not see an association with steatosis severity after adjustment for age, gender,
BMI, and homoeostasis model assessment score with TM6SF2 rs58542926 (OR = 1.48,
95% CI 0.82-2.69; p = 0.19) or with fibrosis (OR = 0.75, 95% CI 0.34-1.63; p= 0.47).78 It
is not clear whether the differences in effects between studies are due to differences in
power, to differences in the population, or to the presence of unaccounted confounders.
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The PNPLA3 1148M allele has also been associated with hepatic steatosis in 235 hepatitis B
patients (OR = 1.62, 95% CI 1.00-7.00) after correction for BMI, age, and diabetes/impaired
fasting glucose.>8 A similar result has been reported in a separate study of 99 individuals
with hepatitis B in which the 1148M homozygotes had an OR = 13.9 (95% CI 2.2-86.9; p =
0.005) for the presence of severe steatosis compared with individuals lacking this allele.>®
This allele has not been associated with fibrosis or cirrhosis in multiple studies.>:59.60

Effects on Graft Outcomes after Liver Transplantation

Liver transplantation provides a unique situation in which the effects of genetic variants
within and outside the liver can be evaluated (»Table 3). After transplantation the liver
genotype may not match the recipient's genotype and thus forms a genetic mosaic. In one
study of 101 hepatitis C-infected individuals who underwent transplantation, the time to
Ishak stage 3 fibrosis or HCV-related mortality/graft loss was analyzed using Cox regression
modeling adjusting for HCV-Donor Risk Index, warm ischemic time, pretransplant Model
for Endstage Liver Disease (MELD), and viral load in 620 days of follow-up after
transplantation.83 The rs738409 donor GC or GG variants had 2.53 times the risk of
developing fibrosis (95% CI 1.25-5.02; p = 0.008) compared with CC variants.®3 In the
alternative endpoint: stage 3 fibrosis or all-cause mortality/graft loss, the effect of donor
genotype was attenuated but remained significant at 1.98 (95% CI 1.11-3.53).63 This result
is interesting as it suggests that PNPLA3's effect is to influence liver disease development
and progression. The authors did not observe an association between the PNPLA3 1148M
variant, neither in donors nor recipients, with posttransplant hepatic steatosis, however.53
Another larger study, however, did not see an association of the 1148M PNPLAS3 allele with
development of advanced fibrosis in 176 individual with hepatitis C that underwent liver
transplantation.8* Also, unlike Dunn et al, Finkenstedt et al found that the PNPLA3 1148M
variant in recipients, that is, recipients who carried rs738409-GG, had a higher risk of graft
steatosis than recipients who carried rs738409-CC, independent of recipient age or weight
gain after liver transplantation.8> This latter result is interesting because it suggests that
PNPLA3 may have effects outside of the liver that may be important for development of
graft steatosis. Further work will be needed to determine whether these observations are
reproducible; if so they may become important to help physicians establish a fibrosis
progression management plan after transplantation.

Effects on Hepatocellular Carcinoma

Hepatocellular carcinoma, like obesity and NAFLD, is rising in prevalence and has now
become the number one cause of obesity-related deaths in middle-aged men (reviewed in10)
(»Table 3). Hepatocellular carcinoma can develop from many liver insults, although in the
United States major causes are hepatitis C, ALD, NAFLD, and hepatitis B.5> The
development of HCC was previously thought to require liver cirrhosis as a precursor, but
more recent work suggests otherwise. In particular, 10 to 75% of HCC can develop in
patients who do not have cirrhosis.12 It has indeed been reported that HCC can develop in
patients with simple steatosis, or more specifically, patients who do not have any signs of
inflammation or fibrosis.13:14 Because steatosis is a clear risk factor for the development of
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HCC, it is not surprising that variants that affect hepatic steatosis have been tested for effects
on development of HCC.

In obese individuals from the Swedish Obese Subjects Cohort, the G allele at rs738409 in
PNPLAZ3 increased risk of developing HCC with a hazard ratio = 5.9 (95% CI 1.5-23.8) in
individuals that did not have bariatric surgery to treat their obesity.86 Further, in individuals
with HCC from NAFLD compared with 275 controls with histologically characterized
NAFLD, each G allele at rs738409 in multivariate analysis adjusted for age, gender,
diabetes, BMI, and presence of cirrhosis, conferred an additive risk for HCC (OR = 2.26,
95% ClI 1.23-4.14; p=0.0082), with GG homozygotes exhibiting a fivefold (95% CI 1.47-
17.29; p = 0.01) increased risk over CC homozygotes.®1 When compared with the UK
general population (1958 British Birth Cohort, 7= 1476), the risk-effect was more
pronounced (GC vs. CC: unadjusted OR = 2.52, 95% CI 1.55-4.10; p=0.0002; GG vs. CC:
OR =12.19, 95% CI 6.89-21.58; p < 0.0001).61

Multiple groups reported associations of 1148M with HCC in the setting of alcoholic- and
hepatitis C-caused liver disease as well.57:59.77.87-90 A meta-analysis of 1,374 individuals
with ALD and 945 individuals with chronic hepatitis C found that each 1148M allele
incurred a higher risk of developing HCC from ALD (OR = 2.20, 95% CI 1.80-2.67) than
from chronic hepatitis C (OR = 1.55, 95% CI 1.03-2.34) although both were statistically
significant.52 In another meta-analysis of 357 individuals the odds of developing HCC in
alcoholic cirrhotics was 2.87 (95% CI 1.61-5.10) for GC versus CC individuals and 12.41
(95% Cl 6.99-22.03) for GG versus CC individuals,® which is similar to what was
calculated in the study by Trepo et al.62 This suggests that the pathophysiology of ALD,
which is known to have significant steatosis, may in conjunction with a problem in lipid
handling incurred by the PNPLA3 mutation, lead to more advance liver pathology than
simply having the 1148M genetic variant along with concomitant liver disease from hepatitis
C.

Improved Understanding of the Biology of Common NAFLD

PNPLA3

Following the GWASs for NAFLD, studies into the function of several genes implicated by
these GWASSs has given us new insights into the pathophysiology of NAFLD (»Fig. 1,
»Table 4).

PNPLA3 stands for patatin-like phospholipase domain containing 3, but has also been called
adiponutrin (ADPN) and acylglycerol O-acyltransferase or calcium-independent
phospholipase A2-epsilon (iPLA2-epsilon).108 The exact biochemical mechanism by which
PNPLAZ3 acts to cause NAFLD is not yet clear. PNPLA3 is found on the surface of lipid
droplets in liver.92 There are data to suggest that wild-type PNPLA3 can break down
triglycerides and thus act as a triglyceride hydrolase,2 but others have found that it has
lysophosphatidic acid acyltransferase activity also.19® Numerous studies suggest that
altering PNPLAS3 function can affect lipid trafficking in hepatocytes. Overexpression of the
PNPLA3 (1148M) mutant allele in human hepatocyte culture results in lipid accumulation,
but overexpression of the wild type of allele does not,?2 suggesting a possible gain of
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function (new function compared with what it does normally) phenotype caused by the
1148M variation. Consistent with this result, mice knocked out for PNPLA3 do not develop
hepatic steatosis,110.111 whereas mice carrying a PNPLA3 (1148M) knock in mutation and
fed a high sucrose diet develop NAFLD confirming that this allele can cause fatty liver
disease.103 Human PNPLA3 (1148M) and the mouse equivalent Pnpla347A/A both produce
proteins that are catalytically inactive for TG hydrolysis, but as noted above, a knockout of
the gene alone is not sufficient to cause steatosis. The presence of the catalytically inactive
protein is required to develop the fatty liver phenotype, implying that its presence may
interfere with normal lipid metabolism by binding to and increasing the size of lipid droplets
and/or blocking lipolysis.103 PNPLA3 mRNA levels are increased by carbohydrate feeding
and this increase is mediated by SREBP-1c.112 PNPLA3 degradation is also reduced with
the addition of fatty acids to hepatocytes without affecting mRNA levels.112

TRIB1 stands for tribbles pseudokinase 1, but has also been called phosphoprotein regulated
by mitogenic pathways, g protein coupled receptor-induced protein, tribbles homolog 1,
tribbles-like protein 1, and tribbles homolog 1.113 TRIB1 has been found to affect hepatic
lipogenesis and VLDL export via interacting proteins to mediate its NAFLD-promoting
effects.50.114.115 Qverexpression of 77ib1 in mouse livers decreased serum lipids, whereas
knockdown increased liver triglyceride content and glycogen as well as serum\plasma
glucose, TG, and cholesterol levels.0:88 Knockdown of 77761 in two separate studies
increased the levels of multiple genes involved in lipogenesis, repressed multiple genes
involved in fatty acid oxidation, and also increased secretion of VLDL from liver although
the exact levels of these genes varied between the two studies.#%:88 Pull-down and
mammalian two-hybrid analyses revealed novel molecular interaction between TRIB1 and a
hepatic lipogenic master regulator, MLXIPL (also known as carbohydrate response element
binding protein [ChREBP]).3% MLXIPL binds to MLX to form a heterodimeric complex that
binds and activates, in a glucose-dependent manner, carbohydrate response element
(ChoRE) motifs in the promoter of lipogenic enzymes. Presumably some of the effects of
knocking down T7rib1 are due to activation of MLXIPL. TRIB1 was also found to interact
with Sin3A-associated protein (SAP18), which when knocked down increased decreased
microsomal triglyceride transfer protein (MTTP) levels and led to increasing hepatic lipid
levels while decreasing serum lipid levels.8” Because MTTP transfers lipids onto APOB as
part of VLDL formation, presumably this results in decreased VLDL export from liver to
cause the increased hepatic steatosis while simultaneously causing reduced serum levels of
lipids.50 Because variants near TRIB1 that associate with NAFLD increase serum levels of
triglycerides, it remains to be seen whether any of the effects of this variant is via SAP18.
TRIB1 is also known to be upregulated during inflammatory events such as chronic
inflammation of atherosclerotic arteries or chronic antibody-mediated rejection of
transplanted organs.116 Recently Akira et al, working with 77ib knockout mice,
demonstrated that mice lacking 7ribZ in hematopoietic cells exhibited severe lipodystrophy
due to increased lipolysis; while in a high-fat diet, these mice exhibited
hypertriglyceridemia, insulin resistance, together with increased proinflammatory cytokine
production.11” They suggested that 77ib1 is critical for adipose tissue maintenance and
suppression of metabolic disorders by controlling the differentiation of tissue-resident anti-
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inflammatory-like macrophages. Thus, we cannot rule out the possibility that decreased
TRIB1 function outside of liver contributes to the development of insulin resistance and
higher levels of circulating triglycerides that can secondarily lead to the development of
hepatic steatosis.

GCKR stands for glucokinase regulator, but has also been called hexokinase 4 regulator and
glucokinase regulatory protein.118 GCKR is a regulator of the cellular location of
glucokinase (GK). When low levels of glucose are present, GCKR binds to and keeps GK
localized to the nucleus where it is not active.11® High glucose concentrations lead to the
release of GK from GCKR, allowing GK to be released into the cytoplasm where it can
mediate phosphorylation of glucose to glucose 6-phosphate.120 Glucose 6-phosphate can be
used either in glycogen synthesis or converted via the pentose phosphate shunt to the
precursors required for de novo lipogenesis.12! Variants in GCKR may promote NAFLD by
resulting in glucose to triglyceride shifts; this model is being tested in cell biologic systems
presently. Indeed, the GCKR P446L variant that associates with NAFLD results in increased
activity of glucokinase which phosphorylates glucose?2 and in this way12! may promotes
glucose to triglyceride shifts.

TMB6SF2 stands for transmembrane 6 superfamily 2 and is also known as KIAA1926.123
TMG6SF2 is a membrane protein with 7 to 10 predicted transmembrane domains whose
function is not known.*8 Kozlitina et al showed that abundance of the mutant form of
TM6SF2, (E167K) is lower than the wild-type TM6SF2 protein due to mis-folding and
degradation, consistent with this being a loss of function allele.*8 They showed that
knockdown of mouse 7mé6sf2resulted in increased liver lipid accumulation and decreased
serum TG and LDL. They also found that knockdown of mouse 7m6sf2resulted in
decreased VLDL secretion. In a separate study employing confocal microscopy, TM6SF2
was localized to the endoplasmic reticulum (ER) and the ER-Golgi compartment.192 By
siRNA knockdown studies, it was found that 7TA6S5F2is associated with the secretion of
triglyceride-rich lipoproteins and inhibition of 7TM6SF2leads to increased triglyceride and
lipid droplet accumulation.102 From these data, it appears that 7M6SF2may play a role in
VLDL excretion.102

PPP1R3B stands for protein phosphatase 1, regulatory subunit 3B and is also known as PP1
subunit R4, hepatic glycogen-targeting protein phosphatase 1 regulatory subunit GL, protein
phosphatase 1 regulatory subunit 4 (PPP1R4), and hepatic glycogen-targeting subunit,
G(L).124 pPPP1R3B regulates protein phosphatase-1 (PP-1) catalytic subunit (PPP1CA) and
increases PP-1 dephosphorylation of glycogen synthase and phosphorylase kinase.%8:100
Glycogen synthase is activated by dephosphorylation and phosphorylase kinase is
inactivated by dephosphorylation.12> Thus PPP1R3B promotes glycogen synthesis and
inhibits glycogen breakdown to glucose 1-phosphate, which can be converted to glucose 6-
phosphate by phosphoglucomutase.28 As discussed in the section on GCKR, glucose 6-
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phosphate can be converted to precursors of de novo lipid synthesis via either the TCA cycle
or the pentose phosphate shunt!2!

LYPLAL1 stands for lysophospholipase-1.127 As has been seen with some genes linked to
NAFLD, how LYPLAL1 promotes the development of NAFLD is not fully understood. The
LYPLALI gene encodes a protein with sequence similarity to APT1, a member of the
lysophospholipase family of proteins that have acyl protein thioesterases activity.128 The
most well-characterized member of the family is APT1, which has been shown to
depalmitoylate proteins such as Ras and other Ga, signaling proteins.129 Unlike other lipid
modifications of proteins, palmitoylation, also known as S-acylation, like phosphorylation, is
a covalent protein modification that can be enzymatically reversed. The cycle of
palmitoylation and depalmitoylation of proteins such as N-Ras and HRas has been
demonstrated to change the cellular localization of the protein, from the plasma membrane
to the Golgi apparatus.129 Although there were suggestions that LYPLAL1 might function as
a TG lipase, 130 more recent biochemical and X-ray crystallographic studies indicate that it
functions as a lysophospholipase.128 Studies of insulin regulated protein palmitoylation have
identified several candidates for palmitoylation, but not a linkage to steatosis.31

Clinical Applications

The effect sizes of PNPLA3 and three of the four new NAFLD-associated variants have
some of the largest ORs to date for affecting NASH/fibrosis per allele (1.37-3.26)1°
(»Table 2), making them common variants with relatively strong effect sizes. These also
increase the risk of developing HCC, again with ORs that range from 1.45-2.53 (»Table 3).
These variants not only promote the development of advanced liver disease in patients with
NAFLD, but also in patients with other liver diseases. Thus, it may not be too long before
we may have specific recommendations by genotype for care of patients that carry these
genetic variants. Already, these variants alone or in combination have been incorporated into
clinical algorithms where they do have significant effects on predicting advanced liver
disease.

One of the limits of using already diagnosed metabolic disease (obesity, dyslipidemia,
hypertension, and dysglycemia) to predict prevalent NAFLD is that disease is already
present (i.e., the individual has developed metabolic disease that is being used to predict
more metabolic disease). Ideally, we should inform people of their risk of developing disease
while they are still disease free, and make recommendations to prevent or minimize future
disease. Here, genetics can be quite useful, as genetic variation can be determined at birth
and predates all disease development. One group has determined that the rs738409 variant in
PNPLAS3Is able to statistically predict prevalent NAFLD above and beyond traditional risk
factors; however, in the model alone it did not increase the c statistic very much compared
with associated traditional metabolic risk factors.132 However, this study had a high
proportion of individuals with metabolic disease; thus, it may not be as generalizable to
more population-based samples and may underestimate the true power of genetic studies.
Another study used a combination of variants in or near PNPLA3, TM6SF2, GCKR,
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LYPLALI1, and PPP1R3B and found that this genetic risk score improved prediction of
NAFLD in individuals of Mexican ancestry with morbid obesity.133 The combined genetic
risk score was significantly associated with higher hepatic triglyceride and total cholesterol
content (p= 1.0 x 1074 and 0.048, respectively), steatosis stage (p = 0.029), and higher ALT
levels (o =0.002). Subjects with a genetic risk score = 6 showed a significantly increased
risk of NASH (OR = 2.55, p= 0.045) compared with those with a score < 5. However, the
genetic risk score did not predict NASH status, as area under the receiver operating curve
was 0.56 (p=0.219). Overall then, these markers are able to provide information above and
beyond traditional risk factors, but alone are not (yet) predictive of developing NAFLD.

A key part to using genetics to predict and more importantly prevent disease is
understanding what factors in the environment these genes interact with to cause disease. In
particular, identifying environmental factors that interact with the genetic variant to not only
increase risk but increase it in an exponential (gene—environment interaction effect) versus
additive manner are especially important to find, as these can substantially affect outcomes.
Toward that end, PNPLA3 1148M has been found to interact with obesity,38 abdominal
fat,110.134.135 excessive alcohol consumption,136 chronic hepatitis B and C,57:28 or liver iron
overload!37 to trigger progressive liver disease (»Fig. 2). The magnitude of increase in liver
enzymes in 1148M carriers is correlated to high dietary carbohydrate, sugar,138-140 and
increased omega6/omega3 polyunsaturated fatty acid ratiol41:142 intake (»Fig. 2). In the
future, incorporating not only one's genetic, but also environmental exposures such as this
may help us to not only predict development of NAFLD better than we can presently but in
addition to make tailored recommendations on how to mitigate this increased risk.

The above findings suggest that by avoiding obesity and alcohol and other disease-
promoting triggers we may be able to prevent liver disease in those that carry the 1148M
allele at PNPLAS3. This is the premise behind the precision medicine initiatives that are
currently underway, where, after knowing a person's genetic risk we can make more directed
recommendations to prevent disease (i.e., PNPLA31148M carriers may have more benefit
from losing weight than noncarriers'43). Prospective studies should be done soon to evaluate
the effects of various recommendations on outcomes especially for alleles that confer
substantial increased risk of developing advanced liver disease such as PNPLA3. At some
loci, however, such as TM6SF2, the non-steatosis predisposing allele predisposes to
development of elevated serum lipids and cardiovascular disease,*® suggesting that
interventions that increase TM6SF2 function may not be completely benign. In particular,
augmenting or decreasing TM6SF2 function may predispose to dyslipidemia/cardiovascular
disease or to NAFLD/advanced liver disease/HCC, respectively, so the patient's overall risk
of developing these diseases would have to be assessed using not only this allele, but also
many others before advising patients on the best course of action.144
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Fig. 1.
Cellular localization of some genes/gene products associated with nonalcoholic fatty liver

disease (NAFLD) from genome-wide association studies (GWASS). Genes implicated by
GWASs in blue. Glucokinase regulator protein (GCKR) binds to and inactivates glucokinase
(GK) by bringing it into the nucleus, thus decreasing phosphorylation of glucose to glucose
6-phosphate, which is a precursor for both glycogen and triglyceride synthesis. Loss of
GCKR thus might promote triglyceride synthesis and hepatic steatosis. Protein phosphatase
1 (PPP1R3B) promotes glycogen synthesis and inhibits glycogen breakdown to
phosphorylated glucose which can be used to make triglycerides and promote hepatic
steatosis; patatin-like phospholipase domain-containing protein 3 (PNPLA3) is present on
lipid droplets, but its exact biochemical function is debated; the NAFLD promoting 1148M
mutation, however, results in increased triglyceride storage in lipid droplets and hepatic
steatosis. Transmembrane protein 6 (TM6SF2) is in the perinuclear endoplasmic reticulum-
interference with its function results in impaired very low-density lipoprotein cholesterol
(VLDL) excretion, accumulation of triglycerides in the cell, and hepatic steatosis. Tribbles 1
homolog (TRIB1) inhibits de novo lipogenesis so its loss thus promotes fatty acid
production, triglyceride (TG) synthesis, and hepatic steatosis. G6P, glucose 6-phosphate.
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Fig. 2.

Factors that interact with PNPLA3 1148M to exacerbate liver disease development.22 PUFA,
polyunsaturated fatty acid.
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