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Abstract

Mammalian host response to pathogenic infections is controlled by a complex regulatory
network connecting regulatory proteins such as transcription factors and signaling proteins
to target genes. An important challenge in infectious disease research is to understand
molecular similarities and differences in mammalian host response to diverse sets of patho-
gens. Recently, systems biology studies have produced rich collections of omic profiles
measuring host response to infectious agents such as influenza viruses at multiple levels.
To gain a comprehensive understanding of the regulatory network driving host response to
multiple infectious agents, we integrated host transcriptomes and proteomes using a net-
work-based approach. Our approach combines expression-based regulatory network infer-
ence, structured-sparsity based regression, and network information flow to infer putative
physical regulatory programs for expression modules. We applied our approach to identify
regulatory networks, modules and subnetworks that drive host response to multiple influ-
enza infections. The inferred regulatory network and modules are significantly enriched for
known pathways of immune response and implicate apoptosis, splicing, and interferon sig-
naling processes in the differential response of viral infections of different pathogenicities.
We used the learned network to prioritize regulators and study virus and time-point specific
networks. RNAi-based knockdown of predicted regulators had significant impact on viral
replication and include several previously unknown regulators. Taken together, our inte-
grated analysis identified novel module level patterns that capture strain and pathogenicity-
specific patterns of expression and helped identify important regulators of host response to
influenza infection.
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Author Summary

An important challenge in infectious disease research is to understand how the human
immune system responds to different types of pathogenic infections. An important com-
ponent of mounting proper response is the transcriptional regulatory network that speci-
fies the context-specific gene expression program in the host cell. However, our
understanding of this regulatory network and how it drives context-specific transcrip-
tional programs is incomplete. To address this gap, we performed a network-based analy-
sis of host response to influenza viruses that integrated high-throughput mRNA- and
protein measurements and protein-protein interaction networks to identify virus and
pathogenicity-specific modules and their upstream physical regulatory programs. We
inferred regulatory networks for human cell line and mouse host systems, which recapitu-
lated several known regulators and pathways of the immune response and viral life cycle.
We used the networks to study time point and strain-specific subnetworks and to priori-
tize important regulators of host response. We predicted several novel regulators, both at
the mRNA and protein levels, and experimentally verified their role in the virus life cycle
based on their ability to significantly impact viral replication.

Introduction

To combat infections from diverse pathogens, mammalian immune systems must be able to
mount appropriate and specific responses to pathogenic infections. A key challenge in current
infectious disease research is to understand the molecular mechanisms that make the host
immune system more or less susceptible to a particular strain of a pathogen, for example, dif-
ferent influenza A virus strains, than another. Transcriptional regulatory networks that con-
nect regulatory proteins to target genes are central players in how mammalian cells mount
appropriate responses to different pathogenic infections. Because the components and connec-
tivity of these networks are largely not known, a significant amount of effort has been invested
to collect high-throughput datasets that provide a comprehensive molecular characterization
of host response to multiple viruses at multiple levels, including the transcriptome and prote-
ome [1-4]. These genomic datasets provide unique opportunities to identify molecular net-
work components of host response that are conserved across multiple viruses or specific to a
virus of a particular pathogenicity. Such networks can be used to prioritize regulators for follow
up validation studies that provide greater insight into the mechanisms by which the host cell
perceives and responds to different pathogenic infections.

Network- and module-based approaches for analyzing omic datasets have been powerful
for dissecting mammalian cellular response to different environmental perturbations, includ-
ing response to various pathogenic infections [5,6]. The majority of these approaches have
used genome-wide transcriptomic data and can be grouped into those that infer correlational
networks [3,7-12], or Module Networks, in which regulators are inferred for groups of co-
expressed genes called modules [9,13,14]. A few approaches have integrated additional data
types, e.g. physical protein-protein or signaling networks with transcriptional data [15-20],
that vary in the number of samples needed to infer networks. While these approaches have pro-
vided important insights into the host response, they have not integrated multiple types of
omic measurements (e.g. mRNA and protein levels), which can differ in quality and sample
size. A second challenge is that experimental validation of large-scale predictions is expensive
and most of the generated predictions have not been validated experimentally. Although
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several network-based prioritization methods have been proposed, the results of a prioritiza-
tion scheme have been followed up with experimental validation in a handful of studies [21].

To gain a more complete understanding of the molecular networks driving host response,
we integrated transcriptomic and proteomic measurements of mammalian host response with
existing protein-protein interactions. These omic measurements capture human and mouse
cellular response to multiple Influenza A viruses exhibiting different levels of pathogenicities.
Our starting point is an expression-based regulatory network connecting transcription factors
and signaling proteins to target genes and gene modules. We then use proteomic measure-
ments to predict additional regulators of gene modules by applying a structured sparsity-induc-
ing regression approach, Multi-Task Group LASSO, to find proteins whose levels are
predictive of mRNA levels of entire modules. By decoupling the mRNA and protein-based
regression into two steps, our approach is less sensitive to varying sample size for each type of
omic data. Finally, we predict physical regulatory programs connecting mRNA and protein-
based regulators through a small number intermediate nodes using Integer Linear Program-
ming (ILP)-based network information flow.

We used our integrated regulatory networks to study the host response across the different
viruses. We tested prioritized regulators using small interfering RNAs and found several regu-
lators that significantly impact viral replication, five of which have not been previously associ-
ated with influenza related response. We examined host response dynamics at the network
level, identifying regulatory network components that are active or missing under different
viral treatments. Our inferred gene modules capture strain- and pathogenicity-specific patterns
of mammalian immune response to influenza infections that recapitulate and expand upon
known immune response pathways. In particular, we identified one module that was enriched
for interferon signaling and exhibited repressed expression in the high-pathogenicity wild-type
H5N1, but was induced in low pathogenicity HIN1 strains. Another module suggests that apo-
ptosis-related pathways might be down-regulated in low-pathogenicity viruses. Our findings of
host regulatory modules together with their upstream regulatory programs suggest that our
network-based approach is a powerful way to systematically characterize immune response to
diverse pathogenic infections.

Results

Inferred regulatory modules and network interactions captured immune
response processes and identified conservation between host systems

To perform a systematic, integrative analysis of transcriptome and proteome measurements of
host response to influenza virus infections, we began by inferring a regulatory module network
in two stages, followed by three major downstream analyses (Fig 1). We (1) infer a regulatory
module network based on changes in mRNA abundance under viral infection and (2) predict
protein regulators whose abundances are predictive of gene expression in the modules. This
integrated regulatory module network enabled (3) prioritization of regulators for validation of
their ability to modulate viral replication, (4) an examination of network dynamics across virus
treatments, and (5) a further integration with external protein-protein interactions to predict
directed physical connections between the mRNA, protein-based regulators and known influ-
enza host response genes.

The first component of our approach, a regulatory network inference algorithm, was needed
because mammalian regulatory networks are incomplete for most biological processes. We
used a recently developed network inference algorithm, 'Modular regulatory network learning
with per gene information' (MERLIN [22]) that uses genome-wide mRNA levels from multiple
biological samples (time points or treatments) to predict regulatory relationships between
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Fig 1. Integrative inference of regulatory networks controlling host response to influenza infection. The main components of our approach are: (1)
MERLIN to learn regulatory networks and modules from genome-wide host mRNA profiles from multiple independent virus infections, (2) Multi-Task Group
LASSO (MTG-LASSO) approach to predict protein-level regulators (dark blue squares) of mMRNA-based modules, (3) construction of active network
components for different virus strains and time points, (4) siRNA-based validation of predicted regulators, (5) predicting upstream signaling networks for
each module by identifying minimal physical subnetworks that connect module regulators (dark blue squares and light blue ellipses) with a small number of
intermediate nodes (yellow diamonds).

doi:10.1371/journal.pcbi.1005013.g001

regulators (e.g. transcription factors or signaling proteins) and target genes. Our rationale for
selecting MERLIN was to enable the study of host response regulatory networks both at the
individual gene level and at the module level. Alternative methods either infer the regulators
for individual genes [23] or for gene modules [13,24], but not both. We applied MERLIN
within a stability selection framework to the host transcriptional measurements of mouse lungs
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Fig 2. Overview of human influenza response module expression patterns. Shown are 41 human Calu-3 modules
with at least 10 genes. The red-blue heat map shows mean expression of all genes in each module. The more red an entry
the higher the expression in infected versus mock, while the more blue the entry, the higher the expression in mock
compared to the infected sample. Under “Viruses and time points (h)”, each virus treatment's time series is shown
separately, and viruses are ordered from low to high pathogenicity. Low-pathogenicity samples labeled HIN1 used A/CA/
04/09 H1N1 unless labeled '(NL)' for A/Netherlands/602/09. Samples labeled H5SN1 used A/VN/1203/04 H5N1 and
laboratory mutants thereof. The “Genes” column shows the size of each module; larger values are shown in darker blue.
Under “Enrichment”, a red box indicates module enrichment with any MSigDB motif, any MSigDB gene set, any Gene
ontology process, any influenza screen set, or any immune response gene set (Methods).

doi:10.1371/journal.pcbi.1005013.9002

and human bronchial epithelial cells (Calu-3 cell line) infected with one of six influenza virus
strains exhibiting a range of pathogenicity levels (Materials and Methods). On the human
Calu-3 cell line (Fig 2), we identified 41 consensus modules of at least 10 genes comprising a
total of 4,801 genes (~67% of the input, Table 1). On the mouse data, we identified 56 modules,
encompassing 2,944 genes (41% of the input, Table 1). The average expression patterns in each
inferred module revealed commonalities and differences between strains and pathogenicity lev-
els (Fig 2, Calu-3; S1 Fig, mouse). Based on a hypergeometric test with FDR correction
(FDR<0.05), 32 out of the 41 human Calu-3 modules (40 of 56 mouse modules) exhibited
enrichment in one or more of the annotation categories representing Gene Ontology processes,
KEGG pathways, and influenza related gene sets identified from 10 high-throughput RNAi
studies and viral-host protein-protein interaction screens (Fig 2, S1 Fig, S1 Table, S2 Table).
Moreover, 17 of the human modules were enriched specifically for immune response related
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Table 1. Catalog of MERLIN modules for human and mouse systems.

Host system Module size (m) Number of modules Number of genes
Human (Calu 3) m > 500 2 3,272

10 <m < 500 39 1,541

m<10 2,387
Mouse (lung) m > 500 2 1,526

10 <m <500 54 1,418

m<10 4,296

"Module size" refers to the number of genes in a module. '‘Number of genes' gives the number of genes
covered by modules of a given size.

doi:10.1371/journal.pchi.1005013.t001

processes (Fig 3A) suggesting that the modules were biologically coherent and relevant to
immune response to influenza infections. Importantly, compared to ordinary expression-based
gene clusters (identified by Gaussian Mixture Modeling, 40 clusters), MERLIN modules exhib-
ited greater fold enrichment in innate immune system categories and motif-based targets of
transcription factors (S3 Table). In particular, MERLIN modules had enrichment for targets of
immune response-relevant regulatory elements IRF1, 2, 7 and ISRE and targets of inflamma-
tory response regulator NF-kB, while expression-based clusters were not enriched or enriched
at a lower level.

In addition to the modules, we defined consensus regulatory networks for the Calu-3 and
mouse transcriptome data by selecting regulatory edges with a confidence at least 0.3 (Materi-
als and Methods). The consensus networks predicted regulatory connections between 1,250
regulators (signaling proteins and TFs) and 7,132 target genes in human, and 1,252 regulators
and 7,134 target genes in mouse (S4 Table, S5 Table). Both Calu-3 and mouse regulatory net-
works were significantly enriched in transcription factor target interactions cataloged in
MSigDB (Fig 3B, Conserved Motifs (MSigDB)) suggesting that the predicted regulatory-tar-
get connections are supported by sequence specific motifs. We also compared the inferred
MERLIN mouse network to two additional networks: a pathogen-responsive regulatory net-
work inferred from gene expression profiles after RN Ai-based transcription factor knockdowns
(Fig 3B, Mouse pathogen, siRNA [5]), and a computationally constructed regulatory network
for Th17 cellular response to LPS stimulation (Fig 3B, Mouse Th17, Yosef, [21]). The MER-
LIN mouse network significantly overlaps with both of these networks (Fold enrichment > 1.5,
Fig 3B), indicating that MERLIN’s predicted regulatory network interactions are recapitulated
in other immune response regulatory networks.

To more directly test the predicted edges of MERLIN, we compared the predicted targets of
four (IRF7, NMI, STAT1, TCEBL1) of our top ranked regulators using two published experi-
mentally generated networks obtained from genome-wide expression profiles in single-gene
knockdown siRNA screens in other cell lines [25,26]. We found significant overlap
(FDR<0.05) between the MERLIN and independently identified targets of three regulators
(IRF7, NMI, STAT1), suggesting that the edges predicted in the MERLIN network are associ-
ated with functional changes in expression.

As a final type of evaluation we compared the extent of conservation of immune response of
our two host systems to influenza infection (Materials and Methods). At the module level, we
estimated the significance of overlap of genes for all module pairs between the two species
according to a hypergeometric test. We identified 15 pairs of modules that significantly over-
lapped in the gene content (p-value<0.05) between the two species (Fig 4A). The number of
genes involved in this overlap was fairly modest, illustrating the challenges of integrating data
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(ellipses and diamonds) predicted mRNA-level regulators, and ten predicted protein regulators (hexagons), that are associated with these modules.
Regulators with evidence for influenza relevance are shaded in pink. Host genes that significantly impact viral replication identified by this study (APP,
FGFRS3, HCLS1, HOXA7, SERPINAB3) are indicated with yellow stars. B. Comparison of the MERLIN inferred mouse and human influenza response
networks ("Influenza (this study, other system)") to each other and to other regulatory networks. Fold enrichment of shared edges over expected
fraction is visualized in the heat map, with significant comparisons marked with asterisks (hypergeometric p-value < 0.05).

doi:10.1371/journal.pcbi.1005013.9003

from two separate organisms, with the mouse lung system being significantly more complex
and heterogeneous than the human cell line system. Despite the low overlap in the number of
genes, some of the cross-species module pairs shared enriched annotation categories. Specifi-
cally, Module 1549 in human and Module 3203 in mouse were both enriched for antigen pro-
cessing and interferon-stimulated genes (ISGs), and human Module 1549 also had a significant
overlap with mouse Module 3003, which was associated with cytokine signaling and innate
immune system response. In another case, the mouse Module 3203 significantly overlapped
with human Module 1484, with both being enriched with hallmarks of the adaptive immune
response, namely, antigen processing, B cell activation and leukocyte and lymphocyte activa-
tion. Analogously, at the network level, the networks overlap significantly (hypergeometric test
p-value<le-4, fold enrichment 2.9, Fig 3B), including a core set of 96 interactions, 48 of which
form subnetworks with at least 3 genes (Fig 4B). This conserved regulatory network contained
many key players from the interferon production and JAK-STAT pathways (STAT1, NMI,
IRF7; [27,28]) as well as regulators about which little is known, perhaps representing new rele-
vant host processes. One conserved regulator with many conserved targets was ZNHIT3 (also
known as TRIP3), a zinc finger HIT domain-containing protein that binds to thyroid hormone
receptor [29], but which is otherwise poorly characterized in the pathway databases.

In summary, the enrichment of immune related functions, motif instances of known
immune response TFs, agreement with existing computational and experimentally generated
immune response related networks, and the conservation of the key immune related modules
and networks between two distinct host systems is indicative of valid regulatory programs that
can be explored with further experimental analysis.

Predictive regulatory network-based prioritization and validation of
regulators

We used the MERLIN inferred networks to develop a regulator prioritization strategy wherein
regulators were ranked according to the loss in the MERLIN model's predictive accuracy when
a regulator was omitted from its targets' regulatory programs (Materials and Methods; S6
Table). In comparison to three other ranking schemes (outgoing regression weight, out-degree,
and right eigenvector centrality; S1 Text), this strategy identified the most known influenza
host genes among high-ranking regulators (S2 Fig).

We next used these rankings to guide our experimental validation (Materials and Meth-
ods). We selected 20 regulators based primarily on the human rankings, the known annota-
tions of the regulators, expression of the regulator’s module and to exclude well-studied
immune response regulators (IRF7, NMI, STAT1). To experimentally validate our network-
based prioritization scheme, we measured HIN1 virus replication in human lung epithelial
cells (A549) following knockdown of predicted human regulators of host response by siRNA
(Materials and Methods, S7 Table). For each gene, four siRNAs were used, in order to miti-
gate off-target or cytotoxic effects of single siRNAs. We called a gene a high confidence hit
using a stringent criteria requiring at least two siRNAs (out of four used for each gene) to yield
a statistically significant (t-test p-value <0.05) and high-magnitude (10 fold) change in virus
titer compared to negative controls, and if none of the siRNAs yielded a significant change in

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 8/42



@' PLOS | SoMputaTioNAL
NZJ : BIOLOGY Integrative Network Analysis of Host Response

A Mouse modules

-log10 (p-value)

H1592

Human modules
I T
=
D
[0 BN
BN

H1590 l-

H1594 <> Signaling protein
H1422 [ Calu-3 ISG <> Transcription factor
Both host factor [ ] Targetgene

{3 Validated by this study

and ISG

|PPP1R1(1 | DDX17 | | TMEM5| | PRPF4B| |SNRPA1| | DTYMK|

IR IR

| ARSB BDNF |ZNHIT1| |TSSC1 SBF1 |ZNHIT3| |AMICA1| | DOK3 |

Fig 4. Conservation between human and mouse subnetworks. A. Modules conserved between human and mouse. There were fifteen
(red shading) significantly overlapping module pairs (hypergeometric p-value < 0.0001), including 12 human modules and 13 mouse modules.
B. A core set of interactions conserved between the human and mouse consensus regulatory networks. Shown are the 48 of 96 shared
interactions that belong to subnetworks with at least three nodes. Shading indicates Calu-3 ISGs (violet) and nodes identified both as known
host genes and ISGs (magenta). Star indicates a gene that significantly impacted viral replication on knockdown as identified in this study.

doi:10.1371/journal.pcbi.1005013.g004
the opposite direction. Using these strict criteria, three out of the twenty tested regulators were

called hits: BOLA1, HCLS1, and HOXA?7 (Table 2). Three additional regulators were medium-
confidence hits with > 5 fold change but significant and consistent effects in multiple siRNAs:
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Table 2. Summary of results of siRNA validation study of twenty regulators predicted by MERLIN.

Result for four siRNAs Regulator(s)

High-confidence hit: > 2 reduce virus titer > 10-fold, none | BOLA1, HCLS1, HOXA7
induce

Medium-confidence hit: > 2 reduce virus titer > 5-fold, IRAKS, FGFR3, YTHDCH1

none induce

> 2 reduce, none induce KCNIP3, TCEB1

> 2 reduce, one induces DDX20, FIG4, MET, PTPRF, SAG, TP53BP2,
WDR81

> 2 induce, one reduces IGBP1

Other ANKRD2, FKBP15, PHF3, TNS53

Four siRNAs were used per gene. siRNA results are reported for significant changes in viral titer as assessed
by T-test compared to negative control. Hits are defined as those that show a strong, significant and
consistent effect across multiple siRNAs. Full data and results are available in S7 Table.

doi:10.1371/journal.pcbi.1005013.1002

FGFR3, IRAK3, and YTHDCI. Knockdown of all six of the above consistently resulted in
reduced virus titer, suggesting that the genes are important for virus production. Other tested
regulators had multiple significant siRNAs, but conferred lower fold changes or showed diver-
gent changes in viral titer between different siRNAs for the same gene. We note that some of
the genes in our study for which multiple siRNAs had statistically significant but inconclusive
direction or magnitude of effects were identified as hits by genome-wide screens (S7 Table).
While understanding the detailed role of these predicted regulators in viral replication will
require further experiments, these results suggest that our network inference and prioritization
method can successfully identify important regulators of host response.

MTG-LASSO enables integration of protein level regulators for gene
modules

To integrate proteomic measurements with the host transcriptional response, we used a predic-
tive modeling approach to identify proteins whose levels are predictive of the mRNA levels of
gene modules. In theory, the MERLIN network inference algorithm could be used to integrate
these proteins as additional regulators of a target gene’s expression levels. However, there were
three reasons that prevented us from doing this. First, entire time courses of protein measure-
ments were missing, and integration into the initial network inference step would require either
extensive interpolation of entire time courses or excluding many mRNA measurements. Sec-
ond, only ~20% of our candidate regulators (signaling proteins and TFs) with available mnRNA
levels were measured at the protein levels (S4 Table, S5 Table). Third, compared to mRNA lev-
els of regulators, protein levels were not good as predictors of target gene mRNA level, likely
because of the smaller dynamic range of proteomic measurements (S3 Fig).

Our predictive modeling approach used a structured-sparsity based regression framework,
called Multi-Task Group LASSO (MTG-LASSO, Fig 5A) [30,31]. Our approach is based on
using group LASSO for multi-task feature selection [30,31]. Unlike LASSO [32], which solves
one regression problem at a time, MTG-LASSO aims to solve multiple regression problems
simultaneously, one for each gene in a module. Our regression formulation has two properties:
(a) multi-task regression (where each task is the regression problem of each gene in a module)
and (b) group LASSO, to enable selection of the same regulators (with possibly different regres-
sion weights) for all genes in a module. LASSO-based approaches have been applied extensively
for mRNA-based regulatory network inference [24,33]; however, to our knowledge, our
MTG-LASSO approach is the first to employ grouping structure in order to integrate sparse
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Fig 5. Multi-task Group LASSO (MTG-LASSO) structured-sparsity approach for integration of protein data with expression-based
regulatory module networks. A. lllustration of MTG-LASSO framework for predicting protein regulators for one module (Methods). Horizontal
separations in the X and Y data boxes represent different virus time course. Rows of X and Y represent time points. Columns of X correspond to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 11/42



@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Integrative Network Analysis of Host Response

proteins and columns of Y correspond to mRNA levels of genes in a module. B. Comparison of number of nonzero regression weights identified by
MTG-LASSO and LASSO. Each dot (MTG-LASSO) or plus sign (LASSO) represents the number of non-zero regression weights for one setting of A
(the sparsity parameter) for one module. Number of nonzero weights is averaged over 10 folds of cross-validation. C. Comparison of cross-validation
predictive quality between MTG-LASSO and LASSO. Results are shown for A = {0.10, 0.75}; results for other settings are in S4 Fig. In each
scatterplot, there is one point per module. Left two plots compare methods based on Pearson correlation (p) of predicted to actual expression
values; right plots compare on the basis of root mean squared error (RMSE). Inset p gives Pearson correlation between MTG-LASSO and LASSO
scores. Diagonal line is shown for comparison. D/E. Examples of curves used to select A for individual modules; human (D) and mouse (E). Y-axis
gives Pearson correlation (cross-validation predictive quality); X-axis gives the average number of nonzero regression weights for that module; this
value is higher than the final number of high-confidence, high-weight regulators. Stars indicate the chosen value of A for the example modules.

doi:10.1371/journal.pcbi.1005013.g005

protein-level data with comparatively higher-coverage mRNA-level data. A module-based
regression enables us to pool information from all genes in the module to select regulators that
are informative for all genes in the module.

The MTG-LASSO regression problem is illustrated in Fig 5A. The full protein data matrix,
X consists of m samples for p proteins. All p proteins are used as covariates. The target gene
expression matrix for a module, Y is an m X n matrix, each column representing the expression
profile of a gene in the module. The regression weight matrix, Wis a p X n matrix, each row
representing the regression weight of a protein for all # genes. In the group LASSO framework,
a pre-defined grouping structure of covariates is used to select or de-select a group of coeffi-
cients together. We define a group as the set of regression weights for a single protein’s associa-
tion to all module genes, resulting in p groups. The framework uses a mixed L1/L2-norm
penalty to impose smoothness and sparsity: the number of proteins (groups) with any nonzero
regression weights should be small, and the weights within a group should be similar.

We compared the performance of the MTG-LASSO models to models learned from ran-
domized protein data (using one-sample z-tests; Materials and Methods). About half of the
human modules, and all but two mouse modules, were predicted better than chance for multi-
ple A values. This result was consistent for both RMSE and Pearson correlation measures of
predictive quality. From this analysis, we concluded that the protein data does indeed contain
predictive signal for many modules; however, it should be used conservatively as predictive
quality is not equally good across modules.

The alternative to our MTG-LASSO approach is to perform traditional LASSO for each
gene independently, ignoring the module structure. To assess the advantage of MTG-LASSO
over regular LASSO, we applied both methods to each module separately. We compared the
methods on the basis of (i) sparsity of the model measured by the average number of regulators
chosen for a module across the 10 folds, and (ii) prediction quality measured by Pearson's cor-
relation and the root mean square error (RMSE) between the measured and predicted set using
10-fold cross-validation. Both MTG-LASSO and LASSO have a regularization term, A, which
controls the tradeoff between the model complexity penalty and a model's predictive power.
We examined five settings of A, between 0.99 (highest penalty imposed, requiring few regula-
tors) and 0.01 (least penalty imposed, allowing many regulators). The regularization term A is a
number between 0 and 1. It denotes a fraction of A, (maximum possible regularization before
reaching a 0 solution), and is comparable between MTG-LASSO and LASSO (see Materials
and Methods).

First, we observe that LASSO identified more regulators per module at every value of A com-
pared to MTG-LASSO (Fig 5B, S4A Fig). Second, when matched at the same A, MTG-LASSO
and LASSO yielded highly similar predictive quality scores per module based on both Pearson
correlation and RMSE values (Fig 5C, S4B and S4C Fig). The comparable predictive power of
MTG-LASSO is observed over all modules and values of A compared (two-sided Kolmogorov-
Smirnov test: human p-value = 1.0 Pearson, 0.98 RMSE; mouse p-value = 1.0 Pearson, 0.58
RMSE).
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Table 3. Consensus human protein regulators identified by MTG-LASSO.

Category Gene (Protein name/family)
Splicing PRPF315 (Pre-mRNA processing)
Apoptosis MAGED?2 (Melanoma antigen)
THBS1 (Thrombospondin)
Inflammation APP® (Amyloid beta precursor)
SERPINAS (Serpin peptidase inhibitor)
Known or potential antiviral ISG15/° (Interferon-induced)
DDX50 (ATP-dependent RNA helicase)
Intracellular transport EHD4 (EH-domain containing)
STMN4 (Stathmin)
Cell membrane COLGALT1 (Collagen beta(1-0) galactosyltransferase)
ITGB4S (Integrin)
PMM2 (Phosphomannomutase)
Mitochondrion IARS2 (Isoleucil-tRNA synthetase)

NFS1 (Cystein desulfurase)
YME1L (ATP-ase)

Other HIST1H1B (Histone protein)
KLHL33 (Kelch-like family)

Module(s)

1487

1549

1434, 1472, 1482, 1485, 1502, 1540, 1543, 1549, 1596
1484, 1501, 1549
1484

1484, 1501, 1549
1482, 1487

1482

1472, 1540

1549

1484

1487

1543

1484

1487

1472, 1540

1549

Genes are categorized by major biological annotation according to NCBI Entrez, GeneCards, or UniProt. The Module column lists the MTG-LASSO
predicted target modules of a protein regulator. Genes that have been identified as relevant to influenza by a screening or literature study are marked with a

superscript: Brass et al. 20095; Karlas et al. 2010%, Kénig et al. 201 0°; Shapira et al. 2009°.

doi:10.1371/journal.pchi.1005013.t003

The proteins selected by MTG-LASSO were contained within and important to the LASSO
models. In particular, when the LASSO proteins were ranked by their average absolute outgo-
ing weight for the same A, the MTG-LASSO regulators appeared at the top of the list. We quan-
tified the ranking by the area under ROC curve (AUROC), treating MTG-LASSO as the
positive class and the additional LASSO regulators as the negative class. The AUROC gives the
probability that a randomly chosen MTG-LASSO regulator ranks above a randomly chosen
LASSO regulator. For human, AUROC ranged between 0.96-0.99, and for mouse 0.91-0.98
when considering all genes together. The high ranking of MTG-LASSO regulators in the
LASSO selected regulators is observed on a per-module level as well (S4D and S4E Fig).

Because MTG-LASSO learned a subset of the LASSO regulators, we asked if the regulators
that were identified by LASSO but not MTG-LASSO were known to be important based on
existing siRNA screening studies. Focusing on modules that were predicted better than random
(11 in human and 36 in mouse), we defined consensus regulators per-module as regulators
that were selected in at least 6 of 10 folds of cross-validation after determining a module-spe-
cific value of A (Materials and Methods, Fig 5D and 5E). Our analysis identified a total of 17
human consensus protein regulators for 11 modules in human (1-6 protein regulators per

module, Table 3; selected regulators shown in Fig 3A) and a total of 33 consensus protein reg-
ulators predicted for 36 modules in mouse (1-6 regulators per module, Table 4, S8 Table). A
similar analysis for LASSO identified 60 different regulators for human and 79 for mouse,
which contained the MTG-LASSO regulators entirely (S§9 Table). Comparable proportions of
the consensus regulators identified by each method have been found as hits in published influ-
enza screening studies (for human, MTG-LASSO 23.5% and 18% LASSO; for mouse,
MTG-LASSO 18% and LASSO 20%). Because the MTG-LASSO regulators were included in
the LASSO rankings we also computed the precision after excluding the MTG-LASSO regula-
tors. In human the precision was markedly lower (16.3%), and slightly lower in mouse (19.6%).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016
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Table 4. Top consensus mouse protein regulators identified by MTG-LASSO.

Category Gene (Protein name/family)
Influenza life cycle Sumo2° (Ubiquitin-like modifier)
Immune response C3 (Complement protein)

Serpina3k (Serpin peptidase inhibitor)
Serpina3m (Serpin peptidase inhibitor)

S100-A8
Hemolysis Hp (Haptoglobin)

Hpx (Hemopexin)
Mitochondrion Letmd1 (LETM1-domain containing)
Splicing Snrpf* (Spliceosome component)
Other Fgb (Fibrinogen bet-chain)

Hopx (HOP homeobox)

2310036022Rik"” (C190rf43 homolog)

Module(s)

3135, 3147, 3280

2810, 2975, 3208,3210

3029, 3206

3029, 3159, 3181, 3184, 3186, 3192, 3206, 3207
3141, 3154

3207, 3210

2899, 2976, 3159, 3184, 3192, 3198, 3207
2950, 3047, 3072, 3135, 3139, 3179, 3187
3056, 3134, 3135, 3139, 3181, 3193

2810, 2977, 3056, 3156

3154, 3280

3070, 3159, 3199, 3206, 3249

Genes are categorized by major biological annotation according to NCBI Entrez, GeneCards, or UniProt. The Module column lists the MTG-LASSO
predicted target modules of a protein regulator. Because there were 33 total, we limit presentation here to twelve regulators that were linked to at least two
modules. A full list of consensus proteins is available in S8 Table. Genes for which human homologs have been identified as relevant to influenza by a
screening or literature study are marked with a superscript: Karlas et al. 2010%; Kénig et al.2010°; Watanabe et al. 2014".

doi:10.1371/journal.pcbi.1005013.t004

Thus for the human cell line data, there is a distinct advantage of using MTG-LASSO to quickly
identify the important regulators. The mouse data is more challenging likely due to the hetero-
geneous nature of the cell populations. Together, these results suggests that MTG-LASSO is
able to learn as good a predictive model as regular LASSO, and is particularly advantageous for
identifying regulators at the module level. Below we further experimentally validate the

MTG-LASSO regulators.

MTG-LASSO predicts protein-level regulators of host response with
significant effects on virus replication

We first qualitatively examined our regulators based on known literature and annotation of
these regulators. Several of our MTG-LASSO protein regulators are known to be associated
with immune response pathways, cellular membranes and intracellular transport, RNA splic-
ing machinery, mitochondrial inflammation, and may be involved in viral replication, entry or
transport within the cell (Tables 3 and 4). We experimentally validated seven of the 17 human
MTG-LASSO regulators for which we already had siRNA libraries (Table 5, S7 Table), trans-
fecting cells with 4 siRNAs per regulator. For all seven regulators at least two of the four siR-
NAs resulted in a significant change in virus titer, and had at least one siRNA resulted in a
fold-change far beyond 10-fold. Unlike in the mRNA case, where most of the significant and
high magnitude changes were in one direction, for several of the protein regulators, different
siRNAs targeting the same gene resulted in both significant and high magnitude increase and
decrease in viral replication. We therefore used a majority rule on the significant changes to
phenotypically characterize the effect of knockdown of a particular protein regulation. Specifi-
cally, a gene was called “pro” viral replication if the number of significant decreases in viral rep-
lication was greater than the number of significant increases. Similarly, a gene was called “anti”
viral replication if knocking it down resulted in more significant increases than decreases in
viral replication. Among the seven proteins that were tested, four were classified as “pro” viral
replication with more significant decreases in viral replication (HIST1HB, ISG15, PRPF31,
THBS1), while three were called as “anti” viral replication with significant increase in viral

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016
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Table 5. Summary of results of siRNA validation study of seven human protein regulators predicted
by MTG-LASSO.

Regulator Majority viral phenotype
APP Anti
HIST1H1B Pro
ISG15 Pro
ITGB4 Anti
PRPF31 Pro
SERPINA3 Anti
THBSH1 Pro

Four siRNAs were used per gene. All genes had multiple siRNAs with significant effects, and all had at least
one at least ten-fold. However, for most genes, different siRNAs resulted in different effects on virus titer;
therefore we characterize each by its majority viral phenotype among the significant siRNAs. Full data and
results are available in S7 Table.

doi:10.1371/journal.pcbi.1005013.1005

replication (APP, ITGB4, SERPINA3). PRPF31, which had the strongest, consistent effect
across all significant siRNAs, is a pre-mRNA splicing factor that was previously implicated in
viral replication by a genome-wide screen. It is known that the host RNA splicing machinery is
hijacked by influenza virus [34]. ISG15 is a ubiquitin-like protein that is stimulated by inter-
feron alpha and beta and is associated with diverse cellular functions including cell-to-cell sig-
naling and anti-viral activity. Hence, ISG15’s pro-viral phenotype was surprising. However,
this protein has been observed to be attached to both host and viral proteins [35] and has been
previously shown to reduce viral replication on knockdown in a previous study [36]. THBS1 is
a ligand of CD47 and an inhibitor of T and dendritic cells and may play a role in inhibiting
inflammation [37]. SERPINA3 and APP in particular are interesting candidates as potential
inhibitors of viral replication. The serine protease inhibitor SERPINA3 (module 1484) and its
mouse homologs Serpina3k (two modules) and Serpina3m (eight modules) were identified
independently for both species. SERPINA3 belongs to the family of serine protease inhibitors
that have diverse roles in innate immunity [38-40]. While SERPINA3 has not been shown to
affect viral replication, another member of this family, SERPINE1, was shown to reduce the
infectivity of the virus particle [41]. APP has been mostly studied for its role in neurodegenera-
tive diseases: beta amyloid plaques are associated with neuronal cell death in Alzheimer’s Dis-
ease [42] but a recent study also suggests it may have an antiviral role, based on observations of
decreased influenza A replication (HIN1 and H3N2) in cells treated with beta amyloid [43],
consistent with the increase in viral titer observed in this study.

Taken together, our results indicate that MTG-LASSO can identify regulator candidates
that are relevant to immune responses to viral infections. Overall MTG-LASSO's ability to
highly rank the most relevant regulators is an important factor for tractable downstream inter-
pretation and validation of selected regulators.

Active network components across time points and virus treatments

We next used the integrated mRNA and protein-based networks to examine the temporal
dynamics of host response. This type of analysis can be used to predict which network compo-
nents may be repressed or differentially wired in response to different viruses. We built time
point-specific active networks by overlaying time point-specific expression on the integrated
regulatory network connecting both mRNA and protein regulators to their target genes. For
each time point and virus, we obtained a time point-specific regulatory network by including
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inferred edges between regulator nodes (mRNA or proteins) and target genes (nRNA) that
were significantly up-regulated (z-score > 2, compared to all expression values at that time
point). For this analysis we focused on the Calu-3 data set.

Examination of the active network size (number of edges, regulators and targets) over time
showed that the size of networks for each viral treatment tended to change by adding more
edges over time (S5 Fig), with the H5N1 mutants and wild-type achieving the largest networks.
Interestingly, HIN1 NL's network grew more slowly than that of HIN1 CA04 (S5 Fig),
although the networks for the two viruses were highly similar in terms of which nodes and
edges they contained by the last time point (S6 Fig).

To identify network components that were common to a subset of viruses or time-points,
we clustered the edges from the active networks according to their presence-absence pattern
across all samples (Materials and Methods, Fig 6). We obtained five clusters of edges (Fig 6A)
four of which included edges active at multiple early time points (Fig 6A; Clusters A-D) and a
fifth containing edges that were only present in the 18-hour (very late) time points for medium
or high-pathogenicity viruses (Fig 6A; Cluster E). Further, Clusters A-C exhibited a sustained
pattern of edge presence with edges present through the entire time course, while Cluster D
was associated with edges present during the later time points.

Clustering was strongly driven by presence-absence pattern of edges in viruses rather than
individual time points. Edges from the two low-pathogenicity HIN1 strains (CA04 and NL)
tended to be placed in the same cluster (Fig 6, Clusters A, B), and edges from the medium-
pathogenicity (PB2-627E) and two high-pathogenicity strains (PB1-F2Del, H5N1 wildtype)
did as well (Cluster B, C, D). The networks for the medium and high pathogenicity mutants
additionally distinguished activation responses that occurred at later time points (Cluster A, D)
from those that were present at all time points (Clusters B, C).

To identify specific processes that were associated with these edge clusters, we tested
them for enrichment of pathways (Table 6, Materials and Methods). Cluster A was signifi-
cantly enriched with immune response processes, namely anti-viral and interferon response.
This cluster was active for HIN1 infections as well as H5N1 NS1trunc. Predicted regulators
in this cluster included key immune response regulators at the mRNA (e.g. IRF7, STAT1,
TRIM21, NMI) and the protein level (ISG15p). In terms of pathogenicity, the NS1trunc
virus is more lethal than the HIN1 strains; however, truncated NS1 protein disrupts the
virus' ability to effectively suppress host immune response. The H5N1 NS1trunc mutant in
particular displayed an interesting clustering pattern across the other clusters. It was repre-
sented in two clusters that represent late response to other medium- and high-pathogenicity
viruses (Clusters D, E), but absent from a cluster that represents early-onset sustained edges
among H5N1 strains (Cluster C) as well as from Cluster B, which included edges from all
other viral strains. Cluster B and Cluster C, which are associated with the two highly patho-
genic viruses are associated with GPCR signaling and muscle contraction and include some
of our siRNA based regulators (YTHDC1, Cluster B) and (HCLS1, HOXA?7, Cluster C).
Both Clusters D and E, which include active edges primarily from the high and medium
pathogenicity viruses, are associated with signaling pathways including Wnt signaling and
the circadian clock. Wnt signaling has been implicated in influenza infections [14,44], while
disruptions in circadian clocks have been shown to increase susceptibility of the immune
system to infections [45].

In summary, our active network analysis identifies different subnetwork components that
are specific to different viruses, and implicates additional processes that might be relevant in a
strain-specific manner.
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Fig 6. Time-point and virus-specific active subnetwork clusters. A. Clusters identified using hierarchical clustering of edges based on the presence/
absence pattern of edges across time and virus strain. Each row represents an edge. All clusters are uniformly scaled to the same height, but comprise
varying numbers of edges (shown on left). B. Active subnetworks defined by clusters in A for each virus. The subnetwork for each virus is defined by
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taking the union of all edges present at any time point for that virus. Dark nodes/edges are active in both the cluster and any time-point for the virus; light
nodes/edges are active in all other viruses and part of this cluster.

doi:10.1371/journal.pcbi. 1005013.g006

Physical subnetworks suggest putative mechanistic connections
between module regulators

Our analyses thus far inferred two sets of regulators for each module: (1) mRNA-based regula-
tors, signaling proteins and TFs, predicted by MERLIN based on transcriptome changes, and
(2) protein-based regulators predicted by MTG-LASSO based on proteome and transcriptome
changes. Both these types of regulators were predicted based on patterns of co-variation of reg-
ulators and targets (at the individual gene or module levels). What is missing is information
about the underlying physical mechanisms that connect the signaling proteins to transcription
factors, and the protein-level regulators to the mRNA-level regulators. To gain insight into the
underlying physical mechanisms that connect the regulators, and to link them to host genes
identified from functional screening studies, we integrated the predicted regulators with physi-
cal protein-protein interactions, transcription factor-target interactions, and metabolic reac-
tions from multiple public databases (Materials and Methods). Typically, the interaction data
do not provide evidence for direct interactions between regulators, requiring the identification
of additional intermediate nodes that connect these regulators. However, even allowing only
one intermediate node can result in large subnetworks that are unwieldy for interpretation (see
for example Fig 7A). Furthermore, because available interactions are not condition-specific,
they may contain false positive interactions and may be missing relevant connections. To iden-
tify high-confidence physical subnetworks that are easily interpretable, we formulated a con-
strained optimization problem to find directed paths that connect MERLIN-identified
signaling proteins to transcription factors and MTG-LASSO-identified proteins to MERLIN
regulators using a minimal set of intermediate nodes (Materials and Methods), prioritizing
the inclusion of host genes that were recently identified by Watanabe et al. [46] using both

Table 6. Characterization of time- and virus-specific subnetworks.

Cluster | Timing

A

Sustained

Sustained

Sustained

Mid-late

Very late

In-cluster viruses

H1N1 CA04 and NL;
H5N1 NS1trunc

H1N1 CA04 and NL;
H5N1 WT, PB1-F2del,
PB2-627E

H5N1 WT, PB1-F2del,
PB2-627E

H5N1 WT, NS1trunc,
PB1-F2del, PB2-627E

H5N1 WT, NS1trunc,
PB1-F2del, PB2-627E

Out-of-cluster Enriched pathways Enriched regulators

viruses

H5N1 WT, JAK-STAT signaling*, antiviral and FOSLA1, IRF7,1SG15p, LMO2, MAFF,

PB1-F2del, PB2- interferon response, many immune- MLKL, NFS1p, NMI, NUPR1, SP110,

627E response pathways, cell cycle SSTR2, STAT1, TRIM21, TRIM5

NS1trunc GPCR signaling SAG, YTHDCA

H1N1 CA04 and Muscle contraction DDR2, HCLS1, HOXA7, SAG, TAL2,

NL; H5N1 YTHDC1

NS1trunc

H1N1 CA04 and PPARA*, SCF KIT*, NFG*, FGFR* CCRN4L, CDKL2, CDKLS3, CITED2,

NL mutant signaling pathways ETV3, MXD1, NR4A2, PAPOLG,
PPP1R10, SNAI1, TCEB1, TOB1, WNK4

H1N1 CA04 and Circadian clock, Wnt signaling ACVR1B, ERCC2, FBXL19, FOXH1,

NL NKX2-5, PPP1R11, SAP30BP, TLX2

"Timing" describes the general timing under which the cluster is active; a value of 'sustained means that the cluster appears active throughout every time
course. "In-cluster" lists the viruses represented in the cluster. 'Out-of-cluster lists the viruses mostly absent from the cluster. "Enriched pathways" lists major
enriched pathway terms
* indicates that the pathway was enriched only among regulators of the cluster network. "Enriched regulators" are the subset of cluster regulators for which
their targets are statistically enriched in the cluster relative to all clusters.

doi:10.1371/journal.pcbi.1005013.t006
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Fig 7. Integration of expression- and protein-based regulators into a physical subnetwork for module 1549. A. Candidate
subnetwork for module 1549 given as input to the Integer Linear Programming (ILP) approach to find a minimal network. The candidate
subnetwork is extracted from the background interaction network by connecting MERLIN (mRNA) and MTG-LASSO (protein) regulators
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studies and Calu-3 ISGs (as in Fig 3); this information is for visualization purposes and is not used in the subnetwork inference method. Only
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nodes are not shown for visual clarity. B. Minimal subnetwork for Cluster 1549's regulators inferred using ILP. Yellow stars indicate host
genes for which siRNA knockdown significantly impacted viral replication. Also shown are interactions between Watanabe host genes and
viral proteins (yellow hexagons). Grey edges are input to the method but not selected by the approach. All selected edges and all nodes
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doi:10.1371/journal.pcbi.1005013.9007
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RNAI and co-immunoprecipitation with viral proteins. Such nodes are important in the virus-
specific protein-protein interaction network and provide additional context for interpreting
our predicted transcriptome and proteome-based regulators. We applied an Integer Linear
Programming (ILP) approach to solve this optimization problem, which has been shown to
find more precise solutions compared to heuristic algorithms [47-49].

Using our ILP approach we identified high-confidence physical subnetworks for 16 human
modules, which included between 0-8 intermediate nodes, including a subset of the Watanabe
hits and protein interaction partners (S2 Text, S1 Table, Supporting Website). Nine of the
module subnetworks included predicted protein regulators. The high-confidence subnetworks
were able to connect more true regulators with fewer intermediate nodes than subnetworks
inferred from random regulators with the same degree distribution, suggesting that the sparsity
of the high-confidence physical subnetworks was not merely due to the degree of the input reg-
ulators in the physical interaction network (S3 Text). We also used the random input subnet-
works to compute an empirical FDR for each protein by measuring the frequency at which the
protein appears randomly, and found that it ranged from 0-0.4, demonstrating that many of
the proteins used in the subnetworks are unlikely to be identified by chance (Materials and
Methods). A low FDR is a conservative measure of a protein's importance, as many relevant
proteins are network hubs and are likely to be identified by chance.

These modules, together with their subnetworks, provide an integrated view of different
types of regulators that are interacting to drive the downstream expression pattern of the host
response. We discuss several below and provide all others on a Supporting Website.

Core integrated regulatory module networks represent an interplay of
interferon signaling, inflammation and apoptosis components of
mammalian immune response

Our integrated network analysis identified several modules that captured different components
of the host immune response machinery. One of these modules was Module 1549, which was
associated with immune response-related processes by many of our computational analyses
(Figs 7 and 8). Module 1549 exhibited a particularly interesting strain-specific pattern of
induced expression under infection with low-pathogenicity viruses and the medium pathoge-
nicity virus, H5N1-NS1trunc, and repressed expression under infection with high pathogenic-
ity viruses (Fig 8). Module 1549 is also enriched for genes associated with interferon signaling,
which are critical for mounting the innate immune response. The influenza NS1 ('non-struc-
tural’) protein is already known to inhibit the host's antiviral type I interferon response [50],
suggesting that this module would be a good candidate for further investigation into the mech-
anism of action of NSI. Furthermore, the genes in Module 1549 overlapped significantly with
two mouse modules (Fig 4A), and its regulators featured prominently in the conserved regula-
tory network identified by the intersection of the human and mouse consensus networks (Fig
4B). This module is associated with NFS1, APP, SERPINA3, and ITGBP protein regulators,
and IRF7, NMI, and STAT1 mRNA regulators, which are well-known members of the inter-
feron response and JAK-STAT antiviral response pathway [27,28]. The subnetwork analysis
applied to the regulators of this module highlighted HSPA4, also known as Hsp70, as a hub
that connects gene members from multiple immune response pathways (Fig 7B). HSPA4 has
been proposed as both an antiviral factor [51] as well as a chaperone required for viral replica-
tion [52]. HSPA4's direct subnetwork connections include members and modulators of the
antiviral JAK-STAT pathway (ISG15[53], FGFR3, STAT1) and also inflammation (APP).
FGFR3 was a hit in our MERLIN-network based prioritization siRNA study and acts as a mod-
ulator of the JAK-STAT pathway in growth disorders such as achondroplasia (OMIM). APP
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Fig 8. Target and regulator expression profile of human Module 1549. In the “Regs” columns, consensus regulators for each gene are marked with
purple boxes. In “Motifs”, genes containing MSigDB regulatory motifs, including miRNA motifs, are marked in green. Motifs shown are only those that are
enriched in the module. Next, colored boxes indicate host genes identified from screening studies (salmon) and immune response gene sets (violet).
Below the rows for module genes are rows for MERLIN-predicted mRNA regulators and MTGLASSO-predicted protein regulators. Gene expression
values are scaled (-2,2); protein values are scaled (-1,1) to improve visibility. Time courses entirely missing at the protein level are indicated as “No
protein data”.

doi:10.1371/journal.pcbi.1005013.g008

was identified as an inhibitor of viral replication in our siRNA validation. Other important
genes in this subnetwork are the protein regulator THBS1 and an mRNA-based regulator,
MLKL. THBSI is involved in apoptosis [54] and potentially inhibiting inflammation [37], and
our siRNA validation results classify it as a pro-viral replication gene, while MLKL induces
necroptosis (inflammatory cell death; [55]). As a whole, the subnetwork for Module 1549 ties
together multiple immune response pathways, namely, antiviral interferon signaling, inflam-
mation and apoptosis.

In contrast to Module 1549, Module 1540 (Fig 9A) shows a pattern of repressed expression
in response to low-pathogenicity viruses, and increased expression over time in response to
high-pathogenicity viruses. The subnetwork analysis revealed connections between the mRNA
(ANKDRD?2, SET) and protein-based regulators (HISTIHB1, THBS1) of this module via inter-
mediate nodes, SIRT1 and ELAVLI and the Watanabe host gene, TP53 (Fig 9B). The SIRT
family of proteins have been identified as antiviral factors for multiple viruses [56]. The subnet-
work suggests that part of its antiviral activity is mediated through interactions with anti-apo-
ptotic signaling protein SET [57] as well as through direct interactions with histones. The other
proteins in the subnetwork have roles in apoptosis and the p53 pathway: TP53 (p53) itself,
ELAVLI1 (which stabilizes p53 mRNA; [57]), ANKRD2 [58], and THBSI. In summary, Module
1540 identified interactions between histone proteins and various pro- and anti-apoptotic fac-
tors, some of which may explain the independently observed antiviral activity of SIRT1.

A third characteristic pattern was exhibited by Module 1472 (S7 Fig). Genes in this module
were associated with a general pattern of induced expression but differed in the intensity of
induction (stronger induction in the high pathogenicity strains compared to the low pathoge-
nicity strains). This module was predicted to be regulated by several transcription factors
(ANKRD2, EMX1, EN2, FOXC2, SOX17, RLX2, ZNF205) and two signaling proteins, GRIN1
and SIK1. SIK1 is a protein kinase which is involved in phosphorylation of HDACs (histone
deacetylases) which can in turn modulate innate anti-viral responses [59] and interferon sig-
naling genes [60]. Moreover, the subnetwork analysis linked SIK1 to the predicted protein reg-
ulator THBSI (an inflammation inhibitor) through the intermediate node FYN, a tyrosine
kinase with potential role in NFKB-mediated adaptive immunity.

Finally, a fourth module of interest was Module 1482 (S8 Fig), which exhibited a pattern of
high expression in the low pathogenicity viruses compared to both high and medium pathoge-
nicity viruses. Both the candidate and minimal subnetworks for this module provided useful
information for generating hypotheses about mechanistic interactions between the regulators.
The module was associated with both mRNA and protein regulators as well as hits from the
Watanabe study: SNW 1, which interacts with viral NS1 protein, and PSMC1, which interacts
with viral HA, M1, NA, PA, PB1, and PB2 proteins. The subnetwork analysis connects pre-
dicted mRNA regulators (SRC, BTRC, PPM1F) and protein-based regulators (THBS1, EHD4)
through SNW1 and PSMC1 (S8C Fig). EHD4 is a regulator of endocytosis [61], suggesting a
role in virus entry, and SRC is a tyrosine kinase that has been identified to be involved in antivi-
ral signaling [62].

Taken together, our integrated analysis identified the major regulatory modules of host
transcriptional response and predicted mechanistic regulatory programs associated with these
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Fig 9. Target and regulator expression profile and the physical regulatory program of Module 1540. A. Heatmap
visualization of module 1540 genes and regulators. In the “Regs” columns, consensus MERLIN regulators for each gene
are marked with purple boxes. Next, genes with SREBP binding motif are marked in green. Below the heatmap for module
genes are rows for MERLIN-predicted mRNA regulators and MTGLASSO-predicted protein regulators. Gene expression
values are scaled (-2,2); protein values are scaled (-1,1) to improve visibility. B. Original subnetwork for Cluster 1540. Black
edges link regulators to intermediates; these are provided as input to the ILP method. Additional interactions from the
background network between regulators and intermediates are shown in grey. See Fig 7B for additional legend details. C.
Minimal subnetwork for Cluster 1540, output from the ILP-based subnetwork inference method. Compared to the original
subnetwork, the minimal subnetwork prunes away one protein: HIST1H3A. See Fig 7B for legend.

doi:10.1371/journal.pcbi.1005013.9g009
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modules. The modules exhibited pathogenicity or strain-specific patterns and were enriched in
immune related processes and predicted to be regulated by genes from diverse pathways
including innate immune response and apoptosis. These module case studies support our regu-
lators as important players of host response and provide an integrated view of how host
response may be regulated at multiple levels, from mRNA, to protein, to interaction networks.

Discussion

Identification of the molecular networks that underlie host response to different pathogenic
infections is important to understand both the mechanisms of immune response as well as to
design better therapeutics. Towards this end, we performed an integrative regulatory network-
based analysis that combines transcriptomic, proteomic and existing molecular interaction
datasets to identify important genes, modules and subnetworks. We found that the key compo-
nents of innate immune response processes namely, interferon production and signaling, and
important regulators of immune response (STAT1, NMI, IRF7), were conserved between a
human cell-line (in vitro) and mouse lung (in vivo) model system. Our approach was able to
predict novel regulators at the mRNA and protein level and implicate molecular pathways that
may drive virus-specific host responses.

Prioritization of predictions, including important genes, interactions and networks, is
important in systems biology studies, which can easily generate a large number of hypotheses.
While a large number of prioritization methods, including network-based strategies, have been
proposed [63] and computationally validated, relatively few have been used to inform experi-
mental validation in a medium to high-throughput manner [21,64]. Towards this end we used
our inferred MERLIN networks to prioritize important regulators of host response and test 20
regulators using siRNA. Six of the 20 regulators exhibited highly significant and consistent
effects on viral replication and included 4 novel mRNA regulators (BOLA1, HOXA1, HCLSI,
FGFR3) in addition to IRAK3 and YTHDCI, which were identified by genome-wide studies
using a different influenza virus [65,66]. Mice lacking IRAK3 have an increased mortality rate
compared to wild type in influenza-induced pneumonia [67]. BOLAL1 is a mitochondrial pro-
tein, which helps maintain mitochondrial morphology and oxidative stress [68]. Mitochondria
provide important innate immune functions, including cellular response to double-stranded
viral DNA by induction of cytokines through the MAVS (mitochondrion antiviral signaling)
protein [69]. Influenza A virus proteins have also been shown to translocate to mitochondrial
membranes and promote mitochondrial fragmentation [70]. HCLS1, which is a hematopoetic
lineage specific protein [71], is also interesting due to its role in signal transduction pathways
in Band T cells [72,73]. HOXA7 is a member of the homeobox family of transcription factors,
known to have critical roles in differentiation and embryonic development. The HOXA7 gene
has to our knowledge not been associated with specific immune related functions, however, a
closely related gene, HOXA9 was shown to be involved in lymphoid and B cell development,
which are important cell types of the immune system [74]. The HOXA?7 gene was also shown
to code an antigen in specific tumor types [75] and could be involved in differentiation pro-
grams of immune cell types in response to influenza infections. Finally, FGFR3, a fibroblast
growth factor receptor gene is known to have diverse roles in multiple cellular functions [76-
78]. The FGFR1-4 genes were investigated for their role in influenza A viruses [79]. FGFR1 was
shown to significantly impact cellular internalization of two influenza A viruses but FGFR3
was not expressed in the cell line tested, leaving open the possibility of its potential role in the
influenza life cycle. To our knowledge, these regulators have no previously known role in influ-
enza response, but serve as promising leads for further in-depth validation studies using in vivo
models.
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While approaches to infer and examine networks from mRNA are routinely used in systems
biology studies of complex responses [2,6,80], examining proteomic datasets and especially
integrating them with transcriptomic data to gain insight into regulatory mechanisms is an
open challenge that has been addressed by relatively few approaches [7,49,81]. This is because,
unlike mRNA levels, proteomic technologies are still maturing and datasets have lower genome
coverage and higher frequency of missing values [82]. To tackle this challenge we introduced a
novel structured sparsity inducing approach, Multi-task Group LASSO (MTG-LASSO), which
enabled us to leverage the overall signature of expression at the level of modules. Our experi-
ments confirmed that while the MTG-LASSO and LASSO achieved comparable prediction per-
formance on held-aside data, the MTG-LASSO approach identified a sparser set of regulators
per module. Proteins with the strongest contributions to module expression prediction were
involved in innate immune response pathways, RNA splicing, membrane organization and
transport, that are relevant to different parts of virus life cycle. Experimental validation of these
regulators further associated pro or anti-viral replication functions with them. Both directions
are interesting from the point of view of understanding the mechanisms of immune response
as well as for designing vaccines that could disrupt viral replication and growth. PRPF31,
which is involved in RNA splicing, was particularly notable as an example of a pro-viral repli-
cation regulator, given the emerging role of post-transcriptional process in diverse pathogenic
infections including bacterial pathogens [83]. SERPINA3 (anti-viral, serine protease inhibitor)
is also interesting as a candidate anti-viral drug target due to the known roles of serpins in
innate immunity [38-40]. We also predict a pro-viral role of ISG15, an interferon stimulated
protein and that is involved in diverse processes including anti-viral activity. Importantly, sev-
eral predictive protein regulators were not identified as differentially expressed at the mRNA
level (7/17 for human; 22/33 for mouse; S4 Table, S5 Table), emphasizing the importance of
measuring multiple types of cellular components.

These results were further bolstered with our subnetwork analysis that combined the
mRNA and protein regulators through physical interactions (identified as interaction partners
in the physical subnetwork). Even though no information about known relevant pathways was
provided as input, our approach was able to give interaction-driven predictions for how these
different regulators are coordinated. A notable example was a newly identified gene, HSPA4, in
module 1549’s regulatory program, that connected FGFR3 (discussed above), STAT1 (a mem-
ber of the JAK-STAT signaling pathway), and inflammation and cell death pathways (repre-
sented by THBS1 and APP). Without the subnetwork analysis, it would not be possible to
identify HSPA4, as it was not part of the input set of mRNA and protein regulators.

Our approach identified several important modules that exhibit strain and pathogenic spe-
cific patterns of expression. In particular, Module 1549, which was associated with interferon
signaling and interferon-stimulated genes, exhibited a striking pattern of differential expression
of repression in the wild-type H5N1 virus. Our results are consistent with those of [84], who
observed a differential pattern of expression of the ISG genes and showed that the differential
expression of these genes were inherently tied to host response. Another module, Module 1540
exhibited an opposite pattern of expression and is associated with cell-cell signaling. One caveat
to the validation was that we tested the siRNAs only in pandemic HIN1 and therefore we do
not know how impact of these regulators in different virulent strains. The physical regulatory
programs together with the expression phenotype associated with these modules enables us to
make intriguing hypothesis of potential mechanisms by which upstream regulatory networks
drive context-specific expression, which could be followed by further validation.

Some of the same mRNA time courses have been previously studied with computational
network approaches [8,85], offering additional points of reference against which to compare
our inferred multi-virus regulatory network. Mitchell et al. [8] prioritized influenza host genes
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from wild-type HIN1 and H5N1 samples. They learned a correlational network from which
they identified central nodes as well as modules. They also used a regularized regression
approach (Inferelator, [24]) to identify sparse regulator sets that predict the average module
expression. Our top predicted regulators (both protein and mRNA) intersected with theirs on
only one gene (NMI). The limited overlap may not be surprising as the bulk of our prioritized
regulators were restricted to transcription factors and signaling proteins; however, similar gene
families were present in our list and theirs (including DDX, HOX, and ISG genes). Addition-
ally, McDermott et al. [85] previously analyzed the H5N1 mRNA time courses using a similar
approach: first identifying modules through hierarchical clustering, followed by identification
of regulators for the modules' average expression. That study identified a set of conserved clus-
ters across human, mouse, and macaque, and a list of prioritized regulators. We found signifi-
cant overlap of several of those clusters with several our modules (S9 Fig), but no overlap in
the presented prioritized regulators. However, both our study and theirs identified shared func-
tional processes (cytokine signaling and production, inflammation, apoptosis, and cell cycle
regulation) and gene families (IRF genes).

Our work can be extended in several ways. One limitation of the current subnetwork
approach is that the protein-protein interactions employed are not necessarily functionally rel-
evant to the tissues or conditions under study; a future direction of work is to integrate tissue-
specific interactions at this step, such as from large-scale computationally-inferred compendia
[86,87]. Another direction of future work is to jointly learn modules and their physical regula-
tory programs using an iterative framework while integrating proteomic measurements. We
anticipate that as systems biology studies expand to more viruses, host systems and diseases,
approaches such as ours are going to be increasingly useful to characterize host responses at
multiple omic levels, prioritize genes and subnetworks for validation. The outcomes from such
studies will be important to assemble a comprehensive picture of the mechanisms responsible
for healthy and disease states, and ultimately guide the design of effective therapeutics.

Materials and Methods
MRNA dataset and processing for MERLIN analysis

We obtained background corrected and between-arrays quantile normalized host mRNA
response data from multiple strains and dosages of influenza virus in Calu-3 human cells
(GEO Accessions GSE28166, GSE37571, GSE40844, GSE40844, GSE43203, GSE43204) and
20-week old C57BL/6 mice (GSE33263, GSE37569, GSE37572, GSE43301, GSE43302,
GSE44441, GSE44445) (full details, [4]). All experiments were performed using Agilent micro-
arrays. In the original work, each array was subject to quality control, background correction,
and quantile normalization. We directly used the processed data available.

The viruses include three wild-type and four mutant strains. Wild-type strains include A/
California/04/2009 (H1N1), A/Netherlands/602/09 (HIN1), and A/Vietnam/1203/2004
(H5N1). The mutant strains of H5N1 each affect different aspects of the virus life cycle [1].
HAavir, used in the mouse experiments only, has restricted tissue tropism due to a mutated
cleavage site in the hemagglutinin glycoprotein. The wild-type H5N1 virus has a lysine at posi-
tion 627 in the PB2 polymerase protein that is associated with the adaptation of H5N1 viruses
to mammals. Mutation of this amino acid to glutamic acid (PB2-627E) reduces polymerase
activity in mammalian cells and pathogenicity in mice. NS1trunc has a shortened version of
the NS1 protein, thereby interfering with the virus' ability to suppress host antiviral responses
through the RIG-1 pathway. PB1-F2del is missing viral protein PB1-F2, which is involved in
many aspects of virus pathogenicity, including polymerase activity and host immune
regulation.
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For each virus infection in human cell line, six or nine time points were collected, spanning
48 hours for low-pathogenicity viruses (at 0, 3, 7, 12, 18, 24, 30, 36, 48 hours) and 24 for
medium and high (at 0, 3, 7, 12, 18, 24 hours). Each time point had at least three biological rep-
licates. An additional four-time-point replicate series was collected for HIN1 (hours 0, 12, 24,
48) and two additional two-point series were collected for H5N1 (hours 7, 24). In the mouse
system, multiple dosages were available for some viral treatments. All time points were taken at
days 1, 2, 4, and 7 after infection, with the exception of the highest dosage of H5N1, which
omitted day 7 due to complete lethality. We collapsed replicates of each time point using the
median value of a gene’s expression level. In total, after collapsing replicates, there were 50
samples per human gene and 51 per mouse gene.

Using MLDs values [1], we classified the viruses into high, medium and low pathogenicity
groups: high pathogenicity included WT H5N1 and H5N1-PB1-F2del; medium pathogenicity
included H5N1-NS1-trunc and H5N1-PB2-627E, and low pathogenicity included H5N1-HA-
avir and HIN1. Instead of HAavir, the Calu-3 data included a different strain of wild-type
HINT1 (A/Netherlands/602/09, or NL); both viruses have the same low level of pathogenicity.
Having viruses exhibiting similar extents of pathogenicity enabled us to perform a systematic
comparison of host response divergence under the same type of perturbation.

Because our focus was to compare findings between in vivo (mouse) and in vitro (human
cell lines) we started with genes that were conserved (had orthologs) between human and
mouse, and exhibited differential patterns of expression between high, medium and low patho-
genicities. We first obtained the relative expression value of a gene to the same gene's expres-
sion in an untreated mock sample from the same time point. We included a gene if its relative
expression profiles compared to mock in either species were significantly different between any
two pathogenicity groups (assessed by t-test, p-value<0.01 for human and p-value<0.05 for
mouse). The resulting gene set comprised 7,192 genes in the human cell line and 7,240 genes in
mouse lung. As regulators, we selected transcription factor and signaling proteins [5,57,88]
that were present in the differentially expressed gene set. This included a total of 1,396 encoded
candidate regulators in human and 1,394 candidate regulators in mouse.

Protein data processing for MTG-LASSO analysis

We used protein level data that was available for a subset of the same samples as the mRNA
data from [1,3,4,8,89]. Briefly, peptide-level abundances were obtained by liquid chromatogra-
phy—mass spectrometry (LC-MS) and matched to protein levels following normalization and
quality control.

For human, the HIN1 NL time course and a short replicate time course of HIN1 CA04
were missing (see gray boxes in protein regulator heatmap at the bottom of Figs 8, 9, S7A and
S8A); for mouse, the missing samples spanned H5N1 HAavir and two of four dosages of HIN1
CAO04. These data provided 37 unique samples for human and 42 for mouse. We selected pro-
teins with fewer than 50% missing values (resulting in 3,026 for human and 1,908 for mice),
and imputed remaining missing values using the mean value for existing samples (within the
same time course). To prepare data for input into the MTG-LASSO method, we normalized
both protein and mRNA data by their row means.

Learning consensus MERLIN regulatory module networks for human
and mouse using stability selection
We used MERLIN [22], a network inference algorithm, to learn regulatory module networks

for the human and mouse datasets separately. The input of MERLIN is a matrix of gene expres-
sion data and a list of candidate regulators (e.g., transcription factors and signaling proteins);
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the output is a regulatory network and a set of regulatory modules. This dual output is a unique
feature of MERLIN compared to other network inference methods. It uses an iterative proce-
dure that alternates between learning the network structure using a greedy search for regulators
of individual targets (giving a regulatory program per gene) and performing hierarchical clus-
tering on the target genes based on both co-expression and the similarity in their current
assigned regulator sets. The module assignments are also used in the network learning step to
provide a prior preference for adding regulators to a gene's regulatory program if the regulator
is already assigned to another gene in the module.

We embedded MERLIN in a stability selection framework [90], in which MERLIN networks
are learned independently for 40 random sub-samples of the expression data. Each subsample
consisted of about 90% of the total samples (45/50 for human, 45/51 for mouse). The resulting
ensemble of networks provides a confidence value for each edge in the regulatory network,
thereby enabling the identification of a robust consensus regulatory module network.

For each individual network, we set MERLIN's three parameters according to recommenda-
tions from the original publication based on simulated data [22], setting p = -5, r =4, h = 0.6.
The parameter p controls regulatory network sparsity (more negative values, fewer edges),
controls network modularity (higher values, stronger preference for sharing regulators in a
module), and h specifies a threshold on the distance used to cut a hierarchical clustering into
gene modules (lower values, more modules). We derived a consensus regulatory module net-
work in several steps from the ensemble of networks that were produced under stability selec-
tion. First, to derive a consensus network of regulator-target edges, we applied a threshold of
0.3 confidence to the confidence-weighted regulator-target edges produced by stability selec-
tion. This threshold was picked based on its FDR, assessed by comparing to a random consen-
sus regulatory network generated by running the approach on 40 randomizations of the
expression data. We calculated FDR as the ratio of the fraction of edges from the random net-
work that would be accepted at the threshold, over the fraction of edges from the true network
that were accepted by the threshold. The FDR of human and mouse networks were 0.30 and
0.17, respectively.

Next, to independently derive co-expressed, co-regulatory modules, we began by hierar-
chically clustering the genes, defining the similarity between any pair of genes as the frequency
at which the two genes were clustered together across the 40 separate module assignments. We
then applied a distance threshold of 0.5 on this new clustering to define consensus modules.
Finally, we identified consensus regulators for each module (at the module level) by assessing
the significance of overlap of each regulator's consensus targets within each consensus module,
as measured by the hypergeometric test (FDR < 0.05).

Enrichment analysis of MERLIN modules

We evaluated the modules based on their enrichment with various sources of gene sets and
pathways. We call each gene set or pathway an annotation category, and performed enrichment
testing independently on groups of annotation categories coming from the same source.

To assess significance of the enrichment of the modules with an annotation category, we
computed a hypergeometric p-value specifying the probability of observing k or more genes
from a module with n genes to have an annotation g, given that there are a total of M genes
with annotation 4 among a total of N genes. Considering together all of the annotation catego-
ries for a module, we applied the Benjamini-Hochberg procedure to control FDR at 0.05 and
accepted corrected p-values < 0.05.

The groups of annotation categories that we tested include Gene Ontology Biological Pro-
cess [91], targets of transcription factors from MSigDB [92-94] as well as those determined by
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scanning the promoters of genes using known motifs in the JASPAR database [95] with FIMO
[96]. We additionally included gene sets available from MSigDB, Reactome [97], BioCarta
(http://www.biocarta.com) and KEGG [98]. In addition to the above general curated pathways,
we also used experimental, literature-based, and manually curated gene sets that were specifi-
cally associated with influenza and with innate immune response. We assembled hit sets from
a group of RNAIi and protein-protein interaction screens [14,36,46,65,66,99-103]. We also cre-
ated an immune response group of annotation categories consisting of Calu-3 interferon stim-
ulated genes [84], curated targets of the NF-kB transcription factor (http://www.bu.edu/nf-kb/
gene-resources/target-genes), genes differentially expressed in response to inflammatory inter-
leukins IL-1 or IL-6 [104] and members of curated immune response pathways from InnateDB
[105], downloaded November 2014). For the influenza and immune response gene sets, we
obtained human-mouse gene orthologs from the Mouse Genome Database [106].

Comparison of MERLIN network to other experimentally and
computationally inferred networks

We used a hypergeometric test and a fold enrichment to assess the significance of the overlap
in edges between the MERLIN consensus regulatory network and other immune response and
transcriptional regulatory networks described in Fig 3B (MSigDB motifs,[92] Mouse pathogen
(Amit) [5], Mouse Th17 (Yosef) [21]). We refer to the MERLIN network as the "query" net-
work, and the other network as the "test" network. Because the networks were directed, we first
defined the shared universe of regulators and the universe of targets as the intersections of the
respective node sets from the two networks. Then, we defined the shared universe of edges as
all possible edges between regulators and targets. The size of the universe, u, is calculated as the
product of the numbers of regulators and targets in the universe. We measure overlap, o, as the
number of edges in the universe that are common to both query and test. We measure the size
of the query and test networks, q and t respectively, as the number of edges in each network
restricted to the shared universe. To test significance of the size of the overlap, we use the
hypergeometric distribution to assess the probability of identifying o or more overlapping
edges in a random draw of g edges from a universe of size u that contains f test edges. Fold
enrichment is defined as the ratio of observed to expected fraction of edge overlap between the
two networks, or (o/q)/(t/u).

Identification of strain and pathogen-specific expression patterns in
MERLIN modules

A module was considered to exhibit an interesting strain or pathogenicity-specific pattern of
expression (module catalogs, S1 Table, S2 Table) if the mean expression of genes in that mod-
ule was significantly higher or lower for any two pairs of conditions. Conditions were defined
based on high vs low, high vs medium, and low vs high pathogenicities. In addition, we consid-
ered those modules that exhibited different patterns of expression between the two wild-type
viruses HIN1 (CA04) and H5N1 (VN1203). For significant expression we used a t-test p-value
< 0.01 for human and 0.05 for mouse. We relaxed the threshold for mouse lung because the
data represents transcriptional response from a more heterogeneous collection of cells as com-
pared to the human cell line; we also omitted day 7 from all mouse data due to lack of data
(due to lethality) for the high pathogenicity viruses. To classify the modules based on expres-
sion differences between different pathogenicities, we used an additional criteria of selecting
modules whose mean expression in one pathogenicity type was different in sign compared to
mean expression in the second pathogenicity type.
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Identification of protein regulators using Multi-Task Group LASSO
(MTG-LASSO)

We implemented MTG-LASSO using the mtLeastR function available as part of the Sparse
Learning with Efficient Projections package for MATLAB (SLEP 4.1; [104]). The objective
function for MTG-LASSO is defined as

1 2
in= || XW — Y||> — A||W||,
min ;|| Il — Al H%

The first term in the objective function is the least squares loss obtained by the difference
between the observed gene expression data matrix, Y, and the predicted values from the prod-
uct of the protein data X and learned regression weight matrix W (Fig 5A). The second term is
the Group LASSO norm penalty on the complexity of the weight matrix. This norm penalizes
the number of groups (according to the one-norm) and encourages smoothness among the
weights within each group (according to the Euclidean two-norm). The parameter A controls
the trade-off between loss and the regularization term.

We evaluated the MTG-LASSO and LASSO methods over a range of A, expressed as a frac-
tion of its maximum possible value A.,,x, above which the coefficient vector will be forced to
zero. The SLEP package calculates A, for each model as follows. For MTG-LASSO, A,y is
the largest two-norm of rows in X'Y, where X' is the matrix of protein data (transposed from
Fig 5A, now with proteins/groups on rows, samples on columns) and Y is the matrix of mRNA
data for one module (samples on rows, genes/tasks on columns). For LASSO, A,y is the largest
absolute element in the vector X'y, where X'is the protein data and y is the expression vector
for one gene. We varied A between several values from its minimum (0.01, almost no sparsity
imposed) to its maximum (0.99, significant sparsity imposed). The complete set of tested values
were {0.01, 0.10, 0.25, 0.50, 0.75, 0.99}. Because A is normalized by the A,,.x it represents a com-
parable regularization strength between both regression techniques.

We obtained predicted mRNA values for all protein-matched, mRNA samples of all module
genes using a 10-fold cross-validation approach, where a consecutive set of about 10% of sam-
ples were held aside from each fold (comprising most of a time course). For the very largest
modules (modules 1592, 1594 in human), MTG-LASSO was computationally intractable, and
therefore we could not identify any regulators.

High-confidence protein regulators for individual modules

To select regulators for each module, we first chose a setting of A for each module based on A-
correlation curves that plotted correlation of the predicted values and the true data against A
for each module (Fig 5D and 5E, S1 Dataset). Surprisingly, we observed that the curve did not
have the same shape for each module. Among human modules, we found three categories of
modules based on these curves. The first consisted of 10 modules for which correlation is
roughly constant across all values of A; that is, all predictive performance on the held-aside
data was entirely due to a very small set of regulators. The second consisted of another 10 mod-
ules for which performance improved as MTG-LASSO was allowed to use more regulators (as
sparsity decreased). A final third category contained those modules that could not be predicted
more accurately than random for more than one setting of A, usually the highest or lowest
tested value (all remaining modules).

In contrast to the curves for the human modules, many mouse modules yielded A-correla-
tion curves that showed a visible inflection point, with high correlation before a particular A
and low correlation after. We grouped the modules based on a visual determination of the
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inflection point. Only two mouse modules were not predicted more accurately than random
for multiple values of A (based on either RMSE or Pearson).

We only considered A values for which accuracy was significantly greater than random
based on z-tests described in the next section. Plots for Pearson correlation are shown for
example human and mouse modules in Fig 5D and 5E, with stars indicating the chosen values.
All curves are available in S1 Dataset. For human modules, we chose A = 0.75 for modules with
constant correlation (such as Module 1596, Fig 5D), and A = 0.10 for modules with correlation
that decreased as A increased (such as Module 1549, Fig 5D). For the mouse modules, the
curves were not so obviously matched into 'constant' and 'decreasing’ categories. We chose
based on the visible inflection point in the curve, preferring the next higher (sparser) A if the
drop in correlation was not dramatic.

After choosing A, we defined consensus regulators using both frequency in cross-validation
for the specific A value and the magnitude of regression weights. First, we considered regulators
that received nonzero regression weight in at least 6 of the 10 folds. Next, we applied a thresh-
old on average absolute regression weights (across all genes, across folds with nonzero weight),
followed by a Bonferroni-corrected significance z-test (p-value<0.05) to assess whether the
same protein would be given a weight above that threshold by chance. We used a X = 0.20 for
human regulators and x = 0.10 for mouse regulators, choices that resulted in approximately
1-6 regulators per module. Mean and standard deviation for the z-test were estimated from the
random regression weights. See S10 Table, S11 Table for frequencies of chosen regulators
across folds.

z-test to assess significance of mMRNA prediction quality

We evaluated the significance of MTG-LASSO and LASSO predictive quality using one-sample
z-tests [107]. To assess module-level predictive quality, we obtained one statistic, x (Pearson's
correlation, RMSE), for a module from all predictions from 10 folds of cross validation. We
then assembled a null distribution of statistics by running the method on N = 40 random per-
mutations of protein data and real module gene expression data, obtaining the null mean y,

X — Uy

and variance og. We calculated the Z-score for the statistic as -7y and obtained a one-sided p-

value from the normal distribution.

Prioritization of predicted MERLIN regulators

We developed a regulator prioritization score that is based on the loss in predictive power of
the consensus regulatory network under in silico perturbations. For each regulator r, we held
aside the regulator from the consensus regulatory network N, creating a "lesioned" network, N-
{r}. We then re-learned regulator-target regression weights for the lesioned network using five-
fold cross-validation. We use this network to score each regulator according to the average
increase in prediction error when that regulator is removed from each of its targets' regulatory
programs:

S ():; Z A A

corer [targets(r,N)| ! !

tetargets(r,N)

where targets(r,N) is the set of 7's target genes as predicted by the consensus regulatory network
N, eV is the mean squared prediction error for the expression profile of gene ¢ using network N
(obtained by cross-validation), and e[N*{’} is the mean squared prediction error for the same

gene t given by the lesioned regulatory network N-{r}.
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Selection criteria for MERLIN network-based prioritization regulators for
siRNA validation

We tested 20 regulators from MERLIN prioritization using siRNA. These regulators were
selected based on their rankings in human and were additionally informed by their rankings in
mouse. Nineteen of these regulators were in the top 40 for human. An additional candidate,
FIG4 (rank 42) was added because it was ranked in the top 100 of the mouse regulator list (96).
Other regulators that were in the top 100 of mouse included well-studied regulators (IRF7,
NMI, STAT1) and were already in the top 40 of human rankings.

Experimental validation of predicted regulators by siRNA knockdown

For siRNA transfections, human lung epithelial cells (A549) were seeded into 24-well plates
(8x10* cells/well) and allowed to settle for 2 hours before transfection with 10 nM siRNA (final
concentration) and 1 ul of lipofectamine RNAiMax reagent (Invitrogen). For each candidate
regulator a gene-specific package of four preselected siRNAs were used (FlexiTube Genesolu-
tion siRNA, Qiagen) (S7 Table). The following siRNAs were used as controls: a cell death
inducing blend of siRNAs (AllStars Hs Cell Death, catalog number 04381048, Qiagen) for
visual confirmation of efficient siRNA delivery, a validated nontargeting siRNA (AllStars Nega-
tive Control, cataglog number 1027281, Qiagen) as a negative control and a previously
described siRNA targeting influenza virus NP mRNA (NP-1496; synthesized by Qiagen) as a
positive control. Each siRNA was evaluated in triplicate. Cells were incubated for 48 h before
infection with 500 plaque forming units of A/Oklahoma/vir09-1117003813/2009 (pandemic
HINT1) per well. Supernatants were collected from each well 48 h post infection and viral titers
were determined by plaque assay in Madin-Darby Canine Kidney epithelial (MDCK) cells.

Results for each siRNA were statistically assessed separately. First, we log-transformed the
virus titers obtained by suppressing the expression of the candidate genes using siRNAs. Next,
we compared the replicates of each candidate siRNA to the replicates of the negative control
(All-star siRNA), using one sided, unpaired T-tests. The p-values were not adjusted because
the number of candidates was small and by adjusting the p-values we would likely lose true
positives [106]. Finally, we calculated the fold-change and the log-fold change for each siRNA
candidate compared to the negative control, and used these two measures (significance, fold-
change) to identify hits that significantly changed the virus titers in the cells.

Time point and virus-specific regulatory components

To identify coarser temporal and virus-specific patterns among the active regulatory subnet-
works derived from each sample, we clustered the edges according to the samples in which
they were active. In order to focus on early stage immune response rather than late-stage cell
death responses, we held aside the 18-hour time point from the medium and high-pathogenic-
ity virus treatments (H5N1 and all mutants), placing them in their own cluster (Cluster E, Fig
6). We performed average-linking hierarchical clustering using Manhattan distance, specifying
the number of clusters k. We performed clustering for k = 3,4,5,6,7, and inspected the resulting
clustering by eye and by silhouette index. While k = 3 gave the highest silhouette index (which
decreased with k), we chose k = 4 because it made a distinction between a sustained, nearly
pan-virus cluster (Cluster B, Fig 6) and a sustained medium/high pathogenicity cluster (Cluster
C, Fig 6).

We used hypergeometric test-based enrichment (0.05 FDR corrected p-value < 0.05) to
interpret the clusters using annotated pathways from MSigDB [92-94], Reactome [97], Bio-
Carta (http://www.biocarta.com) and KEGG [98]; results are summarized in Table 6,
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"Enriched pathways". We also used a hypergeometric test to identify whether any regulators
were cluster-specific, rather than common to all clusters (Table 6, "Enriched Regulators").
First, we took the union of the sample-specific subnetworks and identified the union

target set of every regulator. For each of those regulators, we tested whether any cluster sub-
network was enriched for the targets of the regulator relative to the union (FDR corrected
p-value < 0.05).

Identification of physical subnetworks to connect module regulators

To integrate the signaling proteins, transcription factors and protein regulators predicted for
each MERLIN module, we used an integer linear programming-based (ILP) method for
extracting subnetworks from a background network, similar to previous work [47-49]. The
ILPs were modeled using GAMS modeling system v. 24.0.1 and the ILOG CPLEX solver v.
12.4.0. We applied this method separately to each human module.

The subnetworks that are extracted by this approach are composed of paths through a back-
ground physical interaction network (provenance described below). We searched for two kinds
of paths: (i) paths that begin with MERLIN signaling proteins and terminate in MERLIN TFs
(sinks) that share at least three targets in common, and (ii) paths that begin with
MTG-LASSO-based protein regulators (sources) and terminate in any MERLIN regulator (sig-
naling protein or TF, sinks). For all paths, we allowed only one intermediate node between the
source and sink. For several modules, the sources and sinks were not sufficiently close (or rep-
resented) in the background network to allow for the generation of any paths. We also excluded
the largest two modules (1592 and 1594), which had a large number of regulators, and only a
few regulators could be included in short paths.

For some modules, the union of candidate paths resulted in small and visually interpretable
subnetworks, as in Fig 9. However, for most modules, the resulting subnetwork was not visu-
ally interpretable (as in Fig 7). Our ILP-based method can identify high-confidence interpret-
able subnetworks for all modules that had paths, regardless of size.

The ILP-based approach (described in detail in S2 Text) finds an ensemble of connecting
subnetworks and assigns confidence values to paths according to how important they are for
connecting the regulators using a small number of additional nodes. We extract a subnetwork
that connects all regulators by solving an integer linear program in which instructions for how
paths may be chosen are expressed as linear constraints, and the objective function optimizes a
global property of the subnetwork. Our constraints require the inclusion of reachable predicted
regulators, and specify that each protein-protein interaction may only be used in one direction
within the subnetwork. In the objective function, we encoded a preference that the subnetwork
should use the influenza host genes from Watanabe et al. [46] as intermediates whenever possi-
ble, and to otherwise minimize the use of intermediate nodes. Because many subnetworks may
satisfy these constraints, we combine multiple solutions to the ILP into an ensemble. We score
each path by the fraction of solutions that contain that path. We defined a high confidence sub-
network as the paths that received at least 0.75 confidence over the ensemble.

To estimate the false discovery rate of nodes and edges by this approach, we generated a
null distribution of subnetworks by running the method on randomized input data. Randomi-
zation was performed as follows. We first replaced the consensus MERLIN regulators with ran-
domly drawn TFs and signaling proteins from the set that was provided as input to MERLIN,
maintaining the degree distribution (in the background network) of the entire group. We also
drew random replacements for the protein regulators from the input set of proteins. Then, for
each module, we mapped the original pairs of MERLIN sources and sinks, and protein sources
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and MERLIN sinks, to their randomized counterparts, searched for paths to connect them, and
assigned confidence values using the ILP approach as we did for the true predicted regulators.

We performed 40 randomizations, and calculated the FDR of a protein or an edge at a par-
ticular confidence level as the fraction of the random subnetworks that included it in a path of
that confidence level.

Background network for physical subnetworks

We assembled a human background network composed of protein-protein, protein-DNA, and
metabolic interactions from the STRING database v9.1 ([108]; excluding interactions labeled
as 'expression’), high-confidence interactions from HIPPIE ([109]; downloaded September
2014, using high-confidence threshold of 0.73 as recommended on the website), low-through-
put physical interactions from BioGRID ([110]; downloaded September 2014), and a human
kinase-substrate network [111]. Each resulting background network consists of both directed
(e.g., post-translational modifications such as phosphorylation and ubiquitination) and undi-
rected (e.g., binding) interactions. We then removed all interactions involving ubiquitin (UBB,
UBC, UBD), SUMO (SUMO1-4), and 11 additional ubiquitin fusion proteins. These proteins
are used as post-translational modifiers and are recorded as binding partners for large propor-
tions of proteins in the background network. The ubiquitin and SUMO systems are still repre-
sented in the background network in the form of directed ubiquitination and sumoylation
events between ligases and substrates.

Network visualization

Networks in figures were developed using Cytoscape [112] and supporting website visualiza-
tions were developed with Cytoscape.js (http://cytoscape.github.io/cytoscape.js)

Supporting website

We provide the inferred modules with their mRNA-based regulators, protein-based regulators,
and physical subnetworks (for human only) as a navigable resource at http://pages.discovery.
wisc.edu/~sroy/integrative_influenza/.

Availability

Code for MTG-LASSO and physical subnetwork identification is available from our repository
at https://bitbucket.org/roygroup/integrative_networks

Supporting Information

S1 Table. Characterization of human modules.
(XLSX)

S2 Table. Characterization of mouse modules.
(XLSX)

$3 Table. Enrichment comparison of MERLIN and GMM modules.
(PDF)

$4 Table. Comparison of human host response network genes identified by expression and
protein levels.
(PDF)
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S5 Table. Comparison of mouse host response network genes identified by expression and
protein levels.
(PDF)

S6 Table. Prioritized MERLIN regulators.
(XLSX)

S7 Table. Results of siRNA validation studies, including siRNA catalog numbers.
(XLSX)

S8 Table. Full list of mouse protein regulators predicted by MTG-LASSO.
(PDF)

S9 Table. Consensus protein regulators predicted by LASSO for human and mouse.
(XLSX)

$10 Table. Frequencies of human protein regulators across 10-fold cross validation.
(PDF)

S11 Table. Frequencies of mouse protein regulators across 10-fold cross validation.
(PDF)

S1 Fig. Overview of mouse influenza response modules identified by MERLIN. Expression
patterns of 56 mouse modules with at least 10 genes. The red-blue heat map shows mean
expression of all genes in each module for each sample, compared to mock treatment value
(similar to Fig 2). Blocks of columns are time series (in days) from different viruses and dos-
ages (PFU: Particle forming units). Viruses are ordered from low to high pathogenicity; differ-
ent dosages of the same virus are placed next to each other. The “Genes” column shows the size
of each module; larger values are shown in darker blue. Under “Enrichment”, a red

box indicates module enrichment with any MSigDB motif, any curated gene set from Gene
Ontology, KEGG, REACTOME or BioCarta (MSigDB curated gene sets), any influenza screen
set, or any immune response gene set (described in Materials and Methods).

(PDF)

S2 Fig. Comparison of gene prioritization schemes. Shown is the precision of predicted top n
regulators for human (A) and mouse (B) host response identified using different ranking strat-

egies. Precision is defined as the fraction of the top # genes that are known host genes identified
from screening studies.

(PDF)

S3 Fig. Visualization of shared genes measured by mRNA and protein. Human Calu-3
(A-B), mouse (C-D). Each column is a sample from one of the virus treatment time courses.
Rows in each heatmap are genes in the intersection of the complete mRNA and protein data
sets for one system after filtering out entries with >50% missing values; before filtering mRNA
data set down to differentially expressed genes only. Genes are sorted by hierarchical clustering
with average linkage, Manhattan distance followed by optimal leaf ordering of the mRNA data
to enhance visualization of patterns. The ordering between mRNA and protein data is the
same. Values are scaled between [-1,1] for all heatmaps.

(PDF)

S4 Fig. Comparison of sparsity and predictive quality of MTG-LASSO and LASSO. Left col-
umn human; right column mouse. A. Counts of nonzero regression weights (Y-axis) identified
at each level of A (X-axis) for MTG-LASSO and LASSO for human (left) and mouse (right).
The human data is the same as in main manuscript Fig 5B. B. Scatterplots comparing cross-
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validation Pearson correlation values for all modules, with one plot per value of A, per species.
In each scatterplot, there is one point per module. Inset p gives Pearson correlation between
MTG-LASSO and LASSO per module Pearson correlations. Diagonal line is shown for com-
parison. C. Scatterplots comparing cross-validation RMSE values for all modules, with one plot
for each value of A, per species. In each scatterplot, there is one point per module. Inset p gives
Pearson correlation between MTG-LASSO and LASSO RMSE values. Diagonal line is shown
for comparison. D/E. Per-module ranking of MTG-LASSO-selected regulators according to
LASSO absolute regression weight for human (D) and mouse (E). One AUROC value is
obtained per module. Only modules for which MTG-LASSO predicted the module's expression
better than random in at least five of six tested A settings are shown.

(PDF)

S5 Fig. Sizes of human Calu-3 virus-specific regulatory networks over time. Each trajectory
represents the count of active network elements of a specific type (edges (A), regulators (B),
targets (C)) at a time point for one virus.

(PDF)

S6 Fig. Comparison of Calu-3 active regulatory networks between all virus treatments, all
time points, based on edges (A), regulators (B), and targets (C). Cells are shaded according
to 'precision’ relative to the network on the row of the matrix. Precision is defined here as the

size of the intersection (edges, regulators or targets) between the two networks divided by the

size of the row network (edges, regulators or targets, respectively).

(PDF)

S7 Fig. Integrated regulatory module network for Human Module 1472. A. Heatmap of
module genes and regulators from mRNA and protein for module 1472. B. Input subnetwork,
which is the same as the refined output subnetwork. Nodes and edges follow the same legend
as Fig 8.

(PDF)

S8 Fig. Integrated regulatory module network for Human Module 1482. A. Heatmap of
module genes and regulators from mRNA and protein for module 1482. B. Original input sub-
network connecting module regulators. Black edges link regulators and intermediates. Addi-
tional interactions between grey nodes are other background network edges. Nodes and edges
follow the same legend as Fig 7. C. High-confidence physical subnetwork.

(PDF)

S9 Fig. Comparison of MERLIN modules to H5N1 Calu-3 clusters identified by McDer-
mott et al. 2011 [85]. McDermott et al. identified modules using hierarchical clustering. Edges
between modules represent fold-enrichment of the McDermott module's overlap with the
MERLIN module relative to all genes in the intersection of the two sets of modules.

(PDF)

S1 Text. Assessment of regulator prioritization schemes.
(PDF)

$2 Text. Integer linear program for high-confidence subnetwork inference.
(PDF)

$3 Text. Compactness of inferred subnetworks.
(PDF)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 36/42


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s017
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s018
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s019
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s020
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s023

©PLOS

COMPUTATIONAL

BIOLOGY

Integrative Network Analysis of Host Response

S1 Dataset. Plots showing MTG-LASSO predictive quality of each module vs. lambda, mea-
sured by Pearson correlation. One plot per module, both species.
(GZ)

Acknowledgments

We thank Dylan Pozorski for constructing the supporting website, Michael Ferris for sharing
computational resources for ILP modeling and solving, and Center for High-Throughput
Computing for computational resources for bootstrap and stability selection analysis.

Author Contributions

Conceived and designed the experiments: SR AJE YK DC. Performed the experiments: SR DC
KBW. Analyzed the data: SR DC TJSL AJE KBW. Contributed reagents/materials/analysis
tools: YK AJE KBW TJSL. Wrote the paper: DC KBW TJSL AJE YK SR.

References

1. Tchitchek N, Eisfeld AJ, Tisoncik-Go J, Josset L, Gralinski LE, Bécavin C, et al. Specific mutations in
H5N1 mainly impact the magnitude and velocity of the host response in mice. BMC Syst Biol. 2013; 7:
69. doi: 10.1186/1752-0509-7-69 PMID: 23895213

2. Shapira SD, Hacohen N. Systems biology approaches to dissect mammalian innate immunity. Curr
Opin Immunol. 2011; 23: 71-77. doi: 10.1016/j.c0i.2010.10.022 PMID: 21111589

3. LiC, Bankhead A, Eisfeld AJ, Hatta Y, Jeng S, Chang JH, et al. Host regulatory network response to
infection with highly pathogenic H5N1 avian influenza virus. J Virol. 2011; 85: 10955-10967. doi: 10.
1128/JVI1.05792-11 PMID: 21865398

4. Aevermann BD, Pickett BE, Kumar S, Klem EB, Agnihothram S, Askovich PS, et al. A comprehensive
collection of systems biology data characterizing the host response to viral infection. Scientific Data.
Nature Publishing Group; 2014; 1: 140033. doi: 10.1038/sdata.2014.33 PMID: 25977790

5. Amitl, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, et al. Unbiased reconstruction of a
mammalian transcriptional network mediating pathogen responses. Science. 2009; 326: 257-263.
doi: 10.1126/science.1179050 PMID: 19729616

6. Kidd BA, Peters LA, Schadt EE, Dudley JT. Unifying immunology with informatics and multiscale biol-
ogy. Nat Immunol. Nature Publishing Group; 2014; 15: 118-127. doi: 10.1038/ni.2787 PMID:
24448569

7. Gibbs DL, Baratt A, Baric RS, Kawaoka Y, Smith RD, Orwoll ES, et al. Protein co-expression network
analysis (ProCoNA). J Clin Bioinforma. 2013; 3: 11. doi: 10.1186/2043-9113-3-11 PMID: 23724967

8. Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, Webb-Robertson B-JM, et al. A net-
work integration approach to predict conserved regulators related to pathogenicity of influenza and
SARS-CoV respiratory viruses. Pekosz A, editor. PLoS One. 2013; 8: 69374. doi: 10.1371/journal.
pone.0069374 PMID: 23935999

9. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bio-
informatics 2008 9:1. BioMed Central; 2008;9: 1.

10. Shoemaker JE, Fukuyama S, Eisfeld AJ, Muramoto Y, Watanabe S, Watanabe T, et al. Integrated
network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced
inflammation in macaque lungs. BMC Syst Biol. 2012; 6: 117. doi: 10.1186/1752-0509-6-117 PMID:
22937776

11. Maier EJ, Haynes BC, Gish SR, Wang ZA, Skowyra ML, Marulli AL, et al. Model-driven mapping of
transcriptional networks reveals the circuitry and dynamics of virulence regulation. Genome Res.
2015; 25: 690-700. doi: 10.1101/gr.184101.114 PMID: 25644834

12. Shoemaker JE, Fukuyama S, Eisfeld AJ, Zhao D, Kawakami E, Sakabe S, et al. An Ultrasensitive
Mechanism Regulates Influenza Virus-Induced Inflammation. Whelan S, editor. PLOS Pathogens.
Public Library of Science; 2015; 11: €1004856. doi: 10.1371/journal.ppat.1004856 PMID: 26046528

13. Segal E, Pe'er D, Regev A, Koller D, Friedman N. Learning Module Networks. JMLR. 2005; 6: 557—
588.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 37/42


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005013.s024
http://dx.doi.org/10.1186/1752-0509-7-69
http://www.ncbi.nlm.nih.gov/pubmed/23895213
http://dx.doi.org/10.1016/j.coi.2010.10.022
http://www.ncbi.nlm.nih.gov/pubmed/21111589
http://dx.doi.org/10.1128/JVI.05792-11
http://dx.doi.org/10.1128/JVI.05792-11
http://www.ncbi.nlm.nih.gov/pubmed/21865398
http://dx.doi.org/10.1038/sdata.2014.33
http://www.ncbi.nlm.nih.gov/pubmed/25977790
http://dx.doi.org/10.1126/science.1179050
http://www.ncbi.nlm.nih.gov/pubmed/19729616
http://dx.doi.org/10.1038/ni.2787
http://www.ncbi.nlm.nih.gov/pubmed/24448569
http://dx.doi.org/10.1186/2043-9113-3-11
http://www.ncbi.nlm.nih.gov/pubmed/23724967
http://dx.doi.org/10.1371/journal.pone.0069374
http://dx.doi.org/10.1371/journal.pone.0069374
http://www.ncbi.nlm.nih.gov/pubmed/23935999
http://dx.doi.org/10.1186/1752-0509-6-117
http://www.ncbi.nlm.nih.gov/pubmed/22937776
http://dx.doi.org/10.1101/gr.184101.114
http://www.ncbi.nlm.nih.gov/pubmed/25644834
http://dx.doi.org/10.1371/journal.ppat.1004856
http://www.ncbi.nlm.nih.gov/pubmed/26046528

B PLOS | Suryanonat

Integrative Network Analysis of Host Response

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

Shapira SD, Gat-Viks |, Shum BOV, Dricot A, de Grace MM, Wu L, et al. A physical and regulatory
map of host-influenza interactions reveals pathways in HIN1 infection. Cell. 2009; 139: 1255-1267.
doi: 10.1016/j.cell.2009.12.018 PMID: 20064372

Gitter A, Bar-Joseph Z. Identifying proteins controlling key disease signaling pathways. Bioinformat-
ics. 2013; 29: i227-36. doi: 10.1093/bioinformatics/btt241 PMID: 23812988

Mazza A, Gat-Viks |, Sharan R. Elucidating influenza inhibition pathways via network reconstruction.
J Comput Biol. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA;
2014; 21: 394-404. doi: 10.1089/cmb.2013.0147 PMID: 24450433

Mazza A, Gat-Viks |, Farhan H, Sharan R. A minimum-labeling approach for reconstructing protein
networks across multiple conditions. Algorithms for Molecular Biology 2014 9:1. BioMed Central;
2014;9: 1. doi: 10.1186/1748-7188-9-1 PMID: 24507724

Gitter A, Carmi M, Barkai N, Bar-Joseph Z. Linking the signaling cascades and dynamic regulatory
networks controlling stress responses. Genome Res. Cold Spring Harbor Lab; 2013; 23: 365-376.
doi: 10.1101/gr.138628.112 PMID: 23064748

Jain S, Gitter A, Bar-Joseph Z. Multitask learning of signaling and regulatory networks with application
to studying human response to flu. Singh M, editor. PLoS Computational Biology. Public Library of
Science; 2014; 10: e1003943. doi: 10.1371/journal.pcbi.1003943 PMID: 25522349

Novershtern N, Regev A, Friedman N. Physical Module Networks: an integrative approach for recon-
structing transcription regulation. Bioinformatics. 2011; 27:i177-85. doi: 10.1093/bioinformatics/
btr222 PMID: 21685068

Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, et al. Dynamic regulatory network con-
trolling TH17 cell differentiation. Nature. 2013; 496: 461—468. doi: 10.1038/nature11981 PMID:
23467089

Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, Gasch AP. Integrated module and gene-specific
regulatory inference implicates upstream signaling networks. Przytycka TM, editor. PLoS Computa-
tional Biology. Public Library of Science; 2013; 9: e1003252. doi: 10.1371/journal.pcbi.1003252
PMID: 24146602

Huynh-Thu VA, Irthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data
using tree-based methods. Isalan M, editor. PLoS One. Public Library of Science; 2010; 5: e12776.
doi: 10.1371/journal.pone.0012776 PMID: 20927193

Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al. The Inferelator: an algorithm
for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol.
2006; 7: R36. PMID: 16686963

Cusanovich DA, Pavlovic B, Pritchard JK, Gilad Y. The functional consequences of variation in tran-
scription factor binding. PLoS Genet. 2014; 10: e1004226. doi: 10.1371/journal.pgen.1004226 PMID:
24603674

Hurley D, Araki H, Tamada Y, Dunmore B, Sanders D, Humphreys S, et al. Gene network inference
and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids
Res. 2012; 40: 2377-2398. doi: 10.1093/nar/gkr902 PMID: 22121215

Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway,
recent advances and future challenges. Gene. 2002; 285: 1-24. PMID: 12039028

Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. Nature Publishing
Group; 2014; 14: 315-328. doi: 10.1038/nri3665 PMID: 24762827

Lee JW, Choi HS, Gyuris J, Brent R, Moore DD. Two classes of proteins dependent on either the pres-
ence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol.
1995; 9: 243-254. PMID: 7776974

Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 2006; 68: 49-67.

Obozinski G, Taskar B, Jordan M. Multi-task feature selection. 2006.

Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal
Statistical Society: Series B (Statistical Methodology). Blackwell Publishing Ltd; 2011; 73: 273-282.

Haury A-C, Mordelet F, Vera-Licona P, Vert J-P. TIGRESS: Trustful Inference of Gene REgulation
using Stability Selection. BMC Syst Biol. 2012; 6: 145. doi: 10.1186/1752-0509-6-145 PMID:
23173819

Dubois J, Terrier O, Rosa-Calatrava M. Influenza viruses and mRNA splicing: doing more with less.
MBio. 2014; 5: e€00070-14. doi: 10.1128/mBi0.00070-14 PMID: 24825008

Skaug B, Chen ZJ. Emerging role of ISG15 in antiviral immunity. Cell. 2010; 143: 187-190. doi: 10.
1016/j.cell.2010.09.033 PMID: 20946978

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 38/42


http://dx.doi.org/10.1016/j.cell.2009.12.018
http://www.ncbi.nlm.nih.gov/pubmed/20064372
http://dx.doi.org/10.1093/bioinformatics/btt241
http://www.ncbi.nlm.nih.gov/pubmed/23812988
http://dx.doi.org/10.1089/cmb.2013.0147
http://www.ncbi.nlm.nih.gov/pubmed/24450433
http://dx.doi.org/10.1186/1748-7188-9-1
http://www.ncbi.nlm.nih.gov/pubmed/24507724
http://dx.doi.org/10.1101/gr.138628.112
http://www.ncbi.nlm.nih.gov/pubmed/23064748
http://dx.doi.org/10.1371/journal.pcbi.1003943
http://www.ncbi.nlm.nih.gov/pubmed/25522349
http://dx.doi.org/10.1093/bioinformatics/btr222
http://dx.doi.org/10.1093/bioinformatics/btr222
http://www.ncbi.nlm.nih.gov/pubmed/21685068
http://dx.doi.org/10.1038/nature11981
http://www.ncbi.nlm.nih.gov/pubmed/23467089
http://dx.doi.org/10.1371/journal.pcbi.1003252
http://www.ncbi.nlm.nih.gov/pubmed/24146602
http://dx.doi.org/10.1371/journal.pone.0012776
http://www.ncbi.nlm.nih.gov/pubmed/20927193
http://www.ncbi.nlm.nih.gov/pubmed/16686963
http://dx.doi.org/10.1371/journal.pgen.1004226
http://www.ncbi.nlm.nih.gov/pubmed/24603674
http://dx.doi.org/10.1093/nar/gkr902
http://www.ncbi.nlm.nih.gov/pubmed/22121215
http://www.ncbi.nlm.nih.gov/pubmed/12039028
http://dx.doi.org/10.1038/nri3665
http://www.ncbi.nlm.nih.gov/pubmed/24762827
http://www.ncbi.nlm.nih.gov/pubmed/7776974
http://dx.doi.org/10.1186/1752-0509-6-145
http://www.ncbi.nlm.nih.gov/pubmed/23173819
http://dx.doi.org/10.1128/mBio.00070-14
http://www.ncbi.nlm.nih.gov/pubmed/24825008
http://dx.doi.org/10.1016/j.cell.2010.09.033
http://dx.doi.org/10.1016/j.cell.2010.09.033
http://www.ncbi.nlm.nih.gov/pubmed/20946978

B PLOS | Suryanonat

Integrative Network Analysis of Host Response

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Karlas A, Machuy N, Shin Y, Pleissner K-P, Artarini A, Heuer D, et al. Genome-wide RNAi screen
identifies human host factors crucial for influenza virus replication. Nature. 2010; 463: 818-822. doi:
10.1038/nature08760 PMID: 20081832

Sarfati M, Fortin G, Raymond M, Susin S. CD47 in the immune response: role of thrombospondin and
SIRP-alpha reverse signaling. Curr Drug Targets. 2008; 9: 842—-850. PMID: 18855618

Whitney JB, Asmal M, Geiben-Lynn R. Serpin induced antiviral activity of prostaglandin synthetase-2
against HIV-1 replication. Geijtenbeek TBH, editor. PLoS One. Public Library of Science; 2011; 6:
€18589. doi: 10.1371/journal.pone.0018589 PMID: 21533265

Feistritzer C, Wiedermann CJ. Effects of anticoagulant strategies on activation of inflammation and
coagulation. Expert Opin Biol Ther. 2007; 7: 855-870. PMID: 17555371

Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the
innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. BioMed
Central; 2003; 7: 23-38. PMID: 12617738

Dittmann M, Hoffmann H-H, Scull MA, Gilmore RH, Bell KL, Ciancanelli M, et al. A serpin shapes the
extracellular environment to prevent influenza A virus maturation. Cell. 2015; 160: 631-643. doi: 10.
1016/j.cell.2015.01.040 PMID: 25679759

Zhang H, Ma Q, Zhang Y-W, Xu H. Proteolytic processing of Alzheimer's 3-amyloid precursor protein.
Journal of Neurochemistry. Blackwell Publishing Ltd; 2012; 120 Suppl 1: 9-21. doi: 10.1111/j.1471-
4159.2011.07519.x PMID: 22122372

White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, et al. Alzheimer's associated {3-
amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. Palaniyar
N, editor. PLoS One. 2014; 9: e101364. doi: 10.1371/journal.pone.0101364 PMID: 24988208

Forero A, Tisoncik-Go J, Watanabe T, Zhong G, Hatta M, Tchitchek N, et al. The 1918 Influenza Virus
PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling
in Mice. Williams B, editor. J Virol. American Society for Microbiology; 2015; 90: 2240-2253. doi: 10.
1128/JV1.02974-15 PMID: 26656717

Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LAJ. Circadian clock proteins and immunity. Immu-
nity. 2014; 40: 178-186. doi: 10.1016/j.immuni.2014.02.002 PMID: 24560196

Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y, Tomita Y, et al. Influenza virus-
host interactome screen as a platform for antiviral drug development. Cell Host Microbe. 2014; 16:
795-805. doi: 10.1016/j.chom.2014.11.002 PMID: 25464832

Chasman D, Ho Y-H, Berry DB, Nemec CM, MacGilvray ME, Hose J, et al. Pathway connectivity and
signaling coordination in the yeast stress-activated signaling network. Mol Syst Biol. 2014; 10: 759—
759. doi: 10.15252/msb.20145120 PMID: 25411400

Yosef N, Ungar L, Zalckvar E, Kimchi A, Kupiec M, Ruppin E, et al. Toward accurate reconstruction of
functional protein networks. Mol Syst Biol. EMBO Press; 2009; 5: 248. doi: 10.1038/msb.2009.3
PMID: 19293828

Huang S-SC, Fraenkel E. Integrating proteomic, transcriptional, and interactome data reveals hidden
components of signaling and regulatory networks. Sci Signal. 2009; 2: ra40-ra40. doi: 10.1126/
scisignal.2000350 PMID: 19638617

Krug RM. Functions of the influenza A virus NS1 protein in antiviral defense. Curr Opin Virol. 2015;
12:1-6. doi: 10.1016/j.coviro.2015.01.007 PMID: 25638592

Hirayama E, Atagi H, Hiraki A, Kim J. Heat Shock Protein 70 Is Related to Thermal Inhibition of
Nuclear Export of the Influenza Virus Ribonucleoprotein Complex. J Virol. American Society for Micro-
biology; 2004; 78: 1263—1270. PMID: 14722281

Manzoor R, Kuroda K, Yoshida R, Tsuda Y, Fujikura D, Miyamoto H, et al. Heat shock protein 70 mod-
ulates influenza A virus polymerase activity. J Biol Chem. American Society for Biochemistry and
Molecular Biology; 2014; 289: 7599-7614. doi: 10.1074/jbc.M113.507798 PMID: 24474693

Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. Nature
Publishing Group; 2003; 3: 900-911. PMID: 14668806

Pallero MA, Elzie CA, Chen J, Mosher DF, Murphy-Ullrich JE. Thrombospondin 1 binding to calreticu-
lin-LRP1 signals resistance to anoikis. FASEB J. Federation of American Societies for Experimental
Biology; 2008; 22: 3968—-3979. doi: 10.1096/f].07-104802 PMID: 18653767

Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat
Immunol. 2015; 16: 689-697. doi: 10.1038/ni.3206 PMID: 26086143

Koyuncu E, Budayeva HG, Miteva YV, Ricci DP, Silhavy TJ, Shenk T, et al. Sirtuins are evolutionarily
conserved viral restriction factors. MBio. American Society for Microbiology; 2014; 5: €02249—-14—14.
doi: 10.1128/mBi0.02249-14 PMID: 25516616

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 39/42


http://dx.doi.org/10.1038/nature08760
http://www.ncbi.nlm.nih.gov/pubmed/20081832
http://www.ncbi.nlm.nih.gov/pubmed/18855618
http://dx.doi.org/10.1371/journal.pone.0018589
http://www.ncbi.nlm.nih.gov/pubmed/21533265
http://www.ncbi.nlm.nih.gov/pubmed/17555371
http://www.ncbi.nlm.nih.gov/pubmed/12617738
http://dx.doi.org/10.1016/j.cell.2015.01.040
http://dx.doi.org/10.1016/j.cell.2015.01.040
http://www.ncbi.nlm.nih.gov/pubmed/25679759
http://dx.doi.org/10.1111/j.1471-4159.2011.07519.x
http://dx.doi.org/10.1111/j.1471-4159.2011.07519.x
http://www.ncbi.nlm.nih.gov/pubmed/22122372
http://dx.doi.org/10.1371/journal.pone.0101364
http://www.ncbi.nlm.nih.gov/pubmed/24988208
http://dx.doi.org/10.1128/JVI.02974-15
http://dx.doi.org/10.1128/JVI.02974-15
http://www.ncbi.nlm.nih.gov/pubmed/26656717
http://dx.doi.org/10.1016/j.immuni.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24560196
http://dx.doi.org/10.1016/j.chom.2014.11.002
http://www.ncbi.nlm.nih.gov/pubmed/25464832
http://dx.doi.org/10.15252/msb.20145120
http://www.ncbi.nlm.nih.gov/pubmed/25411400
http://dx.doi.org/10.1038/msb.2009.3
http://www.ncbi.nlm.nih.gov/pubmed/19293828
http://dx.doi.org/10.1126/scisignal.2000350
http://dx.doi.org/10.1126/scisignal.2000350
http://www.ncbi.nlm.nih.gov/pubmed/19638617
http://dx.doi.org/10.1016/j.coviro.2015.01.007
http://www.ncbi.nlm.nih.gov/pubmed/25638592
http://www.ncbi.nlm.nih.gov/pubmed/14722281
http://dx.doi.org/10.1074/jbc.M113.507798
http://www.ncbi.nlm.nih.gov/pubmed/24474693
http://www.ncbi.nlm.nih.gov/pubmed/14668806
http://dx.doi.org/10.1096/fj.07-104802
http://www.ncbi.nlm.nih.gov/pubmed/18653767
http://dx.doi.org/10.1038/ni.3206
http://www.ncbi.nlm.nih.gov/pubmed/26086143
http://dx.doi.org/10.1128/mBio.02249-14
http://www.ncbi.nlm.nih.gov/pubmed/25516616

B PLOS | Suryanonat

Integrative Network Analysis of Host Response

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Consortium UniProt. UniProt: a hub for protein information. Nucleic Acids Res. Oxford University
Press; 2015; 43: D204-12. doi: 10.1093/nar/gku989 PMID: 25348405

Bean C, Facchinello N, Faulkner G, Lanfranchi G. The effects of Ankrd2 alteration indicate its involve-
ment in cell cycle regulation during muscle differentiation. Biochim Biophys Acta. 2008; 1783: 1023—
1035. doi: 10.1016/j.bbamcr.2008.01.027 PMID: 18302940

Bridle BW, Chen L, Lemay CG, Diallo J-S, Pol J, Nguyen A, et al. HDAC Inhibition Suppresses Pri-
mary Immune Responses, Enhances Secondary Immune Responses, and Abrogates Autoimmunity
During Tumor Immunotherapy. Molecular Therapy. Nature Publishing Group; 2013; 21: 887—-894. doi:
10.1038/mt.2012.265 PMID: 23295947

Chang H-M, Paulson M, Holko M, Rice CM, Williams BRG, Marié |, et al. Induction of interferon-stimu-
lated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci
U S A. National Acad Sciences; 2004; 101: 9578-9583. PMID: 15210966

Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol. 2011;
21:122-131. doi: 10.1016/j.tcb.2010.10.003 PMID: 21067929

Johnsen IB, Nguyen TT, Bergstroem B, Fitzgerald KA, Anthonsen MW. The tyrosine kinase c-Src
enhances RIG-| (retinoic acid-inducible gene I)-elicited antiviral signaling. J Biol Chem. American
Society for Biochemistry and Molecular Biology; 2009; 284: 19122—19131. doi: 10.1074/jbc.
M808233200 PMID: 19419966

Moreau Y, Tranchevent L-C. Computational tools for prioritizing candidate genes: boosting disease
gene discovery. Nat Rev Genet. Nature Publishing Group; 2012; 13: 523-536. doi: 10.1038/nrg3253
PMID: 22751426

Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, et al. Densely
interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011; 144:
296-309. doi: 10.1016/j.cell.2011.01.004 PMID: 21241896

Koénig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, et al. Human host factors
required for influenza virus replication. Nature. 2010; 463: 813-817. doi: 10.1038/nature08699 PMID:
20027183

Brass AL, Huang I-C, Benita Y, John SP, Krishnan MN, Feeley EM, et al. The IFITM proteins mediate
cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell. 2009; 139:
1243-1254. doi: 10.1016/j.cell.2009.12.017 PMID: 20064371

Seki M, Kohno S, Newstead MW, Zeng X, Bhan U, Lukacs NW, et al. Critical role of IL-1 receptor-
associated kinase-M in regulating chemokine-dependent deleterious inflammation in murine influenza
pneumonia. J Immunol. American Association of Immunologists; 2010; 184: 1410-1418. doi: 10.
4049/jimmunol.0901709 PMID: 20042589

Willems P, Wanschers BFJ, Esseling J, Szklarczyk R, Kudla U, Duarte |, et al. BOLA1 is an aerobic
protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid
Redox Signal. 2013; 18: 129-138. doi: 10.1089/ars.2011.4253 PMID: 22746225

Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antivi-
ral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005; 122: 669-682. PMID: 16125763

Yoshizumi T, Ichinohe T, Sasaki O, Otera H, Kawabata S-I, Mihara K, et al. Influenza A virus protein
PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nature
Communications. Nature Publishing Group; 2014; 5: 4713. doi: 10.1038/ncomms5713 PMID:
25140902

Kitamura D, Kaneko H, Miyagoe Y, Ariyasu T, Watanabe T. Isolation and characterization of a novel
human gene expressed specifically in the cells of hematopoietic lineage. Nucleic Acids Research.
Oxford University Press; 1989; 17: 9367-9379. PMID: 2587259

Gomez TS, McCarney SD, Carrizosa E, Labno CM, Comiskey EO, Nolz JC, et al. HS1 functions as
an essential actin-regulatory adaptor protein at the immune synapse. Immunity. 2006; 24: 741-752.
PMID: 16782030

Yamanashi Y, Okada M, Semba T, Yamori T, Umemori H, Tsunasawa S, et al. Identification of HS1
protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated sig-
naling. Proc Natl Acad Sci U S A. National Academy of Sciences; 1993; 90: 3631-3635. PMID:
7682714

Gwin K, Frank E, Bossou A, Medina KL. Hoxa9 regulates Fit3 in lymphohematopoietic progenitors. J
Immunol. American Association of Immunologists; 2010; 185: 6572—6583. doi: 10.4049/jimmunol.
0904203 PMID: 20971928

Naora H, Montz FJ, Chai CY, Roden RB. Aberrant expression of homeobox gene HOXA7 is associ-
ated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific
autologous antibody response. Proc Natl Acad Sci U S A. National Acad Sciences; 2001; 98: 15209—
15214. PMID: 11742062

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 40/42


http://dx.doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pubmed/25348405
http://dx.doi.org/10.1016/j.bbamcr.2008.01.027
http://www.ncbi.nlm.nih.gov/pubmed/18302940
http://dx.doi.org/10.1038/mt.2012.265
http://www.ncbi.nlm.nih.gov/pubmed/23295947
http://www.ncbi.nlm.nih.gov/pubmed/15210966
http://dx.doi.org/10.1016/j.tcb.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21067929
http://dx.doi.org/10.1074/jbc.M808233200
http://dx.doi.org/10.1074/jbc.M808233200
http://www.ncbi.nlm.nih.gov/pubmed/19419966
http://dx.doi.org/10.1038/nrg3253
http://www.ncbi.nlm.nih.gov/pubmed/22751426
http://dx.doi.org/10.1016/j.cell.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21241896
http://dx.doi.org/10.1038/nature08699
http://www.ncbi.nlm.nih.gov/pubmed/20027183
http://dx.doi.org/10.1016/j.cell.2009.12.017
http://www.ncbi.nlm.nih.gov/pubmed/20064371
http://dx.doi.org/10.4049/jimmunol.0901709
http://dx.doi.org/10.4049/jimmunol.0901709
http://www.ncbi.nlm.nih.gov/pubmed/20042589
http://dx.doi.org/10.1089/ars.2011.4253
http://www.ncbi.nlm.nih.gov/pubmed/22746225
http://www.ncbi.nlm.nih.gov/pubmed/16125763
http://dx.doi.org/10.1038/ncomms5713
http://www.ncbi.nlm.nih.gov/pubmed/25140902
http://www.ncbi.nlm.nih.gov/pubmed/2587259
http://www.ncbi.nlm.nih.gov/pubmed/16782030
http://www.ncbi.nlm.nih.gov/pubmed/7682714
http://dx.doi.org/10.4049/jimmunol.0904203
http://dx.doi.org/10.4049/jimmunol.0904203
http://www.ncbi.nlm.nih.gov/pubmed/20971928
http://www.ncbi.nlm.nih.gov/pubmed/11742062

B PLOS | Suryanonat

Integrative Network Analysis of Host Response

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T. Fibroblast growth factor receptor is required
for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl
Acad Sci U S A. National Academy of Sciences; 1995; 92: 467—471. PMID: 7831312

Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast
growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005; 16: 159—-178.
PMID: 15863032

Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer.
Nature Publishing Group; 2010; 10: 116—129. doi: 10.1038/nrc2780 PMID: 20094046

Liu X, Lai C, Wang K, Xing L, Yang P, Duan Q, et al. A Functional Role of Fibroblast Growth Factor
Receptor 1 (FGFR1) in the Suppression of Influenza A Virus Replication. Tripp R, editor. PLoS One.
Public Library of Science; 2015; 10: e0124651. doi: 10.1371/journal.pone.0124651 PMID: 25909503

Amit |, Regev A, Hacohen N. Strategies to discover regulatory circuits of the mammalian immune sys-
tem. Nat Rev Immunol. 2011; 11: 873-880. doi: 10.1038/nri3109 PMID: 22094988

Osmanbeyoglu HU, Pelossof R, Bromberg JF, Leslie CS. Linking signaling pathways to transcrip-
tional programs in breast cancer. Genome Res. 2014; 24: 1869—1880. doi: 10.1101/gr.173039.114
PMID: 25183703

Webb-Robertson B-JM, Wiberg HK, Matzke MM, Brown JN, Wang J, McDermott JE, et al. Review,
evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-
based label-free global proteomics. J Proteome Res. 2015; 14: 1993-2001. doi: 10.1021/pr501138h
PMID: 25855118

Pai AA, Baharian G, Sabourin AP, Nedelec Y, Grenier J-C, Siddle KJ, et al. Widespread shortening of
3' untranslated regions and increased exon inclusion characterize the human macrophage response
to infection. bioRxiv. Cold Spring Harbor Labs Journals; 2015;: 026831.

Menachery VD, Eisfeld AJ, Schéfer A, Josset L, Sims AC, Proll S, et al. Pathogenic influenza viruses
and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene
responses. MBio. 2014; 5: e01174—14. doi: 10.1128/mBio.01174-14 PMID: 24846384

McDermott JE, Shankaran H. Conserved host response to highly pathogenic avian influenza virus
infection in human cell culture, mouse and macaque model systems. BMC Systems Biology. 2011; 5:
190. doi: 10.1186/1752-0509-5-190 PMID: 22074594

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding mul-
ticellular function and disease with human tissue-specific networks. Nat Genet. 2015; 47: 569-576.
doi: 10.1038/ng.3259 PMID: 25915600

Pierson E, Koller D, Battle A, Mostafavi S, Ardlie KG, Getz G, et al. Sharing and Specificity of Co-
expression Networks across 35 Human Tissues. PLoS Comput Biol. 2015; 11: €1004220. doi: 10.
1371/journal.pcbi.1004220 PMID: 25970446

Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K| et al. An atlas of combinatorial
transcriptional regulation in mouse and man. Cell. 2010; 140: 744—752. doi: 10.1016/j.cell.2010.01.
044 PMID: 20211142

Webb-Robertson B-JM, McCue LA, Waters KM, Matzke MM, Jacobs JM, Metz TO, et al. Combined
statistical analyses of peptide intensities and peptide occurrences improves identification of significant
peptides from MS-based proteomics data. J Proteome Res. American Chemical Society; 2010; 9:
5748-5756. doi: 10.1021/pr1005247 PMID: 20831241

Knaack SA, Siahpirani AF, Roy S. A pan-cancer modular regulatory network analysis to identify com-
mon and cancer-specific network components. Cancer Informatics. Libertas Academica; 2014; 13:
69-84. doi: 10.4137/CIN.S14058 PMID: 25374456

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the
unification of biology. Nature Genetics. 2000; 25: 25—-29. PMID: 10802651

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdéttir H, Tamayo P, Mesirov JP. Molecular signa-
tures database (MSigDB) 3.0. Bioinformatics. 2011; 27: 1739—1740. doi: 10.1093/bicinformatics/
btr260 PMID: 21546393

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrich-
ment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc
Natl Acad Sci U S A. National Acad Sciences; 2005; 102: 15545—-15550. PMID: 16199517

Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K| et al. Systematic discovery of regula-
tory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature. Nature Pub-
lishing Group; 2005; 434: 338—345. PMID: 15735639

Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, et al. JASPAR 2014: an
extensively expanded and updated open-access database of transcription factor binding profiles.
Nucleic Acids Res. 2014; 42: D142—-7. doi: 10.1093/nar/gkt997 PMID: 24194598

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 41/42


http://www.ncbi.nlm.nih.gov/pubmed/7831312
http://www.ncbi.nlm.nih.gov/pubmed/15863032
http://dx.doi.org/10.1038/nrc2780
http://www.ncbi.nlm.nih.gov/pubmed/20094046
http://dx.doi.org/10.1371/journal.pone.0124651
http://www.ncbi.nlm.nih.gov/pubmed/25909503
http://dx.doi.org/10.1038/nri3109
http://www.ncbi.nlm.nih.gov/pubmed/22094988
http://dx.doi.org/10.1101/gr.173039.114
http://www.ncbi.nlm.nih.gov/pubmed/25183703
http://dx.doi.org/10.1021/pr501138h
http://www.ncbi.nlm.nih.gov/pubmed/25855118
http://dx.doi.org/10.1128/mBio.01174-14
http://www.ncbi.nlm.nih.gov/pubmed/24846384
http://dx.doi.org/10.1186/1752-0509-5-190
http://www.ncbi.nlm.nih.gov/pubmed/22074594
http://dx.doi.org/10.1038/ng.3259
http://www.ncbi.nlm.nih.gov/pubmed/25915600
http://dx.doi.org/10.1371/journal.pcbi.1004220
http://dx.doi.org/10.1371/journal.pcbi.1004220
http://www.ncbi.nlm.nih.gov/pubmed/25970446
http://dx.doi.org/10.1016/j.cell.2010.01.044
http://dx.doi.org/10.1016/j.cell.2010.01.044
http://www.ncbi.nlm.nih.gov/pubmed/20211142
http://dx.doi.org/10.1021/pr1005247
http://www.ncbi.nlm.nih.gov/pubmed/20831241
http://dx.doi.org/10.4137/CIN.S14058
http://www.ncbi.nlm.nih.gov/pubmed/25374456
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/bioinformatics/btr260
http://dx.doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/pubmed/21546393
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://www.ncbi.nlm.nih.gov/pubmed/15735639
http://dx.doi.org/10.1093/nar/gkt997
http://www.ncbi.nlm.nih.gov/pubmed/24194598

B PLOS | Suryanonat

Integrative Network Analysis of Host Response

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112,

Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics.
2011;27: 1017-1018. doi: 10.1093/bioinformatics/btr064 PMID: 21330290

Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions,
pathways and biological processes. Nucleic Acids Research. Oxford University Press; 2010; 39:
gkq1018-D697. doi: 10.1093/nar/gkq1018 PMID: 21067998

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge
and principle: back to metabolism in KEGG. Nucleic Acids Res. Oxford University Press; 2014; 42:
D199-205. doi: 10.1093/nar/gkt1076 PMID: 24214961

Zhang L, Katz JM, Gwinn M, Dowling NF, Khoury MJ. Systems-based candidate genes for human
response to influenza infection. Infect Genet Evol. 2009; 9: 1148—1157. doi: 10.1016/j.meegid.2009.
07.006 PMID: 19647099

Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, et al. Drosophila RNAi screen
identifies host genes important for influenza virus replication. Nature. 2008; 454: 890—-893. doi: 10.
1038/nature07151 PMID: 18615016

Sui B, Bamba D, Weng K, Ung H, Chang S, Van Dyke J, et al. The use of Random Homozygous
Gene Perturbation to identify novel host-oriented targets for influenza. Virology. 2009; 387: 473-481.
doi: 10.1016/j.virol.2009.02.046 PMID: 19327807

de Chassey B, Aublin-Gex A, Ruggieri A, Meyniel-Schicklin L, Pradezynski F, Davoust N, et al. The
Interactomes of Influenza Virus NS1 and NS2 Proteins Identify New Host Factors and Provide
Insights for ADAR1 Playing a Supportive Role in Virus Replication. Chanda SK, editor. PLOS Patho-
gens. Public Library of Science; 2013; 9: €1003440. doi: 10.1371/journal.ppat.1003440 PMID:
23853584

Tafforeau L, Chantier T, Pradezynski F, Pellet J, Mangeot PE, Vidalain P-O, et al. Generation and
comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol. Ameri-
can Society for Microbiology; 2011; 85: 13010-13018. doi: 10.1128/JVI.02651-10 PMID: 21994455

Jura J, Wegrzyn P, Korostynski M, Guzik K, Oczko-Wojciechowska M, Jarzab M, et al. Identification
of interleukin-1 and interleukin-6-responsive genes in human monocyte-derived macrophages using
microarrays. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms. 2008; 1779:
383-389.

Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. InnateDB: systems biology of
innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. Oxford Uni-
versity Press; 2013; 41: D1228-33. doi: 10.1093/nar/gks1147 PMID: 23180781

Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database Group. The Mouse
Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic
Acids Res. 2015; 43: D726-36. doi: 10.1093/nar/gku967 PMID: 25348401

Sheskin DJ. Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/
CRC; 2003.

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-
protein interaction networks, with increased coverage and integration. Nucleic Acids Res. Oxford Uni-
versity Press; 2013; 41: D808—15. doi: 10.1093/nar/gks1094 PMID: 23203871

Schaefer MH, Fontaine J-F, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. HIPPIE:
Integrating protein interaction networks with experiment based quality scores. Deane CM, editor.
PLoS One. Public Library of Science; 2012; 7: €31826. doi: 10.1371/journal.pone.0031826 PMID:
22348130

Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The BioGRID
interaction database: 2015 update. Nucleic Acids Res. Oxford University Press; 2015; 43:D470-8.
doi: 10.1093/nar/gku1204 PMID: 25428363

Newman RH, Hu J, Rho H-S, Xie Z, Woodard C, Neiswinger J, et al. Construction of human activity-
based phosphorylation networks. Mol Syst Biol. EMBO Press; 2013; 9: 655—655. doi: 10.1038/msb.
2013.12 PMID: 23549483

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-
ment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498—
2504. PMID: 14597658

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005013  July 12,2016 42/42


http://dx.doi.org/10.1093/bioinformatics/btr064
http://www.ncbi.nlm.nih.gov/pubmed/21330290
http://dx.doi.org/10.1093/nar/gkq1018
http://www.ncbi.nlm.nih.gov/pubmed/21067998
http://dx.doi.org/10.1093/nar/gkt1076
http://www.ncbi.nlm.nih.gov/pubmed/24214961
http://dx.doi.org/10.1016/j.meegid.2009.07.006
http://dx.doi.org/10.1016/j.meegid.2009.07.006
http://www.ncbi.nlm.nih.gov/pubmed/19647099
http://dx.doi.org/10.1038/nature07151
http://dx.doi.org/10.1038/nature07151
http://www.ncbi.nlm.nih.gov/pubmed/18615016
http://dx.doi.org/10.1016/j.virol.2009.02.046
http://www.ncbi.nlm.nih.gov/pubmed/19327807
http://dx.doi.org/10.1371/journal.ppat.1003440
http://www.ncbi.nlm.nih.gov/pubmed/23853584
http://dx.doi.org/10.1128/JVI.02651-10
http://www.ncbi.nlm.nih.gov/pubmed/21994455
http://dx.doi.org/10.1093/nar/gks1147
http://www.ncbi.nlm.nih.gov/pubmed/23180781
http://dx.doi.org/10.1093/nar/gku967
http://www.ncbi.nlm.nih.gov/pubmed/25348401
http://dx.doi.org/10.1093/nar/gks1094
http://www.ncbi.nlm.nih.gov/pubmed/23203871
http://dx.doi.org/10.1371/journal.pone.0031826
http://www.ncbi.nlm.nih.gov/pubmed/22348130
http://dx.doi.org/10.1093/nar/gku1204
http://www.ncbi.nlm.nih.gov/pubmed/25428363
http://dx.doi.org/10.1038/msb.2013.12
http://dx.doi.org/10.1038/msb.2013.12
http://www.ncbi.nlm.nih.gov/pubmed/23549483
http://www.ncbi.nlm.nih.gov/pubmed/14597658

