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Summary

Human visual perception is both stable and adaptive. Perception of complex objects, such as faces, 

is shaped by the long-term average of experience as well as immediate, comparative context. 

Measurements of brain activity have demonstrated corresponding neural mechanisms, including 

norm-based responses reflective of stored prototype representations, and adaptation induced by the 

immediately preceding stimulus. Here, we consider the possibility that these apparently separate 

phenomena can arise from a single mechanism of sensory integration operating over varying 

timescales. We used functional MRI to measure neural responses from the fusiform gyrus while 

subjects observed a rapid stream of face stimuli. Neural activity at this cortical site was best 

explained by the integration of sensory experience over multiple sequential stimuli, following a 

decaying-exponential weighting function. While this neural activity could be mistaken for 

immediate neural adaptation or long-term, norm-based responses, it in fact reflected a timescale of 

integration intermediate to both. We then examined the timescale of sensory integration across the 

cortex. We found a gradient that ranged from rapid sensory integration in early visual areas, to 

long-term, stable representations towards higher-level, ventral-temporal cortex. These findings 

were replicated with a new set of face stimuli and subjects. Our results suggest that a cascade of 

visual areas integrate sensory experience, transforming highly adaptable responses at early stages 

to stable representations at higher levels.

 Introduction

Neural responses to stimuli are modulated by recent sensory history over varying timescales. 

On short timescales, neural responses are reduced if sensory input is similar or identical to 
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preceding stimuli (i.e., neural adaptation [1]). At longer timescales, integration over many 

stimuli is required to generate “prototype” representations (the central tendency of sensory 

experience [2–4]). The presence of a prototype representation is inferred from the finding 

that the amplitude of a neural response reflects the distance of a stimulus from the center of 

a stimulus space (a “norm-based” response [4–6]).

These effects of sensory history have been measured separately in single unit studies in 

animal models [5–7] and in neuroimaging responses in humans [4]. They can seemingly co-

occur, as for example both types of neural response have been observed to faces within 

macaque inferotemporal cortex [5–8] and the human fusiform gyrus [4, 6, 9]. While it is 

possible that neural adaptation and norm-based responses are manifestations of separate 

neural mechanisms that overlap at points of the visual hierarchy, we consider here the 

possibility that these neural responses represent the action of a single mechanism. 

Specifically, both neural adaptation and norm-based responses reflect the deviation of a 

current stimulus from a neural prior that is formed from stimulus history. Temporal 

integration that operates at an intermediate timescale might both manifest neural adaptation 

and generate a prior that produces apparent norm-based responses, with the degree of one 

effect or another depending on the intrinsic timescale of neural processing. We take as our 

inspiration recent work that has shown a hierarchy of timescales of integration in macaque 

cortex [10], and that norms are not stationary but continuously updated by experience [11].

We collected blood oxygen level dependent (BOLD) functional MRI data from fifteen 

subjects while they viewed a continuous stream of face stimuli. After characterizing the 

perceptual similarity of the faces, we modeled neural responses to the stimuli based upon an 

exponential integration of stimulus history (as has been observed in retinal ganglion cells 

[12]). Using this model, we can characterize the timescale of temporal integration in neural 

responses that show modulatory effects of stimulus history. We then tested if neural 

responses within the fusiform gyrus are better explained by separate neural adaptation and 

norm-based mechanisms, or if a single temporal integration mechanism can better account 

for the data. We also measured for each point on the cortical surface the time constant of 

temporal integration, and determined if there is a systematic organization to cortical 

responses as a function of our measure of temporal history (as has been found with other 

approaches [13]). Finally, we repeated the study with a different set of face stimuli and 

subjects to examine the replicability of our results.

 Results

We measured neural temporal integration by obtaining fMRI responses to a set of 27 

computer-generated faces. In separate behavioral studies, we assessed the perceptual 

organization of these stimuli and found that the mutual similarity of the faces is well 

described by three dimensions (Figure 1A, S1A). The Euclidean distance between any pair 

of faces within this space reflects the perceptual dissimilarity of the pair.

We then considered the behavior of a neural system that is exposed to a series of faces. The 

sequential stimuli trace a path through the perceptual space (red points; Figure 1B). We 

propose that the system retains a memory of the weighted, average history of these stimuli. 
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This neural “prior” is described as a point in the perceptual space. When a new stimulus is 

presented, the face is integrated into the running average and thus the prior is updated to a 

new position (blue points; Figure 1C).

In studies of retinal ganglion cells, the influence of past pulses of light upon the current state 

of the system is well described by a decaying exponential in time [12]. The exponential 

integration of cone input, for example, has a time constant of seconds and accounts for the 

perception of color after-images [14]. In such a system, a single parameter describes the 

degree to which the prior is updated by the presentation of each subsequent stimulus (here 

expressed as the temporal integration parameter μ; see Methods). For systems with μ close to 

one, the prior will equally weigh the entire history of stimuli, and thus tend to remain at the 

center of the stimulus space. For μ close to zero, the system has a shorter “memory”, and the 

prior is updated continuously to the location of the just-presented stimulus. A model with an 

intermediate temporal integration parameter will show an intermediate tendency for the prior 

to trail the sequentially presented stimuli.

To test this model of neural representation, we studied 15 subjects with functional MRI 

while they viewed a continuous, counter-balanced stream of stimuli [15] (Figure 2A). 

Subjects performed a continuous perceptual judgment task, but crucially this judgment 

regarded an aspect of the stimulus that was unrelated to its position within the perceptual 

space: the appearance of the face on each trial was randomly set to appear slightly older or 

younger in age, and the subject was asked to report this age appearance by button press. The 

age change was subtle (similarity ratings for young and old face sets were highly correlated: 

r = 0.95); mean accuracy across subjects was slightly, but significantly, above chance for this 

demanding attention task (mean 58% ± 2% SEM; chance 50%). Blank trials occurred in the 

stream of stimuli at counter-balanced intervals during which the subject withheld a response.

In prior studies of neural adaptation, it has been found that the response to a stimulus is 

proportional to its dissimilarity from the immediately preceding stimulus [9, 16]. Separately, 

studies of norm-based coding have found that the response to a stimulus is proportional to its 

distance from the center of a stimulus space [4, 5]. These results can also be described as a 

neural response that is proportional to distance from a stored prior. Within this framework, 

tests for norm-based coding are sensitive to systems that show long temporal integration 

properties, while tests for neural adaptation are sensitive to systems that integrate over 

shorter timescales. A prior that integrates information over intermediate timescales would in 

principle show both of these modulatory effects.

We measured the influence of stimulus history upon neural response in our data. To do so, 

we created a family of models, each of which assumed a different time constant of a 

decaying exponential integration of the sequential face stimuli. We then modeled the neural 

response to each face as linearly proportional to the Euclidean distance between the 

continuously updated prior and the current stimulus, similar to a prediction error signal [17, 

18], and convolved these neural models with a hemodynamic response function [19] to 

obtain predictors for effects within the BOLD fMRI data (Figure 2A). Importantly, the 

models with assumed temporal integration parameters of μ = 0 and μ = 1 correspond exactly 

to tests for one-back neural adaptation and norm-based coding, respectively. We confirmed 
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in a series of simulations (Figure S2) that the temporal integration value measured using this 

approach is robust to variations in incidental aspects of the data, including variation in the 

shape of the hemodynamic response and nonlinearities in the transformation of neural 

response to BOLD signal.

Within the right fusiform face area (FFA) we measured the amount of variance that each 

model explained in the BOLD fMRI data as a function of the assumed temporal integration 

(Figure 2B). Across subjects, a significant amount of variance was explained by the model 

that assumed a μ of one (i.e., for which the prior is fixed at the center of the stimulus space), 

which could be interpreted as a norm-based coding response [variance explained: 0.94%, 

t(14) = 3.3, p = 0.005]. Essentially the same results are obtained if the norm-based effect is 

modeled as relative to the running average of all presented stimuli up to that point in the 

sequence, as opposed to being fixed in the center [variance explained: 0.91%, t(14) = 3.3, p 
= 0.005]. This illustrates that the central tendency of a random sampling of stimuli quickly 

converges upon the center of the stimulus space. Separately, we found that a significant 

amount of variance was explained by the model that assumed a μ of zero, which could be 

interpreted as a neural-adaptation effect [variance explained: 0.51%, t(14) = 2.4, p = 0.03]. 

These modulatory effects are reliable across subjects, albeit small (compared with an 

average of 6.0% variance explained by the main effect of the stimuli versus a blank screen).

Across the entire range of modeled windows of temporal integration, however, the best fit to 

the data was found for an intermediate parameter of μ = 0.85 [variance explained: 1.25%]. 

This implies that the influence of previously presented faces upon an updated neural prior 

drops by about half every 4 stimuli (Figure S3C) or 7 seconds (presuming an exponential 

integration function; considered in Figure S3). Importantly, a system that demonstrates this 

intermediate level of temporal integration gives rise to modulatory neural responses that can 

appear both as sequential neural adaptation and as norm-based responses.

Perhaps the FFA actually has separate neural mechanisms: one that implements a neural 

adaptation response relative to the last presented stimulus, and one that implements a norm-

based coding response relative to a stored, central prototype. We used a cross-validation 

approach to test if this “dual mechanism” model better accounts for the BOLD fMRI data 

than a model with a single mechanism of intermediate temporal integration. The data from n
−1 subjects were submitted to two analyses. First, an average, best fitting value for μ was 

derived (the single mechanism model). Second, the average parameter estimates for separate 

μ = 0 and μ = 1 covariates were obtained, and then used to construct a single covariate that 

combined both effects (the dual model). We then examined the variance explained in the 

reserved data from the nth subject. We observed that the proportion of variance explained by 

the single mechanism model was greater than the variance explained by the dual model 

(variance explained by a single mechanism model: 1.18% ± 0.27% SEM; variance explained 

by the dual model: 0.85% ± 0.26% SEM; difference paired t-test: t(14) = 3.4, p = 0.005). A 

left-hemisphere fusiform region showed the same effect (Figure S3B; variance explained by 

a single mechanism model: 1.24% ± 0.21% SEM; variance explained by the dual model: 

0.96% ± 0.22% SEM; difference paired t-test: t(14) = 2.9, p = 0.0119). Similar results were 

also obtained when the test was conducted as the number of subjects with a better fitting 

model (in right FFA, the single mechanism model explains more variance than the combined 
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model in 12 out of the 15 subjects; one-sided binomial test: p = 0.0176; in left FFA, the 

single mechanism model explains more variance than the combined model in 11 out of 15 

subjects; one-sided binomial test: p = 0.0592). Therefore, not only is the single temporal 

integration model conceptually parsimonious, but it also provides a better fit to the data 

within the FFA.

While the FFA is notable for having selective responses to faces, our stimuli evoke broad 

responses throughout the ventral visual cortex as compared to the blank trials. The same 

measurement of temporal integration that we performed within the FFA region of interest 

may be conducted at other locations across the visual cortex. Prior studies have examined 

the relative sensitivity of visual cortex to information that varies on shorter or longer 

timescales and a gradient of temporal sensitivity is generally found, with the shortest 

timescale of representation present within the primary visual cortex [13, 20]. We defined 

areas V1–V3 using a surface-based anatomical template [21] and calculated the mean, 

across-subject temporal integration parameter that best fit the modulatory effect in these 

areas (Figure 3). We observed an increase in temporal integration along the visual hierarchy, 

with mean integration parameters ranging from μ = 0.29 ± 0.12 to μ = 0.62 ± 0.13 between 

areas V1 and V3, corresponding to half-lives of approximately 0.5 trial (~ 0.8 seconds) and 

1.5 trial (~ 2.2 seconds), respectively (in contrast to μ = 0.87 ± 0.04 and a half-life of ~ 7.5 

seconds in the FFA).

We then calculated the mean, across-subject temporal integration parameter, μ, that best fit 

the modulatory effect at each point on the cortical surface (constrained to those points for 

which the model explained more than 0.2% of the fMRI signal variance; Figure S4A). We 

observed a clear gradient of temporal integration across the cortical surface in both 

hemispheres (Figure 4A). In the medial and posterior areas of the visual cortex, values of μ 

close to zero were found, indicating a short temporal integration window and a modulatory 

effect consistent with immediate (1-back) neural adaptation effects. Moving inferiorly and 

laterally, the measured μ steadily increases, reflecting an ever-greater degree of integration 

of stimulus history, approaching norm-based effects of central tendency. Along a single 

trajectory (Figure 4B) the temporal integration value is found to be consistent across 

observers relative to the change across cortex. Across the surface of the cortex, variation in 

temporal integration is quite similar in the two hemispheres (correlation between 

hemispheres of the intersection of thresholded vertices on FreeSurfer-sym surface: r = 0.79).

We tested if this result is reproducible and can be generalized beyond our initial stimuli. We 

collected a separate dataset from 19 subjects using a different set of face stimuli that varied 

in skin tone, aspect ratio, and internal facial features (Figure S1E). Measures of perceptual 

similarity again suggested a three-dimensional perceptual space (Figure S1F, G). We 

repeated the fMRI experiment and analysis. The proportion of variance explained by the 

single mechanism model was greater than the variance explained by the dual model in the 

left FFA (variance explained by a single mechanism model: 1.18% ± 0.24% SEM; variance 

explained by the dual model: 1.00% ± 0.27% SEM; difference paired t-test: t(18) = 2.3, p = 

0.0352), but not in the right FFA (variance explained by a single mechanism model: 0.95% 

± 0.25% SEM; variance explained by the dual model: 0.95% ± 0.27% SEM; difference 

paired t-test: t(18) = 0.05, p = 0.9643). When the test was conducted as the number of 
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subjects with a better fitting model, the single mechanism model explained more variance 

than the combined model in 13 out of the 19 subjects (one-sided binomial test: p = 0.0835) 

within both the left and right FFAs (Figure S3E). A cortical gradient of temporal integration 

was also found in this dataset (Figure 4C), replicating our initial finding. The pattern of 

temporal integration values across the cortex (Figure 4D) was similar between hemispheres 

in this dataset (correlation between hemispheres of the intersection of thresholded vertices 

on FreeSurfer-sym surface: r = 0.82), and similar to that found in our first dataset 

(correlation between datasets of the intersection of thresholded vertices: r = 0.69).

 Discussion

Our study begins with the observation that a single temporal integration mechanism could 

theoretically produce both short-term adaptation and norm-based responses, as each 

phenomenon reflects the similarity of a current stimulus to a continuously updated neural 

prior. Based upon work in retinal ganglion cells [12] we assumed an exponential integrator, 

which is characterized by a single parameter. Our empirical results demonstrate that neural 

responses to faces within the FFA are better described by this single mechanism operating 

over intermediate timescales, as opposed to separate adaptation and norm-based responses. 

We previously demonstrated that adaptation and norm-based responses can be confounded in 

measurement, and have proposed analytic techniques to estimate their separate influence 

[22]. Here we test our prior assumption that the two effects reflect separable processes, and 

instead find that they can be manifestations of a single underlying mechanism.

We note that our findings do not challenge the existence of stable, norm-based 

representations of faces, which are supported by a wealth of empirical neural [3, 4, 23] and 

behavioral [2, 11] results. We do find an intermediate degree of temporal integration in the 

FFA, suggesting that responses that appear norm-based at this location reflect a prior that is 

subject to modification on a time scale of seconds to minutes. In other regions, particularly 

more anterior and lateral in the ventral temporal lobe, we find temporal integration 

parameters that approach μ = 1, consistent with stimulus representations that are stable over 

longer timescales. Indeed, within the right FFA for our second dataset, we cannot reject a 

pure, norm-based mechanism on the basis of average variance explained (Figure S3E). 

Relatedly, we do not have imaging signal available from the most anterior portions of the 

temporal lobe (Figure S4A, C); it is possible that these sites contain stimulus representations 

that are stable on a time scales of months to years. We note as well that our stimulus 

sequences are not designed to address the subtle question of norm-based versus exemplar 

coding [24].

We view our results instead as an explanation for the emergence of new prototype 

representations at the center of a previously unseen stimulus space [25] and for the updating 

of existing prototypes [11], without the need to invoke a qualitatively novel system of 

temporal integration. Under our theoretical framework, any relatively long temporal 

integrator will construct a neural prior near the center of a perceptual space after 

presentation of a few randomly selected stimuli. This accords with experimental 

demonstrations of norm-based effects that vary during measurement of neural response [5, 

6] or behavior [26]. Prior work on cortical timescales has measured autocorrelations [27] or 

Mattar et al. Page 6

Curr Biol. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the dependence of neural response on stimulation duration [13]. Here we quantify the effect 

of stimulus history relative to a specific temporal integration function, and again find a 

cortical gradient [13, 20]. While the gradient we observe does not perfectly align with the 

position of visual areas, we do find ever-longer timescales of neural integration towards 

ventral occipito-temporal cortex. In agreement with theoretical models [10] and 

electrophysiologic studies in primates [27], we expect that sequential cortical areas act as a 

cascade of temporal integrators to represent stable properties of the visual environment. We 

observe in our data as well some alignment of the gradient with the eccentricity axis of 

visual cortex, with shorter temporal integration at greater eccentricities. Perhaps relatedly, 

psychophysical and retinal ganglion cell sensitivity is also shifted to shorter temporal 

integration at greater eccentricities (e.g., [28]). We consider it an intriguing possibility that 

early specialization in the visual pathway gives rise to variation in temporal integration 

across the cortex.

Our analysis assumes an exponential form for integration. In simulations (Figure S2), we 

find that our approach (assuming an exponential form) accurately recovers relative temporal 

integration for other monotonically decreasing functions (e.g., linear; or power law [29, 30]). 

We view a key finding of our work to be the superiority of a single-mechanism model within 

the fusiform face area. We concede that demonstrating this superiority over one dual-

mechanism model does not disprove all possible multi-mechanism models that combine 

varying timescales, though we feel any such proposals must now justify added mechanisms. 

We are receptive to the possibility that another single temporal integration function could 

provide a still-better fit to the data, and note that any such function would also have the 

property of being superior to the dual-mechanism alternative tested here. Different functions 

would lead, however, to different quantitative interpretations of an integration parameter in 

units of seconds or stimuli. Relatedly, we cannot determine from our data if the integration 

function is indexed by stimuli, seconds, or some combination. In single-unit studies in early 

sensory systems (e.g., the fly H1 visual neuron or mouse retinal ganglion cell [31, 32]), 

integration varies with the timing of stimulus changes, and thus is more reflective of stimuli 

than seconds. Further, it is possible to interpret the neural “prior” in our approach as a 

rolling sensory prediction and the modeled response as an error signal. It could be that the 

exact form of the integration function is related to the minimization of free energy [33]. 

Future studies could employ the approach we have described here to examine the effects of 

stimulus spacing and duration upon measures of temporal integration to directly address 

these questions.

Overall, our results demonstrate that varying timescales of stimulus integration are present 

across the cortex and can account for different modulatory effects of stimulus history. While 

a parsimonious explanation for some effects, there are phenomena that do not fit within our 

account. Most notably, our model does not easily accommodate the modulation of neural 

response produced by identical repetitions of a stimulus after multiple intervening stimuli [7, 

34]. These effects can persist not only across stimuli, but across sessions [35] and days [36]. 

There is evidence that this “long-lag” repetition response arises from a different mechanism 

than the “short-lag” response that is the primary focus of the current work [34, 37, 38]. Such 

a dichotomy also manifests behaviorally. For instance, while orientation judgments are 

biased away from “short-lag” sensory history established on a timescale of seconds to 
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minutes, judgments are biased towards “long-lag” sensory history [39]. We consider it likely 

that the integrated representation of recent stimulus history we have characterized here co-

exists with additional neural mechanisms for the learning, identification, and comparison of 

visual objects.

Our work is part of a growing set of studies that find a distributed, hierarchical organization 

of temporal integration across the cortex [10, 13, 20, 27]. Here, we bring the idea of a 

hierarchy of timescales into contact with a well-established literature on neural adaptation 

and norm-based coding, showing that the intrinsic timescale of a cortical region predicts the 

degree to which it exhibits norm-based responses. Flexible access of this temporal hierarchy 

could be the mechanism by which visual behavior is both sensitive to novelty and captures 

the stability of visual experience.

 Experimental Procedures

 Stimuli and Experimental Design

Synthetic faces were generated with GenHead v1.2 (Genemation) using 3 primary axes with 

3 points along each axis, resulting in 27 distinct stimuli. For Dataset 1, the three axes were 

gender, skin tone, and internal facial features, and for Dataset 2, skin tone, aspect ratio, and 

internal facial features (Figure S1A, E). All stimuli were created in a slightly older and 

younger version (a slight change in the skin texture and internal features in the stimulus 

generation software); this fourth dimension was used in an attention task. Stimuli 

(subtending 5°×5° of visual angle) were presented in a counterbalanced order [15] of 1624 

trials. Each trial lasted 1500 ms (1400 ms stimulus, 100 ms blank screen); blank trials (with 

no stimulus) were doubled in length to 3000 ms. On each stimulus trial, the presented face 

was randomly set to appear in the older or younger version. Subjects were directed to judge 

the age of each face and respond with a bilateral button press, and received several minutes 

of training with example old and young faces prior to scanning.

 Data Collection

A total of forty-one subjects were scanned for Dataset 1 (20 subjects) and Dataset 2 (21 

subjects). From Dataset 1, 3 subjects were excluded for excessive head motion (recurrent 

transients of pitch > 2°), 1 because of loss of the behavioral data, and 1 due to poor 

performance in the cover task (> 15% trials with no response), leaving a total of fifteen 

subjects (10 female, 12 right handed), aged 19–25 years. From Dataset 2, 2 subjects were 

excluded for excessive head motion (recurrent transients of pitch > 2°), leaving a total of 

nineteen subjects (7 female, 15 right handed), aged 19–35 years. All subjects underwent 

magnetic resonance imaging on a 3.0-T on a Siemens Trio equipped with an 8-channel head 

coil. All subjects provided written informed consent and the study protocol was approved by 

the Institutional Review Board of the University of Pennsylvania. Echo-planar images (time 

repetition [TR] = 3 sec, time echo [TE] = 3 ms, voxel size = 3.00 mm isotropic, 64 × 64 in-

plane resolution, 45 axial slices) were acquired during 6 scans (duration 408 sec each, final 

scan 396 sec). An MPRAGE image from each subject was reconstructed in surface space 

and mapped to the fsaverage template using FreeSurfer; functional data were transformed to 

the surface space and smoothed with a 10mm FWHM kernel. The fusiform region-of-
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interest (ROI) was defined by a group contrast of the main effect of stimuli versus blank 

screen, cropped using the FreeSurfer fusiform label, and narrowed to the top 400 vertices 

(approximately 400 mm2 of surface area). ROIs for visual areas V1, V2, and V3 were 

defined using an atlas of cortical surface topology [21].

 General Linear Model

Statistical analyses were performed upon the time-series data from each subject after 

removing the effects of covariates of no interest by regression. The covariates of no interest 

included: a main-effect covariate modeling the mean response to all face stimuli as 

compared to the blank trials and its temporal derivative; a covariate modeling the effect of a 

stimulus following a blank trial and its temporal derivative; six rigid-body motion 

parameters; and motion outliers. The effect in the data of an identical stimulus repetition and 

its temporal derivative was also removed. This correction was motivated by the observation 

that perfect stimulus repeats produce responses that are non-continuous with even small 

stimulus changes [15, 16].

The average residual time-series within each region of interest (V1, V2, V3, and the 

fusiform area) was modeled with a set of modulation regressors. Each modulation regressor 

was constructed using the measured, three-dimensional perceptual similarity of the sets of 

faces (Figure 1A, S1) and an assumed temporal integration parameter (μ). The neural 

response to the face presented on each trial was modeled as linearly proportional to the 

Euclidean distance of that face from a continuously updated prior. A Euclidean distance 

metric was assumed as the dimensions of face variation are perceived as integral [40]. The 

prior was positioned at the center of the stimulus space for the first trial, and the position of 

the prior on each subsequent trial (t) was given by:

where rt represents the coordinates of the position of the prior within the three-dimensional 

perceptual space on trial t, rt−1 is the position of the prior in the previous trial, st is the 

position of the current stimulus, and μ is the time constant scaled between zero and unity. 

The fMRI BOLD time series was modeled using a set of regressors with values of μ ranging 

from 0 to 1 in steps of 0.05. Each covariate was mean centered, and convolved with a 

canonical hemodynamic responses function [19], and scaled to have unit variance.

 Whole Brain Mapping

For each of 21 values of μ, we combined the individual surface maps from each of the six 

scans for a subject in their native surface space, and then combined these into a single group 

map after projecting the individual surface maps to fsaverage space with an additional 10 

mm smoothing kernel (for the purpose of visualizing the low spatial frequency cortical 

gradient). The resulting group maps contained at each vertex the μ with the largest weight 

from the 21 possible. From this surface map, we cropped all vertices for which the temporal 

integration regressor with largest weight had a negative modulatory effect or where less than 

0.2% of the total variance was explained (Figure 4A). To illustrate across-subject variation, 

10 circular ROIs with a 2-vertex radius were plotted on the fsaverage surface in a continuous 
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representative trajectory, running from area V1 to inferior occipito-temporal cortex. The 

mean and standard errors of μ within each of the 10 ROIs (and within the four regions of 

interest in Figure 3) were obtained by bootstrap resampling, with 10,000 samples from the 

subject pool with replacement.

 Model description

Let rt be the position of the prior at time t. Given a stimulus st presented at time t, st follows 

the update rule:

(1)

i.e., the prior moves by (1 − μ) in the direction of st. Expanding this recursive expression, the 

position of the prior can be written as:

We assume, without loss of generality, that the prior position at time t = 0 is in the center of 

the perceptual space, i.e. r0 = 0. Thus, the position of the prior can be written as:

(2)

i.e., at each time step the stimulus influence on the prior position decays by a factor of μ. We 

can rewrite equation (2) as:

where we see that the stimulus influence on the prior position decays exponentially with rate 

λ = − ln μ. The half-life of this decay is given by:

(3)

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stimuli and neural modeling. (A) Synthetic faces varied in identity, skin tone, and gender 

(see Fig S1A). Behavioral ratings of pair-wise face similarity were used to obtain the three-

dimensional perceptual similarity space via multi-dimensional scaling. (B) An example 

series of five stimulus presentations are plotted as a path through the perceptual similarity 

space. (C) A “prior” can be calculated as a function of the temporal integration parameter (μ) 

applied to the sequence of previous stimuli, and plotted as a point in the perceptual space. 

The prior will be shifted to a varying degree by each subsequent stimulus. Stimuli are 
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integrated over longer durations for larger values of μ, and the prior stays close to the center 

of the stimulus space. For smaller values of μ the prior more closely tracks the path of 

presented stimuli. See also Figure S1.
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Figure 2. 
Experimental design and ROI analysis. (A) During scanning, subjects observed a continuous 

stream of face stimuli while performing an unrelated attention task. Neural responses were 

modeled using continuous covariates that tracked the distance between the current stimulus 

and the calculated “prior” on every trial. A set of 21 models with different values of the 

temporal integration parameter (μ) were evaluated. (B) Average across-subject (n = 15) fit to 

the neural data for the range of models, within an across-subject, face-responsive region of 

interest (ROI) in the right fusiform gyrus (inset). The shaded region represents SEM 
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calculated by bootstrap resampling across subjects. The peak corresponds to a model with an 

intermediate temporal integration parameter (μ = 0.85). The shape of this curve is dictated 

by the sampling of models on the x-axis, here a linear scale of μ. An alternative scaling 

based on the half-life of the underlying exponential is presented in Figure S3C. Schematics 

below the plot demonstrate the behavior of the prior for three representative values of μ. See 

also Figure S3.
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Figure 3. 
Temporal integration in the visual hierarchy. Measured temporal integration parameter (μ) 

across subjects in V1, V2, V3 and FFA. We observed increasingly long temporal integrations 

along the visual hierarchy, ranging from μ = 0.29 ± 0.12 in area V1, μ = 0.62 ± 0.13 in area 

V3, and μ = 0.87 ± 0.04 in FFA. Means and standard errors were obtained by bootstrap 

resampling.
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Figure 4. 
A gradient of temporal integration. (A) Measured temporal integration parameter (μ) across 

subjects at each cortical point that showed a modulatory effect of stimulus history (> 0.2% 

fMRI signal explained). White overlays indicate the points sampled in panel B. (B) Plot of 

across-subject average, regional μ from the set of sampled points ranging from superior-

medial to inferior-lateral. Data points fit with a four-parameter sigmoid function. Means and 

standard errors were obtained by bootstrap resampling. (C–D) The corresponding measures 

from a second, independent dataset. See also Figure S4.
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