
Genetics as a Molecular Window into Recovery, its Treatment, 
and Stress Responses After Stroke

Vanessa Juth, PhD, MPH, E. Alison Holman, PhD, FNP, Michelle K. Chan, RN, and Steven C. 
Cramer, MD

Abstract

Stroke remains a major source of adult disability in the U.S. and worldwide. Most patients show 

some recovery during the weeks-months following a stroke, but this is generally incomplete. An 

emerging branch of therapeutics targets the processes underlying this behavioral recovery from 

stroke towards the goal of reducing long-term disability. A key factor hampering these efforts is 

the very large degree of variability between stroke survivors. Available data suggest that genetic 

differences could explain an important fraction of the differences between subjects. The current 

review considers this from several angles, including genetic differences in relation to drugs that 

promote recovery. Genetic factors related to physiological and psychological stress responses may 

also be critically important to understanding recovery after stroke and its treatment. The studies 

reviewed provide insights into recovery and suggest directions for further research to improve 

clinical decision-making in this setting. Genetic differences between patients might be used to help 

clinical trials select specific patient subgroups, on a biological basis, in order to sharpen the 

precision with which new treatments are evaluated in this context. Pharmacogenomic factors might 

also provide insights into inter-subject differences in treatment side effects, for pharmacological 

prescriptions, behavioral interventions, and others. These efforts must be conducted with the 

strictest ethical standards given the highly sensitive nature of these data. Understanding the effect 

of selected genetic measures could improve a clinician’s ability to predict the risk and efficacy of a 

restorative therapy and to make maximally informed decisions, and in so doing facilitate 

individual patient care.
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The worldwide burden of stroke disability is high and increasing. In the U.S. alone, there are 

>795,000 new strokes each year. Most (>90%) patients survive the acute episode, living an 
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average of 6–7 years thereafter [1]. As such, there are >7,000,000 adult stroke survivors in 

the U.S. [2, 3], making stroke perennially among the leading causes of human disability [4] 

and the leading neurological cause of lost disability-adjusted life years [5]. Indeed, 

according to a recent American Heart Association Scientific Statement [6], stroke “continues 

to represent the leading cause of long-term disability in Americans.” Consistent with this, 

persons with stroke represent the largest impairment group of Medicare beneficiaries 

receiving inpatient medical rehabilitation services in the U.S. [7, 8].

Stroke is a very heterogeneous condition, and many different signs and symptoms may be 

present and contribute to disability. The most common type of deficits after stroke are motor 

deficits, present in >80% of patients initially [9–13]. Motor deficits persist in 55–75% of 

patients and are associated with reduced quality of life [9–13]. As advances in stroke 

medicine are producing a sharp increase in the fraction of patients surviving the acute stroke, 

the burden of stroke disability will likely increase over time [14]. Consistent with this, 

evidence shows that significantly more individuals with stroke reported dexterity and 

cognitive impairments in 2005 compared with respondents in 1996; similarly, despite 

medical advances over this interval, quality of life after stroke has not improved [15]. 

Reducing disability, particularly through improving motor function, is therefore a critical 

and time-urgent public health issue.

 Recovery After Stroke

All patients show spontaneous behavioral improvement during the weeks to months 

following a stroke, however, in most cases the degree of improvement is incomplete [16]. A 

number of interventions, including rehabilitation therapies, pharmacological compounds, 

and devices are commonly provided as standard of care during this period, and in some 

cases during the years that follow. These therapies aim to facilitate neural plasticity and to 

optimize post-stroke recovery [17]. Rehabilitation therapies include occupational, physical, 

speech, cognitive, and psychological therapy and aim to support patients as they re-engage 

in activities of daily living (ADLs). Pharmacological interventions for enhancing recovery 

after stroke is an area of practice with few firmly established practices.

A key issue in understanding stroke recovery and its treatment is the enormous degree of 

inter-subject variability. A major area of research in this field aims to understand the factors 

that govern these differences. Increasing evidence suggests that genetic variation may 

provide a window into this issue. Here we provide a review of several key factors relating 

genetics to post-stroke recovery. Two key areas of focus are genetic factors as they relate 

directly to neural repair, and as they relate to psychological and physiological stress 

responses.

 Pharmacological Therapy And Neural Repair After Stroke

Currently, few drugs are used in the specific setting of neural injury recovery. Whereas 

reperfusion therapies such as intravenous tPA and clot retrieval devices are approved for 

treating patients in the initial hours after stroke onset, there are no pharmacological 

treatments specifically approved to promote neural repair thereafter. Catecholamine-
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enhancing drugs are occasionally prescribed [18], and may enhance recovery [19–23], but 

evidence is incomplete and these compounds are not formally approved for this indication. 

A number of drugs are being studied for their potential to enhance brain plasticity and 

rehabilitation therapy [24]. These include the selective serotonin reuptake inhibitors (SSRIs) 

fluoxetine and citalopram [22, 23, 25–27], the norepinephrine reuptake inhibitor reboxetine 

[28], dopamine agonists such as L-dopa [19–21], amphetamine [29–32], methylphenidate 

[33, 34], and acetylcholinesterase inhibitors such as donepezil [35, 36]. These drugs are 

prescribed at each physician’s discretion [18]. Clinicians’ ability to predict the risk and 

efficacy of different drugs and to make informed decisions about which patients require 

additional monitoring following drug administration may be improved with a better 

understanding of the genetic variants that modulate the effect of pharmacological therapies 

on neural injury recovery. Moreover, a better understanding of how genetic factors 

contribute to differences in subject response to therapy may be useful to inform patient 

selection, and thus increase statistical power, in clinical trials of such agents.

 Genetic Factors and Neural Repair

Genetic polymorphisms may impact the course of stroke recovery by reducing an 

individual’s capacity for cortical plasticity (for review, see [37–40]). Polymorphisms in the 

genes for brain derived neurotrophic factor (BDNF) and Apolipoprotein E (ApoE) have been 

studied most extensively in regard to genetic associations with inter-subject differences in 

cortical plasticity. BDNF is the most abundant growth factor in the brain and is important to 

many forms of development, plasticity and repair. A common [41] single nucleotide 

polymorphism (SNP) in its gene results in a switch from valine to methionine at codon 

position 66 (rs6265), resulting in 18–30% less activity-dependent secretion of the BDNF 

protein [42, 43]. This BDNF val66met polymorphism has been associated with reduced 

short-term cortical plasticity in humans by several techniques [44–46], with some evidence 

suggesting that this effect may be overcome with intense training [47]. Given the importance 

of cortical reorganization in the motor system after stroke, these studies suggest that the 

BDNF val66met SNP might affect post-stroke recovery. Evidence from studies of patients 

with stroke is consistent. Presence of this SNP has been associated with poorer outcome 

after subarachnoid hemorrhage [48] and with poorer recovery and greater disability post-

stroke [49], although as in healthy subjects this effect might wane over time post-stroke [49]. 

This finding raises the question as to whether the 30–50% of human beings [41] who carry 

this SNP might have a different biology of stroke recovery, one that would benefit from 

appropriately tailored rehabilitation and perhaps pharmacological therapy.

ApoE is the most abundant brain lipoprotein, and its gene contains a frequently studied 

combination of two SNPs that result in three ApoE polymorphisms, termed epsilon2, 

epsilon3, and epsilon4 polymorphisms. ApoE has been found to play a significant role in the 

growth and regeneration of peripheral and central nervous system (CNS) tissues, is involved 

in modulating neuronal repair [50, 51], and has been found to substantially affect the risk for 

Alzheimer’s disease [52, 53]. The presence of the ApoE epsilon4 polymorphism has been 

associated with poorer recovery and greater disability post-stroke [49] as well as poorer long 

term outcome following several other conditions such as traumatic brain injury (TBI) [54, 
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55]. The ApoE epsilon4 polymorphism may therefore represent a genetic factor associated 

with less effective endogenous repair and recovery following neural injury such as stroke.

Genes in inflammatory pathways may also play an important role in stroke outcome. A SNP 

in interleukin 10 was found to be predictive of functional outcome following ischemic 

stroke, and an interleukin 4 SNP correlated with the likelihood of a recurrent ischemic event 

[56]. The COX-2 rs5275C and rs20417C alleles were associated with better outcome 90 

days post stroke [57]. If these associations were replicated, they would suggest potential 

pathways for individualized medicine in order to boost outcomes among patients who are at 

a risk for a poor functional outcome.

Of course, functional outcome is not limited to the motor system. Critical questions remain 

in relation to level of consciousness, language, attention, mood, and a range of cognitive 

functions. There is likely to be substantial overlap with findings from studies of patients with 

TBI [58]. In some cases, the function of the gene under study suggests specific therapeutic 

applications [59–61]. Further study is needed to understand how these genetic factors may 

interact with a range of key clinical measures such as extent of brain injury, severity of 

behavioral deficits, and clinical factors such as age.

 Pharmacogenetics

To date, human studies examining pharmacogenetics factors in relation to neural repair are 

limited in number. A better understanding of the interaction between key genetic variants 

and pharmacological interventions would foster more precise individualization of treatment 

planning. Three examples are considered below.

 Dopaminergic Drugs

Studies regarding the efficacy of dopaminergic drugs are promising but results to date have 

been mixed [19–21, 62], perhaps in part due to the impact of genetic variation for proteins 

that underlie dopamine neurotransmission. A recent study found that the effects of L-dopa 

on skilled motor learning and motor cortical plasticity varied in relation to dopamine 

genetics [63], using a polygene score to model this complex brain neurotransmitter system. 

In this study, a gene score was used to sum the individual effects of five genetic variants 

affecting the dopamine system. Smaller gene scores, corresponding to lower endogenous 

brain dopaminergic neurotransmission, were associated with poor motor skill learning on 

placebo, but an enhancement in learning with L-dopa. In contrast, individuals with greater 

dopamine gene scores, representing higher endogenous brain dopaminergic 

neurotransmission, showed greater learning on placebo but significant worsening in skill 

learning after consumption of L-dopa [63]. Similar results have been found using this gene 

score to study major depression [64] and impulse control [65]. If these results remain true in 

the stroke population, such genetic information might greatly sharpen the precision with 

which dopaminergic drugs are prescribed to optimize rehabilitation therapy.

 Serotonergic Drugs

In stroke care, SSRIs are given primarily to treat comorbid depression [18], but some studies 

suggest such drugs may favorably influence other rehabilitation outcomes as well such as 
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motor and cognitive measures [22, 23, 28]. A 44-bp insertion/deletion polymorphism in the 

promoter region of the serotonin transporter gene (5-HTTLPR) results in a protein that 

occurs in either a long (l) or short (s) form. Such serotonin polymorphisms may modulate 

response to antidepressant drugs in major depressive disorder [66], although this effect is 

debated [67, 68]. This SNP may also impact SSRI response when treating post-stroke 

depression or when using SSRIs to enhance rehabilitation therapy. Given that post-stroke 

depression worsens functional outcomes [69], understanding the pharmacogenetics of 

antidepressants has great potential to improve many dimensions of care following stroke. A 

patient’s 5-HTTLPR genotype might also inform treatment choice, as the short form of this 

protein (s allele) is associated with poorer response to pharmacological intervention [66, 70], 

better response to psychosocial therapy [71], and greater sensitivity to social environments.

More generally, genetic variations in enzymes of drug metabolism, such as the cytochrome 

P450 (CYP) family, have been shown to alter drug responses to a wide variety of 

pharmacological agents including most antidepressants [72]. Meta-analysis has also found 

that SNPs in the genes for brain derived neurotrophic factor (BDNF) and tryptophan 

hydroxylase 1 (TPH1) may be associated with differences in antidepressant response [66].

 Cholinergic Drugs

Though donepezil is primarily used in the treatment of AD, it has been studied as a potential 

treatment for aphasia and cognitive impairment following stroke [35, 36]. Polymorphisms in 

the CYP2D6 gene (rs1065852 and rs1080985) have been associated with donepezil efficacy 

in AD [61, 73–75], and one such study also found higher blood plasma concentrations of 

donepezil with increasing CYP2D6*10 alleles [73]. These findings suggest that a patient 

with aphasia or cognitive impairment after stroke might benefit from addition of donepezil, 

particularly if a carrier of the CYP2D6*10 or CYP2D6*41 alleles.

 Other Considerations

In addition to its modulating effects on drug efficacy, genetic variation may affect the risk/

benefit profile of a drug through its influence on the likelihood of medication side effects. In 

addition to interactions with t-PA discussed above, genetic polymorphisms have been 

associated with altered side effect profile in relation to drugs for vascular disease such as tPA 

[76] and clopidogrel [77], and in diverse conditions such as epilepsy [78], diabetes [79], 

rheumatoid arthritis [80], cancer [81], major depression [82], and Parkinson’s disease [83]. 

The increased likelihood of side effects due to genetic variation might also emerge as a 

consideration during development of drug treatments to promote neural repair. In particular, 

when multiple drugs (or classes of drugs) might potentially be prescribed, pharmacogenetics 

has the potential to shorten the process of finding the best drug for each individual patient, 

and thus reduce the number of drugs the patient must be exposed to before arriving on the 

most effective treatment [84].

 Rehabilitation Therapy And Stress Responses

Stroke is a life-changing experience that can be extremely stressful and potentially 

traumatizing for individuals. Stroke-related stress can manifest as psychological symptoms, 
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such as depression or post-traumatic stress symptoms [85], and can negatively impact the 

body’s natural physiological functioning [86]. These stress-induced psychological and 

physiological responses are important because they may interfere with neural recovery [86, 

87], and may impede the effectiveness of rehabilitative treatments. The degree of 

psychological and physiological stress following stroke varies across patients. Evidence 

from prior studies on individuals who have experienced highly stressful or traumatic 

experiences suggest that genetic variants explain a significant portion of the inter-subject 

differences in psychological and physiological stress responses [88, 89]. The idea that stress 

responses may interact with rehabilitation therapy and that genetic variation may be 

associated with differences in stress responses suggests the need for a better understanding 

of how genetic variants might promote -- or limit -- the effectiveness of various 

rehabilitation therapies.

 Genetics and Stress Responses

Despite strong evidence showing that genetic variants partly explain differences in 

psychological and physiological stress responses, our understanding of these issues is still in 

its infancy. Additional research efforts dedicated to investigating the role of genetics in 

psychological and physiological stress responses following stroke may help identify 

individuals who are in greatest need, and may most benefit from a larger dose of 

rehabilitation therapy. Several key physiologic systems that contribute to stress-related 

health conditions are considered below.

 Hypothalamic Pituitary Adrenal (HPA) Axis

Not surprisingly, much of the research in this area has focused on the HPA axis, as it is the 

central brain stress response system. Allostatic load theory highlights the role of physiologic 

load in the health damaging effects of chronic stress and has given rise to an abundance of 

research linking HPA axis response to health [90]. This work generally characterizes the 

HPA axis response to acute stress as beneficial in that it mobilizes bodily resources to cope 

[90], and specific SNPs from HPA axis genes (FKBP5, CRHR1, NR3C2) have been 

identified as possible candidates for inclusion in a multilocus genetic profile of high risk 

stress responsiveness [91, 92]. HPA axis SNPs also appear to be good candidates for testing 

gene-environment interactions in relation to indices of well-being [93–95].

 Endocannabinoid (ECB) System

The ECB system [96–98] plays a key role in helping regulate physiological stress responses. 

The ECB system has also been linked to post-traumatic stress disorder (PTSD) and other 

stress-related psychological responses [99, 100]. Although few studies have been done to 

address the role of ECB genes in stress response, there is limited evidence suggesting a role 

for the fatty acid amide hydrolase (FAAH) and cannabinoid receptor-1 (CNR1) SNPs in 

PTSD [101–103]. In addition, we have preliminary evidence that a FAAH gene SNP 

(rs324420) may be linked with acute stress response through interactions with the renin-

angiotensin-aldosterone system and HPA axis SNPs (Holman et al, 2016 unpublished data).
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 Renin-Angiotensin-Aldosterone System (RAAS)

The RAAS is a centerpiece of cardiovascular function and also contributes to both acute and 

chronic stress response, in part through its regulation of the sympathetic nervous system 

[86]. Angiotensin converting enzyme (ACE), a key component of the RAAS, is essential for 

production of Angiotensin II (AngII), a hormone with receptors throughout the HPA axis 

known to help regulate stress response in animals [86]. Reduced AngII is associated with 

fewer behavioral signs of anxiety and depression in animal models [86, 104]. RAAS-

targeting drugs (Angiotensin receptor blockers-ARBs) help to alleviate stress’s impact on 

health, especially neuropsychiatric and neurodegenerative diseases including stroke [86]. 

Although a handful of studies indicate that homozygotic T-allele carriers of the ACE 

promoter-region SNP rs4291 have higher plasma ACE activity (thus increasing AngII 

production) and hyperactive HPA axis responses [105], very little is known about RAAS 

gene SNPs and stress response, particularly in the setting of stroke recovery.

 Serotonergic System

The serotonergic system, discussed above in relation to drug pharmacogenetics, emerges 

again as a key factor in stroke recovery, here as a component to understanding stress. The 5-

HTTLPR variable number of tandem repeats (VNTR) polymorphism is important to the 

serotonin stress response system, and has been extensively studied as a marker of genetic 

susceptibility to stress [106, 107]. Presence of the low-expressing short allele has been 

identified as a “sensitivity” marker for stress-related psychological effects. However, the 

impact of 5-HTTLPR genotype on stress response is dependent in part on environmental 

experiences, especially the quality of one’s social environment [108]. Consistent with this, 

imaging genetics studies further indicate that the 5-HTTLPR risk genotype is associated 

with amygdala activation following stress, making it an important candidate for this study.

 Genetics as part of Rehabilitation Therapy

Predicting behavioral recovery for an individual patient receiving rehabilitation therapy after 

stroke remains challenging and imprecise [109]. The measures currently used to guide 

treatment planning for stroke rehabilitation are generally simple clinical assessments [110–

113], which although useful, fail to explain a substantial fraction of inter-subject variance in 

response to post-stroke rehabilitation therapy [114–116]. Genetic factors related to 

physiological and psychological stress responses may prove useful in optimizing 

prescription of post-stroke rehabilitation therapy by elucidating which forms of 

rehabilitation are most effective for individual subjects.

 Conclusions

Stroke remains a major source of human disability. New therapies can reduce initial injury 

but only a small fraction of patients reach medical systems in time to be eligible, and many 

of those so treated retain long-term disability. Therapies focused on neural repair may be 

able to improve outcomes for a large fraction of patients with stroke. In the prescription of 

rehabilitation therapies after stroke, high inter-subject variability remains a major challenge. 

The current review considered a number of sources of genetic variation that might provide 
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an improved understanding of differences in spontaneous recovery, and in response to a 

restorative therapy. Some genetic factors, such as polymorphisms in BDNF or dopamine-

related proteins, are directly related to neural repair processes, while other factors, such as 

those related to the HPA axis or to RAAS, might impact recovery via psychological and 

physiological stress responses.

These efforts must be conducted with the strictest ethical standards given the highly sensitive 

nature of these data. A number of potential ethical concerns exist including, but not limited 

to, maintaining confidentiality of these sensitive data, the highest standards when obtaining 

informed consent from a patient who may not be fully competent, and by maintaining a 

robust understanding of the uncertainty of genetic associations [84]. A better understanding 

of these genetic factors stands to improve the precision with which clinical trials probe 

specific questions, and also the ability to accurately individualize patient care.
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