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Abstract

The lipid composition of pulmonary surfactant is unlike that of any
other body fluid. This extracellular lipid reservoir is also uniquely
susceptible by virtue of its direct and continuous exposure to
environmental oxidants, inflammatory agents, and pathogens.
Historically, the greatest attention has been focused on those
biophysical features of surfactant that serve to reduce surface tension
at the air–liquid interface. More recently, surfactant lipids have also
been recognized as bioactive molecules that maintain immune
quiescence in the lung but can also be remodeled by the inhaled
environment into neolipids that mediate key roles in inflammation,
immunity, and fibrosis. This review focuses on the roles in
inflammatory and infectious lung disease of two classes of native
surfactant lipids, glycerophospholipids and sterols, and their

corresponding oxidized species, oxidized glycerophospholipids and
oxysterols. We highlight evidence that surfactant composition is
sensitive to circulating lipoproteins and that the lipid milieu of the
alveolus should thus be recognized as susceptible to diet and common
systemic metabolic disorders. We also discuss intriguing evidence
suggesting that oxidized surfactant lipids may represent an
evolutionary link between immunity and tissue homeostasis that
arose in the primordial lung. Taken together, the emerging picture is
one in which the unique environmental susceptibility of the lung,
together with its unique extracellular lipid requirements, may
have made this organ both an evolutionary hub and an engine for
lipid-immune cross-talk.
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In recent years, there has been renewed
interest in the susceptibility of surfactant
lipids to metabolic and environmental
stress and in the role that these bioactive
small molecules play in immunity and
inflammation. Structural features of
surfactant glycerophospholipids (PLs)
permit them both to interrupt pathogen
interactions with the host and to “sense”
and respond to environment-induced
oxidative stress. In this review, after
providing background on surfactant PLs
and sterols and their modification during
disease, we discuss emerging evidence
that these lipids play a crucial role in

inflammation and host defense and that
their evolutionary emergence in the lung
represents a crucial, intrinsic, and revealing
link between metabolism and host defense.

Brief Overview of the Unique
Composition and Life Cycle
of Surfactant Lipid

Surfactant is z90% lipid and 10% protein
by weight (1, 2). Surfactant lipid, in turn, is
z80–85% PL, a class of lipids with a three-
carbon glycerol backbone with a defining
polar headgroup at the third carbon, or

sn-3 position (either choline, serine, glycerol,
inositol, or ethanolamine in series with a
phosphate moiety), plus two acyl (fatty acid
[FA]) chains at sn-1 and sn-2 (Figure 1).
Within all PL headgroup classes, both
acyl chains in principle can be either
saturated (i.e., no double bonds, such as in
palmitic acid), monounsaturated (i.e., one
double bond, such as in oleic acid), or
polyunsaturated (i.e., more than one double
bond, such as in arachidonic acid),
although the sn-1 FA is less commonly
unsaturated than is the sn-2 FA. In addition
to disrupting tight intermolecular packing,
double bonds of unsaturated FAs make
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them susceptible to oxidative attack, both
by environmental (e.g., ozone) and
enzymatic (e.g., 12/15 lipoxygenase,
myeloperoxidase, NADPH oxidase)
exposures. Oxidation yields complex
mixtures of bioactive oxidized PL (oxPL)
species, including some with fragmented
FAs, such as 1-palmitoyl-2-(5-oxovaleroyl)-
sn-glycero-3-phosphocholine (POVPC)
(Figure 1) (3). More than 20 unique native

unsaturated diacyl PL species have
been documented in surfactant (4),
including some with highly oxidizable
polyunsaturated sn-2 FAs (e.g.,
1-palmitoyl-2-arachidonoyl-PC [PAPC]) (5),
with unsaturated acyl chains altogether
present in .30% of surfactant PL (2, 6).

Surfactant PL, estimated to be at
a remarkable concentration of
z35–50 mg/ml, is a composite of

phosphatidylcholine (PC, z80%),
phosphatidylglycerol (PG, z7–15%),
and small quantities (,5% each)
of phosphatidylinositol (PI),
phosphatidylethanolamine (PE), and
phosphatidylserine (PS) (2, 7).
Approximately one-half of surfactant PC,
thus the most abundant surfactant PL
species overall, is dipalmitoyl-PC (DPPC)
(i.e., PC with two palmitic acids) (Figure 1).
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Figure 1. Representative structures of lipid species found in pulmonary surfactant. For glycerophospholipids and cardiolipin, fatty acyl side chains are
depicted in pink, the glycerol backbone is shown in black, and polar head groups are located on the far right side of the structure. Structures shown were
generated using the online structure drawing tools from LIPID MAPS (132).
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It is thought that the tight intermolecular
packing of DPPC, especially at end-
expiration, is largely responsible for the
surface tension–reducing activity of
surfactant that guards against alveolar
collapse (8). The hydrophobic proteins,
surfactant protein (SP)-B and SP-C, aid in
this function, whereas hydrophilic SP-A
and SP-D are thought primarily to have
host defense functions (9). Other PLs, such
as PG and PI, as well as cholesterol, the
major neutral lipid in surfactant (a
surfactant lipid class also including small
amounts of free FAs and mono-, di-, and,
triglycerides), help enhance adsorption,
spreading, and fluidity of the surfactant
film (1). Although the PL composition of
surfactant is well conserved across
vertebrates, it is unlike that of either cell
membranes or any other body fluid (10).
For example, the concentration of even
the minor surfactant PL, PG, estimated at
z3 mg/ml in humans (11), is not found at
any other site in mammals, suggesting a key
and perhaps unique evolutionary role for
extracellular PLs in the alveolus.

The synthesis and life cycle of
surfactant have been well covered in recent
comprehensive reviews (8, 9, 12). In brief,
surfactant PLs and SPs are synthesized in
alveolar epithelial type II (ATII) cells,
stored intracellularly in lamellar bodies
(LBs), and secreted apically in response to
catecholamines, purinoceptor agonists, and
cell stretch. Extracellularly, surfactant can
take multiple forms. LBs are thought to
unravel and interact with SPs to form large
aggregates including lattice-like tubular
myelin, as well as a variety of multi- and
monolayered surface films (Figure 2).
Surfactant PL is regulated precisely.
Approximately one-half is recycled into
ATII cells for resecretion or lysosomal
degradation, whereas most of the
remainder is internalized and degraded by
alveolar macrophages (AMs). For example,
experimental depletion of AMs in rats
causes surfactant PL accumulation (13).
Interestingly, surfactant degradation is
coupled to the maturity and immune
competence of AMs. It is now well
established that AM degradation of
surfactant requires signaling by the
maturation/differentiation cytokine,
granulocyte macrophage-colony
stimulating factor, and downstream
activation of the transcription factors PU.1,
STAT5, and peroxisome proliferator-
activated receptor (PPAR)-g (12, 14). This

is best exemplified by the rare disease
pulmonary alveolar proteinosis, in which
disrupted granulocyte macrophage-colony
stimulating factor signaling, most
commonly caused by autoantibodies, is
associated with surfactant accumulation
and AM immune dysfunction (14).
However, the intriguing finding of
increased AM “foam cells” (abnormal lipid-
laden AMs) in a wide range of human lung
disorders (15) and rodent inhalational
exposures (16, 17) suggests the provocative
possibility that coordinate AM dysfunction
and surfactant dysregulation may play a
role in a final common pathway in the
pathogenesis of common chronic lung
diseases and environmental exposures.

Impact of Plasma
Lipoproteins on Surfactant:
The Lung as a Target Organ
in Metabolic Disorders

Whereas the intra-alveolar
microenvironment is often considered in
isolation from the systemic circulation,
extensive evidence actually suggests that
surfactant lipid is sensitive to systemic
metabolic status. ATII cells have long been
known to bind and take up lipoproteins
in vitro, including high-density lipoprotein
(HDL), low-density lipoprotein (LDL), and
very LDL (VLDL), and to resecrete PLs
bearing lipoprotein-derived FAs as well as
lipoprotein-derived cholesterol (Figure 2)
(18–20). ATII uptake and degradation of
VLDL enhances PC synthesis through a
mechanism involving activation of the
rate-limiting PC-synthetic enzyme,
cytidyltransferase (CCT) (19). LDL and
HDL also induce PC secretion (20).
Compatible with a model in which
lipoproteins induce coordinated ATII
release of PL and cholesterol through
substrate delivery, radiolabeled lipoprotein
cholesterol in an isolated perfused rat lung
model was shown to be first incorporated
into ATII LBs and then later released into
the airspace together with PC of lipoprotein
origin (21). Remarkably, intravenously
injected VLDL has been shown to cross
the placenta and to be incorporated as
increased PC in fetal ATII cells, likely
through a mechanism involving CCT
activation (22). Surfactant cholesterol may
be particularly dependent on systemic
lipoproteins, because it has been estimated
through in vivo labeling studies that 83% of

cholesterol in the rat lung derives from
uptake from the circulation (23).

Just as surfactant is sensitive to
circulating lipoprotein status during health,
so too is it modified during systemic
metabolic disorders, although the full
implications of this remain unclear.
Hypertriglyceridemic apolipoprotein E–null
mice, which have marked elevations in
plasma VLDL, have increased alveolar PC
content and increased CCT activity (22).
By contrast, oxidized LDL (oxLDL), a
mediator that is increased in humans with
atherosclerosis (24), reduces ATII synthesis
of PC, likely through promoting CCT
degradation (25). oxLDL-derived oxysterols
may further compromise ATII PC levels by
inducing ERK-dependent inactivating
phosphorylation of CCT (26) and by
promoting basolateral efflux of PC via the
lipid transporter ATP binding cassette
(ABC)A1 (27).

Dietary perturbations have also been
shown to have important effects on
surfactant PLs. Rats with diet-induced
hyperlipidemia have increased PG and
reduced PE in surfactant associated with
altered alveolar stability (28), and mice fed
a high-fat diet have increased free FAs and
triacylglycerol in bronchoalveolar lavage
fluid (BALF) (R. S. Summer, personal
communication). Ethanol ingestion also
increases surfactant triacylglycerol and
free FAs in BALF, likely through
enhancing their synthesis by ATII cells
(29), but reduces ATII synthesis of
disaturated PC (30). Interestingly, dietary
n-3 polyunsaturated FAs are incorporated
into surfactant PLs and AM membranes in
the rat (31). Furthermore, consistent with
the possibility that systemic metabolic
conditions may modify immune function
within the alveolus via macrophage
incorporation of remodeled surfactant,
pulmonary surfactant from starved rats
was shown to modify AM phagocytic
function (32). Taken together, studies such
as these indicate that the alveolar lipid
microenvironment may be influenced
critically by common systemic metabolic
conditions. Given that HDL also serves as
the major vehicle for delivery of the
antioxidant vitamin E to ATII cells (33),
it seems plausible that metabolic
disorders with increased oxLDL and
reduced/dysfunctional HDL could
conspire to alter both the composition and
the oxidation status of native surfactant
lipids.
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Changes in Surfactant Lipid
Composition during Lung
Disease

Significant changes in surfactant lipid
composition have been documented in

human lung diseases, in particular, acute
respiratory distress syndrome (ARDS),
interstitial lung disease, and pneumonia. In
several studies of ARDS, decreases in PC
and PG and large surfactant aggregates, and
increases in protein, PI, PE, and PS have

been associated with impairment in the
surface tension-lowering properties of
surfactant (34–36). Pathogens and
pathogen-associated molecules may
drive some of these changes, because
Pseudomonas aeruginosa and adenovirus

Figure 2. Roles of native and oxidized surfactant glycerophospholipids in inflammatory lung responses to the environment. The complex immune
interactions that occur in the alveolus between native surfactant glycerophospholipids (PLs) and environmental agents are depicted. Surfactant PLs,
including dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), phosphatidylinositol (PI), phosphatidylethanolamine
(PE), and 1-palmitoyl-2-arachidonoyl-phosphatidylcholine (PAPC) are synthesized by alveolar epithelial type 2 cells and released as lamellar bodies that
unravel to form the surfactant layer. Various lipids are depicted in the surfactant monolayer inset, but native surfactant is DPPC predominant. Inhaled
agents and reactive oxygen species (ROS) derived from host cells oxidize PAPC and PE into oxidized PLs (oxPLs), as shown. Native PLs antagonize
delivery of pathogens and pathogen-associated molecules to cellular receptors, and oxPL species act on multiple receptors on alveolar macrophages,
both promoting and suppressing inflammation. Plasma lipoproteins, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very
LDL (VLDL), deliver and receive lipids to/from alveolar epithelial cells, influencing PL synthesis. ABCA1, ATP binding cassette A1 transporter; CCT,
cytidyltransferase; EP2, prostaglandin E2 receptor; IAV, influenza A virus; KETE, 15-ketoeicosatetraenoic acid; MALP-2, macrophage-activating
lipopeptide-2; MARCO, macrophage receptor with collagenous structure; Nrf2, nuclear factor E2-related factor 2; oxPAPC, oxidized PAPC; PEIPC,
1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine; PPAR, peroxisome proliferator-activated receptor; RSV, respiratory syncytial
virus; SARS, severe acute respiratory syndrome; SR-BI, scavenger receptor class B member I; TGF, transforming growth factor; TLR, Toll-like receptor.
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are both reported to reduce apical PC
secretion from ATII cells by promoting
ABCA1-dependent basolateral PC efflux
(37, 38), whereas LPS impairs DPPC
synthesis by promoting degradation of acyl-
coA:lysoPC acyltransferase I, an enzyme
that remodels sn2-unsaturated PC into
DPPC (39). In ARDS and pneumonia, the
palmitic acid content of PC is indeed
reduced, with associated increases in
unsaturated PC species, including PAPC
(35, 36), presumably rendering this PL
much more susceptible to oxidation. In
idiopathic pulmonary fibrosis, reduced
percentages of PC and PG, increased PI,
and reductions in PC palmitic acid have
also been noted (34, 40). In the bleomycin
rodent model of experimental lung fibrosis,
significantly increased cholesterol and
decreased PG have been found (16, 41).

Perhaps the most notable recent
discovery in surfactant lipid dysregulation
during lung disease has been the finding of
abnormal accumulation during bacterial
pneumonia of cardiolipin (CL), a PL with a
unique tetra-acylated, di-PG-like structure
that is normally restricted to the inner
mitochondrial membrane (Figure 1) (42).
Ordinarily present at only low levels in
surfactant, CL is markedly increased in
tracheal aspirates of patients with
pneumonia and in BALF of mice with
bacterial pneumonia. This likely occurs
because of CL from dead/dying immune
cells overwhelming the capacity of the CL
importer, ATP8b1. Interestingly, increased
CL suffices to recapitulate several hallmark
features of pneumonia, including surfactant
dysfunction, increased BALF protein,
radiographic consolidation, and epithelial
apoptosis (42). The unique structure and
mitochondrial localization of CL together
may explain the susceptibility of this PL,
when exposed extracellularly, to targeting
by autoantibodies (i.e., anticardiolipin
antibodies). It is intriguing to consider the
possibility that abnormal accumulation of
CL during pneumonia may underlie the
apparent link between respiratory
infection and antiphospholipid antibody
syndrome (43).

Roles of Native Surfactant
Phospholipids in
Inflammation and Infection

Although historically the greatest attention
in surfactant science has been focused on

surface tension properties (without doubt, a
key evolutionary mandate that arose with
tidal air breathing), a perhaps equally
important requirement for successful gas
exchange in the lung is the need to titrate
immune responses to inhaled pathogens and
pathogen-derived molecules. Over the past
several years, several mechanisms have been
identified by which native surfactant PLs
attenuate inflammation and modify the host
response to virus and bacteria (Figure 2).
These findings, of course, raise the
interesting yet unanswered question as to
whether surfactant lipid modifications
induced by diet, systemic metabolic
disorders, and/or lung disease causally
modify lung phenotypes in humans by
modulating inflammation and/or host
defense in vivo.

Perhaps the best-described interaction
of native surfactant PLs with the innate
immune response is the capacity of anionic
PLs (i.e., PG, PI, PS, and CL) to interrupt
the Toll-like receptor (TLR)4-mediated
immune response to bacterial LPS, itself a
glycolipid with an anionic PL-like core
structure. This competitive antagonism
almost certainly arises from structural
similarity that dictates common
thermodynamic requirements for protein
binding and transfer through biological
fluids. LPS is transferred by extracellular
LPS-binding protein (LBP) to a cell-
associated protein, CD14, which then
relays LPS to its receptor complex, a
heterodimer of TLR4 with the lipid-binding
coreceptor, MD2 (44). Although LBP
and CD14 are well known as LBPs to
immunologists, both also competitively
bind a variety of host PLs and cooperate in
homeostatic PL trafficking; for example,
LBP transfers PI and PS to CD14 (45).
Furthermore, LBP is homologous to the
lipoprotein-remodeling serum protein,
phospholipid transfer protein, which is
known to also transfer LPS and regulate its
signaling (44), perhaps suggesting that the
innate immune response and host PL
homeostasis have common evolutionary
roots. This intriguing possibility becomes
less surprising when one realizes that
certain PLs, including PG and CL, are
relatively abundant in bacterial membranes,
but scarce in mammalian tissues (with
the interesting exception of PG in
surfactant) (46).

PI and 1-palmitoyl-2-oleoyl-PG
(POPG), the most prevalent PG species in
human surfactant, (10) have been shown to

inhibit macrophage proinflammatory
responses to LPS by interfering with the
LBP- CD14-TLR4/MD2 relay pathway at
multiple sites. Both PLs competitively
inhibit the binding of LPS to LBP and
CD14 (11, 45–47), although one report
suggests that PI and LPS have different
binding sites on CD14 (11). POPG also
competes with LPS for binding to
MD-2 (11). In addition, POPG inhibits
TLR2-dependent inflammatory responses,
including those triggered by the
respiratory pathogen Mycoplasma
pneumoniae (48), whereas it does not
inhibit responses to TLR3 (dsRNA), TLR5
(flagellin), or TLR9 (CpG DNA) ligands
(11, 46). CL, in which the tetra-acylated
structure is somewhat similar to that of
TLR4-inhibitory tetra-acyl bacterial LPS
species, also inhibits macrophage
responses to LPS; this may occur through
the competition for binding to LBP (47)
and MD2 (49). Several reports indicate
that PC is inert at inhibiting the
macrophage LPS response or competing
for LPS protein binding (11, 45–47),
whereas others indicate that DPPC inhibits
LPS-induced cytokine production by
airway epithelial cells and monocytes,
potentially through incorporating into
the plasma membrane and affecting
membrane fluidity (50–52). Intratracheal
DPPC supplementation in mice attenuates
lung inflammation induced by intravenous
LPS (11). DPPC exerts additional
antiinflammatory and protective actions,
inducing prostaglandin E2 in monocytes
(53), down-regulating the monocyte
respiratory burst (51, 54), and protecting
lung epithelial cells from invasion, lysis,
and cytokine production induced by
Group B Streptococci (55, 56).

Complex interactions have been noted
between surfactant PLs and viruses. DPPC
promotes adenoviral entry into epithelial
cells by binding virus and serving as a
vehicle for receptor-independent
penetration into the cell (57). Exogenous PS
also promotes cell entry by enveloped
viruses, potentially through promoting
fusion (58). Interestingly, PS in the
poxvirus envelope promotes viral
infectivity, perhaps through apoptotic cell
mimicry (59), although another report
indicates that PG incorporation by the viral
envelope also promotes infectivity (60). On
the other hand, potent antiviral activities
have been shown for both POPG and PI.
POPG binds respiratory syncytial virus
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(RSV) and competes with RSV binding to
CD14, thereby blocking viral attachment to
epithelial cells, cytopathic effects, cytokine
induction, and plaque formation in vitro
(61). Remarkably, intranasal treatment of
mice with POPG markedly reduces the lung
viral titers and tissue injury induced by RSV
(61, 62). Similar in vitro and in vivo
protective effects are seen for POPG with
influenza A virus (63) and for PI with
RSV (64). Taken together, these findings
suggest that some PLs render the airway
epithelium susceptible to virus, whereas
others may be protective by raising the
threshold for infection.

By comparison, much less is known
about the effect of surfactant lipids on
bacterial infection. Free FAs in rat
surfactant have been shown to kill
Pneumococcus and other gram-positive
bacteria through membranolytic
detergent-like activity (65), whereas
exogenous PC promotes intracellular
growth of Mycobacterium tuberculosis
in macrophages (66). Diet-induced
hypercholesterolemia is also associated
with compromised pulmonary host
defense against M. tuberculosis and
Klebsiella pneumoniae (67, 68). The
interesting possibility that surfactant
lipid locally programs the phenotype
of alveolar phagocytes, including
membrane composition and immune
functions, has been suggested by some
adoptive transfer and in vitro exposure
studies (69, 70).

Oxidized Surfactant
Phospholipids: Ancient
Neolipids with a Key Role in
Lung Disease

oxPLs, formed by chemical or enzymatic
oxidation of the double bonds of
unsaturated PLs such as PAPC (Figure 1),
have long been studied in the
cardiovascular field for their inflammatory
effects, in particular, the induction of
monocyte adhesion to endothelium (71).
Discordant and at times seemingly
contradictory effects on inflammation
have been reported for oxPLs (3). This
likely derives in part from the fact that
methods for in vitro oxidation of PAPC
are poorly standardized, and oxidized
PAPC (oxPAPC) is actually a highly
complex mixture of lipids with widely
varying bioactivity (3). Investigations of

defined oxPL species have benefitted from
improved specificity, but likely at the
expense of uncertain physiologic
relevance. The remarkably pleiotropic
activities of oxPLs on multiple receptors,
including the platelet-activating factor
receptor, prostaglandin receptors,
scavenger receptors, TLRs, PPARs, and
vascular endothelial growth factor
receptors, as well as intracellular signals
and transcription factors, were
comprehensively reviewed recently (3, 72).
In aggregate, these studies suggest a
paradigm in which unsaturated PLs
effectively serve as biosensors and
ultimately as second messengers of
chemical and biological oxidant stress.

Several pro-oxidant exposures have
now been shown to drive the formation of
oxPLs in pulmonary surfactant (Figure 2).
In vitro exposure of human BALF to ozone
directly induces multiple PC and PG
oxidation products (4). In vivo exposure of
mice to a wide variety of airway challenges,
including cigarette smoke, particulate
matter 2.5, acid, H1N1 influenza
A virus, and H5N1 avian influenza virus
also increases oxPAPC species and
1-palmitoyl-2-(9’-oxo-nonanoyl)-
glycerophosphocholine (PON-GPC) in
airspace fluid (73–77). Direct infection of
pulmonary epithelial cells with influenza A
induces their production and release of
POVPC and other oxPAPC subspecies
(78). Indeed, oxPAPC has been found in
the lungs of patients with H5N1 avian
influenza and severe acute respiratory
syndrome infections, as well as in
experimental animal models of anthrax,
monkey pox, and Yersinia pestis infection,
suggesting that oxPAPC may be induced
as a common response to a wide range
of severe pulmonary infections (76).
Increased numbers of oxPAPC-laden
AMs have also been documented in
noninfectious human interstitial lung
diseases, including desquamative
interstitial pneumonitis and usual
interstitial pneumonia (79). By contrast,
CL and PS, but not PC, are selectively
oxidized in the lungs in response to single-
walled carbon nanotubes, irradiation, and
hyperoxia, likely reflecting cytochrome
C–driven oxidation occurring during
apoptosis (80–82).

Several protective antioxidants,
including urate, ascorbate, glutathione, and
a- tocopherol, are present in the airway but
these may be overwhelmed/depleted by

acute environmental challenges, such
as ozone (83). Redundant clearance
mechanisms for oxPLs from the lung,
including the lipid efflux transporter,
ABCG1, as well as macrophage receptor
with collagenous structure, a scavenger
receptor, also exist (84, 85). ABCG1-
dependent clearance of accumulated oxPLs
from AMs is induced by HDL, an event that
is likely deficient in systemic metabolic
disorders with defective HDL function (86).
Pulmonary expression of macrophage
receptor with collagenous structure is,
however, up-regulated in mice fed a high-
fat diet (87).These two mechanisms, taken
together, suggest that pathways for oxPL
clearance from the lung may be regulated
differentially by systemic oxidant burden
and metabolic status.

Important proinflammatory roles have
been identified recently for oxPAPC in the
lung. In a landmark paper, Imai and
colleagues reported that multiple chemical
and infectious exposures induce NADPH
oxidase–dependent production of oxPAPC
in the murine lung, which then activates a
pathway through TLR4 and its adaptor,
TIR-domain-containing adapter-inducing
interferon-b, to cytokine-dependent acute
lung injury (76). A second group has shown
that oxPAPC, formed in the lung during
influenza A virus infection, induces TLR4-
dependent, CD14-independent
proinflammatory lung injury that can be
suppressed by the TLR4 antagonist,
eritoran (77). oxPAPC has also been
reported to induce TLR2-dependent
cytokines on intraperitoneal injection (88),
and PON-GPC has been shown to induce
cytotoxicity and cytokine production in
epithelial cells in the low nanomolar
range (89). Seemingly at odds with these
reports are several others showing that
oxPAPC attenuates the induction of
proinflammatory genes by TLR4 and TLR2
ligands (3, 90–92). The former effect may
arise from oxPAPC blocking interactions
of LPS with LBP and CD14 (3) or MD2
(90), or by disrupting lipid raft
microdomains in which TLR4 is activated
(92), potentially through sphingomyelinase
activation (93). Reports also differ on the
question of whether oxPAPC inhibits
ligand-induced activation of other TLRs,
such as TLR9 (90, 91, 94). Taken together,
the issue of oxPAPC activity at TLR4
may be reconciled by a model in which
oxPAPC has partial agonistic activity,
because it has been shown that the
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LPS-inhibitory activity of oxPAPC occurs
at a concentration z10-fold lower than
proinflammatory activity (95). In such a
model, low-level oxPAPC might serve
as a feedback brake on bacteria-induced
inflammation and injury, whereas sites
of localized or intense oxPAPC
accumulation might drive dysregulated
disease responses.

Several specific oxPL species have now
been identified that are antiinflammatory
and/or immunosuppressive through
mechanisms other than TLR ligand
antagonism (Figure 2). 1-palmitoyl-2-
(5,6-epoxyisoprostane E2)-sn-glycero-3-
phosphocholine (PEIPC) and 1-palmitoyl-
2-(5,6-epoxyisoprostane A2)-sn-glycero-3-
phosphocholine (PECPC) are oxPAPC
subspecies that structurally and functionally
mimic the proresolving prostaglandin
15-deoxy-D12,14-prostaglandin J2 (94).
Like 15-deoxy-D12,14-prostaglandin J2,
PECPC elicits antiinflammatory effects via
the transcription factor nuclear factor E2
related factor 2 (94). PEIPC also induces
antiinflammatory effects in macrophages,
including reduced tumor necrosis factor-a
and increased IL-10 production, via
activation of the prostaglandin E2 receptor
(96). PEIPC induced during Mycobacterial
infection inhibits DC activation of T cells,
which suggests possible adverse effects on
host defense (86). PON-GPC, which is
induced in the lung by cigarette smoke, is
also reported to inhibit the bactericidal
function of macrophages (74), whereas
intratracheal delivery of oxPAPC impairs
AM phagocytosis and bacterial clearance
in vivo (75). 15-Ketoeicosatetraenoic
acid–PE, a product of 15-lipoxygenase
action on PE that is elevated in the BALF of
patients with cystic fibrosis, and
hydroperoxyeicosatetraenoic acid–PE were
recently identified as antiinflammatory
oxPLs that activate PPAR-g (97). POVPC
also promotes M2 polarization and TGFb
expression by AMs, inducing pulmonary
fibrosis in mice (16).

Oxysterols: Bioactive Lipids
with Complex Emerging
Roles in Inflammatory
Disease

Compared with that which is known
about PLs and oxPLs, far less is known
about the regulation and function of
cholesterol and oxysterols in lung biology.

As is the case for cholesterol in lipid raft
membrane microdomains, in surfactant,
cholesterol is thought to improve the
fluidity/spreading of tightly packed
disaturated PLs. Consequently, surfactant
cholesterol levels must be regulated tightly,
because excess cholesterol, such as can
occur with serum leakage during acute lung
injury, impairs surfactant function
(98–100). Pulmonary cholesterol derives
largely from plasma lipoproteins rather
than in situ synthesis (23) and is thought
to be cleared back into the plasma
compartment by interactions of the lipid
efflux transporters ABCG1 and ABCA1
with plasma HDL (101–103), as well as by
diffusional efflux of cholestenoic acid, a
hydrophilic oxysterol produced by the
action of sterol-27-hydroxylase on
cholesterol in AMs (104).

Cholesterol can be oxidized either on
its ring structure or on its side chain
(Figure 1). Analogous to the case for
unsaturated PLs, ring oxidation, commonly
occurring at the carbon 5–6 double bond,
occurs from direct attack by reactive
oxygen species. Ozone induces formation
of the cytotoxic ring oxysterol 5b,6b-
epoxycholesterol in pulmonary surfactant
and bronchial epithelial cells (105, 106).
By contrast, side-chain oxysterols are
typically enzymatic products (e.g., 25-
hydroxycholesterol [25HC] is produced by
cholesterol-25-hydroxylase [Ch25h] action
on cholesterol). Of interest, increases in
both 25HC and 27HC are found in the
sputum of patients with chronic obstructive
pulmonary disease and are inversely related
to lung function and directly related to
inflammatory measures, suggesting roles in
pathogenesis (107, 108).

In recent years, a profusion of papers
have reported intriguing, pleiotropic
biologic activities of 25HC on multiple
immune receptors, with important effects
on inflammation and host defense. Ch25h is
an interferon-stimulated gene, and thus
LPS, poly(I:C), viruses, and interferons
all up-regulate Ch25h and increase
production and release of 25HC in
macrophages (109–111). Ch25h and 25HC
are induced in the mouse lung in response
to systemic (112) and inhaled (M. B.
Fessler, personal communication) LPS
challenge. Both pro- and antiinflammatory
actions of 25HC have been identified. On
the one hand, 25HC augments poly(I:C)-
induced cytokines in airway epithelial cells
via effects on nuclear factor-kB (NF-kB)

(110) and amplifies TLR-induced gene
induction in macrophages via enhancing
recruitment of AP-1 to the promoters of
proinflammatory genes (111). As a
consequence, Ch25h–null mice have
reduced lung injury and mortality after
pulmonary challenge with influenza A
(111). 25HC and some other side-chain
oxysterols also promote neutrophilic
inflammation by chemoattracting
neutrophils via ligation of CXCR2 (113).
On the other hand, 25HC has also been
shown to suppress IL-1–dependent
inflammation by inhibiting transcription of
IL-1b and activation of IL-1b–processing
inflammasome complexes (114). As a
consequence, Ch25h–null mice have
exacerbated mortality after systemic LPS
challenge (114). 25HC also reduces IgA
levels in the lung and other mucosal sites,
in part by suppressing B-cell proliferation
and class switch recombination (112).
7a,25-dihydroxycholesterol, a product of
secondary oxidation of 25HC by the
enzyme Cyp7b, was also shown recently to
play a critical role in systemic humoral
immunity through positioning B cells
and dendritic cells in the spleen via the
G-protein–coupled receptor, Ebi2 (115–119).
Finally, 25HC and several other side-chain
oxysterols are natural agonists of liver X
receptor, a nuclear receptor that has potent
antiinflammatory actions in the lung and
elsewhere through the inhibition of NF-kB
(120, 121). This indicates that 25HC has
remarkably complex cell- and context-
dependent effects on inflammation,
representing a direct and intriguing link
between cholesterol metabolism and
immunity.

In addition to its effects on
inflammation, 25HC has been shown
recently to have potent antiviral effects.
25HC inhibits the growth of a broad range
of enveloped viruses in cultured cells (122,
123). This may occur through blocking
viral fusion (122) or alternatively through
inhibiting postentry viral replication (123),
potentially by activation of the integrated
stress response (124). Ch25h–null mice are
thus more susceptible to MHV68 lytic
infection, whereas administration of 25HC
to humanized mice suppresses HIV
replication (122). Among naturally
occurring oxysterols, 25HC is uniquely
synthesized and secreted by macrophages
in response to interferons and virus (123),
suggesting a potentially critical role in
pulmonary host defense.
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oxPLs and oxysterols are ancient and
ubiquitous modified-self autoantigens.
Apoptotic cells display oxPLs on their
surface that are bound by C-reactive
protein and also recognized by natural
(germline-encoded) antibodies (125–127).
Innate B cells (i.e., B1 B cells), in
particular, produce natural antibodies that
recognize oxPAPC species on the surface
of apoptotic cells and regulate cell corpse
clearance by macrophages. Remarkably,
these “T15/E06” idiotype natural
antibodies also recognize phosphocholine
in the capsule polysaccharide of
Streptococcus pneumoniae and some other
bacteria and are important in survival
during S. pneumoniae infection (128). It
has been proposed that these anti-oxPL
B1-cell clones have been preserved
through natural selection for their
importance in both host defense and tissue
homeostasis (126).

Interestingly, emerging evidence
suggests that the lung, subject as it is to
exposure to bacteria, oxPL-inducing
environmental oxidants, and apoptotic
leukocytes, may have a central and perhaps
unique role in coordinating the regulation
of lipid homeostasis and innate immunity.
Abcg1-null mice have a marked
accumulation of cholesterol, PL, and
oxPAPC in their lungs, likely because
of impaired clearance by macrophages (85,

101, 102). In parallel with this lung-
selective lipid accumulation, naı̈ve Abcg1-
null mice have marked recruitment of
leukocytes to their lungs (102, 129, 130).
In particular, excess POVPC and other
oxidized lipid species attract T15/E06-
producing B1 cells to the Abcg1-null lung
and drive their proliferation there,
inducing a lung niche-specific
autoimmune expansion that boosts
systemic levels of natural anti-oxPAPC
antibodies (85). Taken together, these
findings suggest, intriguingly, that steady-
state lipid and immune homeostasis are
intrinsically linked, and that the lung, in
particular, may represent a unified site for
lipid-based programming and expansion
of innate immune responses. T15/E06
antibody not only regulates apoptotic
cell clearance (125), but has also been
shown to therapeutically block
oxPAPC–induced proinflammatory
responses by lung macrophages (76) as
well as impairment of macrophage host
defense functions induced by oxPAPC and
cigarette smoke–conditioned BALF (75).
Given that increased native T15/E06
antibody has been detected in the lung
after the induction of experimental
asthma (131), it is intriguing to speculate
that this natural antibody may be acutely
induced in the lung in response to
environment-induced oxidative stress and
then serve to regulate inflammation and
oxidative stress. The unique
environmental susceptibility of the lung,
together with its unique extracellular lipid
requirements, may have made this organ

both an evolutionary hub and an engine
for lipid-immune cross-talk.

Conclusions

Native surfactant lipids have been
recognized recently as key regulators of lung
inflammation that occupy a common
ground at the intersection of tissue
homeostasis, host defense, and biophysics.
The unsaturated bonds of PLs and
cholesterol serve as biosensors of oxidative
stress and endow these lipids with the
flexibility to be transformed into complex,
pleiotropic effectors and feedback regulators
of the host response to environmental insult.
Evolutionarily, the environmental
susceptibility of the alveolar lipid milieu
may have created selection pressure for the
development of natural antibodies and other
arms of the innate immune system.
Although historically the lung has not been
widely considered a target organ in
metabolic syndromes, the alveolar
microenvironment should be recognized as
susceptible to dyslipidemia and other
systemic disorders. It is expected that
increased consideration of the lung in this
light may lead to the development of novel
diagnostic and therapeutic strategies in lung
disease and to a better appreciation of the
lung as a metabolic organ. n
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