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Abstract Cells accomplish the process of fate decisions and form terminal lineages through
a series of binary choices in which cells switch stable states from one branch to another
as the interacting strengths of regulatory factors continuously vary. Various combinatorial
effects may occur because almost all regulatory processes are managed in a combinatorial
fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively
integrate many different signaling pathways to meet the higher regulation demand during
cell development. However, whether the contribution of combinatorial regulation to the state
transition is better than that of a single one and if so, what the optimal combination strat-
egy is, seem to be significant issue from the point of view of both biology and mathematics.
Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a
general framework for the quantitative analysis of synergism in molecular networks. Differ-
ent from the known methods, the bifurcation-based approach depends only on stable state
responses to stimuli because the state transition induced by combinatorial perturbations
occurs between stable states. More importantly, an optimal combinatorial perturbation strat-
egy can be determined by investigating the relationship between the bifurcation curve of a
synergistic perturbation pair and the level set of a specific objective function. The approach
is applied to two models, i.e., a theoretical multistable decision model and a biologically
realistic CREB model, to show its validity, although the approach holds for a general class
of biological systems.
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1 Introduction

Cell fate decisions are binary choices typically depicted by bistable systems in which the
state transition may occur due to various perturbations. Binary choices play significant
roles in almost all processes of cell development, especially in the progression of stem and
progenitor cells towards various specialized cells in multicellular organisms [1–3]. State
transition such as the transitions between disease and disease-free states also occur in the
context of health care [4, 5]. In mathematical models, critical thresholds for such transi-
tions correspond to bifurcations [6]. Typical bifurcations are those that mark the transition
from one stable equilibrium to another one through a saddle-node or a pitchfork bifurca-
tion [7] or the transition from an oscillatory attractor to a stable equilibrium through a Hopf
bifurcation [8].

When bifurcations are considered, some parameters that can be varied or perturbed easily
bear the potential to act as bifurcation parameters. If a chosen parameter in a mathematical
model is perturbed and all other parameters are kept unchanged, the model becomes a single
parameter perturbation system. Increasing the perturbation from zero to a critical value at
which a bifurcation occurs induces a transition between two discrete, alternative stable states
[9]. The critical value can be regarded as the perturbation threshold corresponding to the
bifurcation parameter. Similarly, combinatorial perturbations of two or more parameters
can also lead to such transitions [10, 11]. For instance, in the p42 MAPK/Cdc2 system in
oocytes, the active signaling protein can switch its stable expression from a low to a high
state as a response to concurrent regulations of an external stimulus and feedback strength
[11]. From the point of view both mathematics and biology, it is crucial to quantitatively
detect synergism, i.e., the effect of two or more perturbations given in combination is greater
than what is expected from their individual perturbations.

That determination of synergism and its application to the quantitative evaluation of
combinatorial perturbations is the aim of this paper. Some experiments have shown that
synergism is not merely a property of combinatorial perturbations. It also depends on the
quantities of each perturbation in synergistic combinations. The determination of syner-
gism is crucial to understand combinatorial control in molecular networks, e.g., how cells
respond optimally to two or more mixed signals [12–14], how to optimize the combina-
torial therapies in pharmaceutical development [15–17], and how to control the processes
of fate decisions [18]. Prior works on synergism have mainly focused on combination
drug therapies. For example, Nelander et al. presented a method called combinatorial
perturbation-based interaction analysis, and constructed a perturbed cellular network model
by which a dual drug perturbation experiment involving six inhibitors in MCF7 breast can-
cer cells was designed [19]. The model prediction of system responses and experimental
observations have a good correlation. A mathematical model of apoptosis has been built to
provide insight into synergistic drug pairs in prostate cancer [20].

Synergism has been quantified by using the Chou-Talalay method [21–23], Loewe com-
bination index [24, 25], Bliss independence [26, 27], and the degrees of non-linear blending
and additive synergism [28]. All these methods depend heavily on transient state responses
to stimuli, and therefore also depend absolutely on the initial conditions. However, from
the perspective of state transitions, combinatorial effects can be quantified by the effects
of perturbations in combination on transitions between stable expression states [10]. For
instance, the state transition in pancreatic cancer with combination drug treatment. Both
simulations based on mathematical models and experimental data show that the combi-
nation of TGFβ silencing and immune activation treatment, or combinations of EGFR
silencing and TGFβ sequestration treatments are more conducive for promoting state



Bifurcation-based approach reveals synergism and optimal... 401

transition of cancer cells [4]. Because such transitions are associated with the occurrence of
different kinds of bifurcation, we propose a bifurcation-based approach to detect synergism
induced by combinatorial perturbations imposed on molecular components. The approach
is more computationally efficient because all transient dynamics can be neglected.

To address the issue of synergism and optimal combinatorial perturbation strategies in
molecular networks, we provide a new framework by integrating combinatorial perturba-
tions and bifurcation analysis. Different from the known methods, the approach does not
involve any transient state responses to stimuli. More importantly, optimal combinatorial
perturbation strategies can be easily obtained. The main ideas are illustrated by analyzing
two models, i.e., a theoretical multistable decision model and a biologically realistic CREB
(cAMP-response element binding) model, although the approach holds for a general class
of biological systems. The approach may provide insight into both the rational design of
combination drug therapies and the identification of combinatorial control strategies in cell
fate decisions.

2 Methods

2.1 Quantification of synergism by integrating combinatorial perturbations
and bifurcation analysis

Let the dynamical system of n elements with interactions take the form:

dx

dt
= f (x, p), (1)

where x : [0, +∞) �→ R
n, and the state variable xj (t) denotes the concentration of a

molecular component at time t . The parameter vector p = (p1, p2, · · · , pm)T ∈ R
m repre-

sents the intensity of interactions existing among the components that may involve positive
or negative regulations, activation or deactivation rates, dissociation constants, degeneration
rates, and basal production rates, etc. The vector function f (x, p) determined by the logical
relationships among the components is smooth with respect to both x and p.

The main ideas are illustrated by supposing that system (1) stays at a stable state, e.g., a
stable equilibrium or oscillation, when the parameters are at their basal values, i.e., p = pb.
Without loss of generality, we assume that only two parameters are concurrently perturbed,
i.e.,m = 2 and system (1) stays at a stable equilibrium x = x̄ when (p1, p2)

T = (p1b, p2b)
T

although the approach holds for other cases, e.g., oscillations. Keep p2 = p2b fixed and
continuously change p1 from p1b until a bifurcation occurs. When the bifurcation point is
crossed, system (1) jumps suddenly from a lower branch xl to a higher one xh (Fig. 1a),
with two branches corresponding to two different cell fates. Mathematically, such a process
is equivalent to transforming system (1) into the following perturbed one by introducing a
perturbation �p1 to p1,

dx

dt
= f (x, p1b + �p1, p2b), (2)

where �p1 can be positive or negative, depending on the sign of p̄1 − p1b with the
bifurcation value p̄1.

For the parameter p2, a similar argument is made, which brings system (1) to the
following form:

dx

dt
= f (x, p1b, p2b + �p2). (3)
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Fig. 1 Bistable switch decision network composed of two interacting proteins denoted by x and y, respec-
tively. a The system undergoes saddle-node bifurcation by increasing the ratio of binding affinities ηx ,
where �η∗

x is the required critical perturbation from the basal value ηxb to the saddle-node bifurcation point
ηxb + �ηx to achieve state transition from the low steady stable states xl to the high steady stable states xh.
Solid and dashed curves denote stable and unstable states of protein x, respectively. b A similar state transi-
tion occurs by increasing the basal production rate βx from the basal value βxb to the saddle-node bifurcation
point βxb + �βx . c The two-parameter bifurcation in the parameter space (ηx, βx) shows the underlying
relationship between ηx and βx for inducing the state transition through a saddle-node bifurcation (the black
solid curves). The system has only one steady stable state xl or xh when parameters ηx, βx are located in
the region I or III. Whereas, the system has two steady stable states xl and xh when parameters ηx, βx are
located in the region II. d The state transition can also be induced by combinatorially perturbing the basal
production rate βx and the basal degradation rate δy

The coordination of multiple perturbations can be written in a system with combinatorial
perturbation as:

dx

dt
= f (x, p1b + �p1, p2b + �p2), (4)

or in its normalized form:

dx

dt
= f (x, p1b + μ1�p∗

1, p2b + u2�p∗
2), (5)
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where μi ≥ 0 and �p∗
i = p̄i − pib(i = 1, 2), whose values are determined by (2) and (3),

respectively.
Set p1C = μ1�p∗

1 and p2C = μ2�p∗
2 . It is obvious that p1C and p2C denote the frac-

tional contributions simultaneously made by the parameters p1 and p2 to the occurrence of
the bifurcation in system (5). Note that piC/�p∗

i ≥ 0(i = 1, 2) due to the same pertur-
bation direction. By the definitions of the Chou-Talalay combination index and the Loewe
combination index, the detection of synergism with the parameters p1 and p2 depends on
the value of

CI = p1C

�p∗
1

+ p2C

�p∗
2

= μ1 + μ2. (6)

Parameters p1 and p2 are regarded as synergistic, antagonistic, or additive when CI < 1,
CI > 1, or CI = 1, respectively. The value 1/μi denotes the dose-reduction index of
parameter pi(i = 1, 2) [21, 23].

Now, the combinatorial control of cell fate decisions is finally transformed into a problem
of a two-parameter bifurcation of system (5). In addition, detection of synergism depends
on the location of the two-parameter bifurcation curve with p1C/�p∗

1 and p2C/�p∗
2 (or

equivalently μ1 and μ2) as control parameters, which can be obtained by using standard
bifurcation algorithms. If the bifurcation curve lies below the isobole representing additive
combinatorial effects, i.e., μ1 +μ2 = 1, then the perturbation pairs in any point locating on
the bifurcation curve act synergistically (Fig. 1a). Therefore, the bifurcation-based approach
provides a graphical method for deducing synergism.

2.2 Generality of the perturbation transformation

In fact, the perturbation form of system (2), i.e., pi �→ pib +�pi , is generally used and can
be easily realized. For instance, in combination drug therapies, adding an activator denoted
by aηx to a protein may affect ηx by the form

ηx �→ ηxb

(
1 + Dηx

KDηx

)
, (7)

where Dηx is the concentration of the activator aηx and KDηx
is the Michaelis-Menten con-

stant. The quantity Dηx /KDηx
denotes the intensity of influence by the activator aηx on ηx

[20, 29, 30]. Note that (7) can be rewritten as

ηx �→ ηxb + ηxb

Dηx

KDηx

, (8)

so that it can be simplified into the form in (2) if we set �ηx = ηxbDηx /KDηx
.

On the other hand, when an inhibitor I is introduced to weaken a certain regulatory
mechanism pi , we can use

pi �→ pib

1

1 + Dpi
/KDpi

(9)

to describe its influence [20, 29]. Similarly, (9) can be rewritten as

pi �→ pib + �pi (10)

with

�pi = −pib

Dpi
/KDpi

1 + Dpi
/KDpi

. (11)
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2.3 Optimal combinatorial perturbation strategies

After detecting synergism by combinatorial perturbation of specific parameter pairs, we
know that any perturbation pair located on the two-parameter bifurcation curve act synergis-
tically. In addition, an optimal combinatorial control strategy in all synergistic pairs needs
to be determined. In fact, besides location on the bifurcation curve, the optimal combina-
torial strategy depends also on the objective function denoted by g(μ1, μ2, c1, c2), which
may have different forms based on the choices of objective, involving the least cost, the
least side-effects, dose and toxicity reduction, drug resistance minimization and so on.

Take a linear objective function g(μ1, μ2, c1, c2) = c1μ1 + c2μ2 as an example. The
lines satisfying Tc = c1μ1 + c2μ2 are the level sets of an objective function that move up
and down, depending on the choice of Tc values. If we choose the least cost as the objective,
the optimal combinatorial strategy will be the intersection point of the two-parameter bifur-
cation curve and the line Tc = c1μ1 + c2μ2 with the minimum Tc. Of course, the objective
function is not necessarily linear. The non-linear situation can be similarly discussed.

3 Results

3.1 Synergism and antagonism in a multistable decision model

We apply our approach to a multistable decision network composed of two interacting pro-
teins. It involves several regulatory mechanisms including auto-regulation, cross-regulation,
binding and unbinding of transcription factors to the promoters, transcriptions, translations,
and degradations [7] and takes the form

dx

dt
= βx

(
1 + ρxx

2 + vxηxy
2 + μxηxyx

2y2

1 + x2 + ηxy2 + ηxyx2y2

)
− δxx, (12)

dy

dt
= βy

(
1 + ρyy

2 + vyηyx
2 + μyηyxx

2y2

1 + y2 + ηyx2 + ηyxx2y2

)
− δyy, (13)

where x and y are state variables that present the concentrations of two proteins, respec-
tively. The parameters βi and δi (i = x, y) are the basal production rates and degradation
rates of the two proteins. The parameters ηx , ηy , ηxy , and ηyx are the ratios of bind-
ing affinities in the case of transcriptional interactions. The parameters ρi (i = x, y) are
the auto-activation coefficients and vi (i = x, y) quantify the cross-activation or cross-
inhibition strengths, depending on their values, i.e., mutual inhibition when 0 < vi < 1
and mutual activation when vi > 1. The model and its simplified form are often used to
describe the coexistence of multiple stable states in cell fate decisions [31–33]. As shown
in [7], strong auto-activation (ρx � 1, ρy � 1) in the model (12)–(13) is necessary for the
existence of multiple stable states. The existence of bistable states also needs strong cross-
activation (vx � 1, vy � 1) under which coexistence of more than two stable states is not
possible. To illustrate the ideal of the approach, strong auto-activation and cross-activation
strengths of the two proteins are chosen so as to obtain bistability. The standard values of
all parameters are shown in Table 1.
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Table 1 Standard parameter values in the model (12)–(13)

Parameters Definitions Values Reference

vx, vy Cross-activation strengths of proteins x and y 18, 16 [7]

ρx, ρy Auto-activation strengths of proteins x and y 10, 15 [7]

βx, βy Basal production rates of proteins x and y 1.4, 1.2 [7]

ηx, ηy Ratios of binding affinities in the case of transcriptional interactions 0.3, 0.25 [7]

δx, δy Basal degradation rates of proteins x and y 10, 14 [7]

μx, μy Joint regulatory strengths 0.1, 0.1 [7]

ηxy, ηyx Joint binding constants 0, 0 [7]

The occurrence of state a transition depends on the change of regulatory mechanisms
that can be embodied by introducing a perturbation to a specific parameter. For instance, we
can rewrite the ratio of binding affinity ηx into the form:

ηx �→ ηxb + �ηx, (14)

where ηxb is the basal value of ηx and �ηx is the perturbation. Transformation (14) is
generally used in biological systems and can be easily realized by some control mechanisms.
For instance, the intake of drugs in drug therapies may promote or suppress the intensity of
interactions between molecular components, as shown by (7) and (9), respectively.

A saddle-node bifurcation occurs at η̄x when the perturbation �ηx is increased from
zero to a critical value �η∗

x with the relationship �η∗
x = η̄x − ηxb. If the perturbation is

further increased, the system (12)–(13) achieves a state transition from a lower branch, xl ,
to a higher one, xh, as shown in Fig. 1a. The critical value �η∗

x is the minimal perturbation
required to induce the bifurcation by solely perturbing ηx . Similar cases also occur when
parameters βx and δy are solely perturbed, as shown in Fig. 1b, c and d. In addition, the state
transitions induced by the saddle-node bifurcation can be achieved by jointly perturbing βx

and ηx , or jointly perturbing βx and δy (see Fig. 1c and d). The difference between jointly
perturbing the two pairs of the parameters (ηx , βx) and (βx , δy) when inducing the state
transition is their efficiency. Undoubtedly, it is an interesting topic from the point of view
of understanding the regulatory mechanism of normal cellular functions and pathological
conditions.

We now identify if concurrent variations in a pair of the parameters ηx and βx can act
synergistically. In other words, we detect if synergism occurs by combinatorially perturbing
ηx and βx . Similar to (5), the combinatorial perturbations is in its normalized form:

(ηx, βx) �→ (ηxb + μ1�η∗
x, βxb + μ2�β∗

x ). (15)

Actually, transformation (15) is general and even includes the case of single parameter
perturbation if we set (μ1, μ2) = (1, 0) or (μ1, μ2) = (0, 1). Therefore, the normalized
isobole plotted in the plane of (ηxC/�η∗

x , βxC/�β∗
x ) passes through two boundary points

(1, 0) and (0, 1) (see the dashed lines in Fig. 2a and b). The two-parameter bifurcation curve
is located fully below the isobole, which means that ηx and βx are a synergistic pair. In
other words, a perturbation pair in any point located on the bifurcation curve (except two
boundary points) satisfies the condition CI = ηxC/�η∗

x +βxC/�β∗
x < 1 and therefore acts

synergistically, as shown by the solid curve in Fig. 2a.
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Fig. 2 Synergistic and antagonistic combinatorial perturbations, where βxC/�β∗
x , ηxC/�η∗

x and δyC/�δ∗
y

are ratios of required values when combinatorially and solely perturbed to induce the state transition. a The
state transition from the low expression xl to the high expression xh through saddle-node bifurcation can
also be achieved by combinatorially perturbing basal production rate βx and the binding affinity strength ηx .
The bifurcation curve located below the control line, which means the concurrent perturbations of βxC and
ηxC are synergistic, i.e., CI = ηxC/�η∗

x + βxC/β∗
x < 1. b The state transition induced by combinatorially

perturbing the basal production rate βx and the basal degradation rate δy . The concurrent perturbations of
βxC and δyC are antagonistic because CI = δyC/�δ∗

y + βxC/β∗
x > 1

The case of antagonism is shown in Fig. 2b in which concurrent perturbations of βx and
another parameter δy have a lower efficiency than perturbing each of them solely. Following
the approach introduced above, we can identify the efficiency of combinatorial perturbations
of all pairs of parameters.

3.2 Classification of combinatorial perturbations

After performing concurrent perturbations of all pairs of parameters, we find that there are
two other cases of combinatorial effects besides the cases of synergism and antagonism, i.e.,
the combinatorial effects can be also additive or hybrid. More exactly, the combinatorial
effects of concurrently perturbing all pairs of parameters can be classified into the following
fours cases.

1. Synergistic if CI = μ1 + μ2 < 1 for all (μ1, μ2) except the two boundary
points. Synergistic perturbation combinations allow lower quantities of each constituent
perturbation and consequently lower side effects.

2. Antagonistic if CI = μ1 + μ2 > 1 for all (μ1, μ2) except the two boundary points.
3. Additive if CI = μ1 + μ2 = 1 for all (μ1, μ2), i.e., the effect of combinatorial per-

turbations is consistent with the individual perturbation potencies. The term additivity
provides the basis for assessing synergism and antagonism.

4. Hybrid if there exist some (μ′
1, μ

′
2) such thatμ

′
1+μ′

2 > 1 and some other (μ′′
1, μ

′′
2) such

that μ′′
1 + μ′′

2 < 1. In other words, concurrent combinations are found to be synergistic
over some combinations and antagonistic over other combinations.

Different combinatorial effects of concurrent perturbing pairs of parameters are shown
in Fig. 3. For instance, synergism is present when the pair of parameters, the activation
rate ρx and the basal production rate βx , are perturbed. In other words, the response to the
combinatorial perturbation of parameters ρx and βx is greater than the sum of the response
to perturbing individual parameters, therefore allowing for lower perturbation quantities,
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Fig. 3 The classification of bifurcation-based combinatorial perturbations. a Combinatorial regulation of
auto-activation strength ρx and basal production rate ηx presents synergism, i.e., ρxC/�ρ∗

x +βxC/�β∗
x < 1.

b Combinatorial regulation of auto-activation strength ρx and basal degradation rate δx presents antagonism,
i.e., ρyC/�ρ∗

y + δxC/�δ∗
x > 1. c The additivity of combinatorial regulation is shown by changing basal

production and degradation rates δy and βy , i.e., βyC/�β∗
y + δyC/�δ∗

y = 1. d The hybrid case including
synergistic, antagonistic, and additive effects can be obtained by jointly perturbing the basal degradation rate
δy and cross-activation strength vx

as shown in Fig. 3a, in which the two-parameter saddle-node bifurcation curve in the
(ρxC/�ρ∗

x , βxC/�β∗
x ) plane falls above the isobole satisfying ρxC/�ρ∗

x + βxC/�β∗
x = 1

(dashed line). On the contrary, concurrent variations in the activation rate ρy and the
degeneration rate δx act antagonistically, as shown in Fig. 3b.

Of course, not concurrent variations in all pairs of parameters act either synergistically
or antagonistically. The two-parameter saddle-node bifurcation curve (solid line) in the
(δy , βy) plane falls fully on the isobole, as shown in Fig. 3c. Therefore, the combinatorial
effects of concurrent perturbing the parameters βy and δy are additive, which implies that
the combinatorial perturbations of βy and δy have the same contribution to perturbing each
of them solely. One also notes that combinatorial effects of concurrently perturbing the pair
of parameters δy and vx are hybrid, as shown in Fig. 3d. In other words, the combinatorial
effects can be synergistic or antagonistic, depending on the perturbation quantities.
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3.3 Robustness of synergism and antagonism

It is not difficult to detect synergism or antagonism by integrating combinatorial pertur-
bations and the bifurcation-based approach. However, besides detection of synergism and
antagonism, if sensitive dependence of combinatorial effects on the choices of perturbation
quantities, i.e., their robustness, is also crucial. This will determine whether the synergism
observed at the basal parameter values can be kept when the basal values are changed.

The perturbations of parameter pairs (ρx , βx) and (ρy , δx) show synergism and antag-
onism, as shown in Fig. 3a and b, respectively. To study their robustness, we choose five
distinct basal values of βx , i.e., βxb + 1/2�β∗

x , βxb + 1/4�β∗
x , βxb, βxb − 1/4�β∗

x , and
βxb − 1/2�β∗

x , where �β∗
x is the perturbation required corresponding to the basal value

βxb. Five two-parameter saddle-node bifurcation curves corresponding to the five βx val-
ues can be obtained, as shown in Fig. 4a. One can see that the synergism observed at the
basal value βxb can be retained when the basal value is changed, showing good robustness.
Similar results can be obtained for the antagonistic case, as shown in Fig. 4b.

Different from good robustness of synergism and antagonism, the additive and hybrid
cases may show poor robustness. The reason for poor robustness in the additive case is
due to its strong linearity. When the linearity is broken, the additive property can not be
retained, therefore showing poor robustness. In contrast, for the hybrid case, it is easy to
verify that its robustness is also poor because the combinatorial effects in the hybrid case can
be synergistic or antagonistic, depending on the choices of parameter values or perturbation
quantities. In addition, the transition between synergism and antagonism or vice versa in the
hybrid case may also occur. In applications, we usually need to avoid the occurrence of the
hybrid case due to its sensitivity and nondeterminacy.

3.4 Optimal combinatorial strategies in the decision model

Assuming that the pair of parameters (ρx , δx) are combinatorially perturbed, we have
μ1 = ρxC/ρ∗

x and μ2 = δxC/�δ∗
x . The lines satisfying Tc = c1μ1 + c2μ2 are the level
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Fig. 4 Robustness of synergism and antagonism when basal production rate βxb takes different values. a
Synergism of basal production rate βx and auto-activation strength ρx . b Antagonism of basal degradation
rate δx and auto-activation ρx



Bifurcation-based approach reveals synergism and optimal... 409

Ratio of degradation δ
xC

/Δ δ
x
*

0 0.2 0.4 0.6 0. 1.2

R
at

io
 o

f 
au

to
-a

ct
iv

at
io

in
 ρ

xC
/Δ

ρ x*

0

0.2

0.4

0.6

0.8

1

1.2

Ratio of degradation δ
xC

/Δ δ
x
*

0 0.2 0.4 0.6 0. 8 18 1 1.2

R
at

io
 o

f 
au

to
-a

ct
iv

at
io

n 
ρ xC

/Δ
ρ x*

0

0.2

0.4

0.6

0.8

1

1.2
Saddle-node bifurcation
Control
 l

1
: 2.0μ

1
+2.89μ

2
=1.83

Optimal solution
 l

2
: 3.0μ

1
+2.48μ

2
=2.15

Optimal solution

a

Optimal path of
 combinatorial
 perturbations

b
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red points). b An example that shows how to find an optimal path (the green solid curve) of combinatorial
perturbations

sets of objective functions that move up and down, depending on the choice of Tp values.
If we choose the least cost as the objective, the optimal combinatorial strategy will be the
intersection point of the two-parameter bifurcation curve and the line Tc = c1μ1 + c2μ2
with the minimum Tc. For instance, choosing a price pair (2.0, 2.89), we can get an optimal
perturbation pair (0.6039, 0.2153) and a minimum total cost Tc = 1.83, i.e., the optimal per-
turbation pair (0.6039, 0.2153) is the intersection point of the bifurcation curve and the line
2.0μ1+2.89μ2 = 1.83, as shown by the red dot in Fig. 5a. A different price pair (3.0, 2.48)
gives another optimal pair (0.2903, 0.5158) with a minimum cost Tc = 2.15, as shown
by the blue dot in Fig. 5a. If multiple intersection points are found, other objectives, e.g.,
the least side-effects, need to be further chosen to determine which optimal combinatorial
strategy is much better.

Note that the normal direction of the lines Tc = c1μ1 + c2μ2 is (c1, c2)
T. Therefore, the

value of function c1μ1 + c2μ2 decreases with its movement toward the lower-left region.
Following the approach to determine the optimal combinatorial strategy, it is not difficult to
identify the optimal path of combinatorial perturbations because the system dynamics may
change when combinatorial perturbations are adopted, resulting in new optimal combinato-
rial strategies that need to be further determined. For instance, when the value of parameter
βx is varied, the optimal path of combinatorial perturbations with βx = 0.8, 0.6, 0.45, 0.3,
0.1 (from top to bottom) and price pair (c1, c2) = (2.0, 2.89) is shown by the green curve
in Fig. 5b.

3.5 Synergism in the CREB model

The bifurcation-based approach is applied to a biologically realistic model describing inter-
locked positive and negative feedback loops governing the interaction of two proteins,
CREB1 and CREB2. Via CRE elements near the promoters of both creb1 and creb2 genes,
these loops can be generated by auto- and cross-regulation of CREB proteins. Two pro-
teins are assumed to bind competitively to the same cAMP-response elements. One, as the
activator, activates expression of creb1 and creb2 genes, and enhances its own synthesis
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Table 2 Standard parameter values in the model (16)–(17)

Parameters Definitions Values References

vx, vy (min−1) Synthesis rates of CREB1 and CREB2 0.4, 0.01 [35]

Kx, Ky (nM) Dissociation constants of CREB1 and CREB2 25, 10 [28, 35]

rbas,x , rbas,y (min−1) Basal production rates of CREB1 and CREB2 0.03, 0.02 [28, 35]

kdx, kdy (min−1) Degeneration rates of CREB1 and CREB2 0.04, 0.005 [28, 35]

through the positive auto-regulation loop. The other, as the repressor, represses transcription
of both genes, and represses its own synthesis. In addition, CREB2 also represses the syn-
thesis of CREB1 through the negative feedback loop. The cAMP-response element binding
(CREB) proteins are involved in many cellular processes and have been investigated widely
[28, 34, 35]. A minimal model has also been developed to describe the interactions of CREB
proteins by omitting some regulations [35]. The dynamics of the model are governed by the
following equations:

d[CREB1]
dt

= vx

[
[CREB1]2/Kx

1 + [CREB1]2/Kx + [CREB2]2/Ky

]
− kdx [CREB1] + rbas,x , (16)

d[CREB2]
dt

= vy

[
[CREB1]2/Kx

1 + [CREB1]2/Kx + [CREB2]2/Ky

]
− kdy [CREB2] + rbas,y . (17)

The parameters involved in the model are their synthesis rates vx , vy , their dissociation
constants, Kx , Ky , their degeneration rates kdx , kdy , and their basal production rates rbas,x ,
rbas,y . Standard values of these parameters are the same as those used in [28, 35], and given
in Table 2. Non-linear dynamics including bistability and oscillation are involved in the
CREB model. There are eight parameters in the model (16)–(17) and in total 28 possible
distinct two-parameter combinations. For the bistable case, when the [CREB1]/[CREB2]
ratio in the absence of parameter changes is chosen as the control, the percentage increase of
the ratio over the control to perturbations of the 28 parameter pairs has been investigated and
it has been shown that the parameter pair (vx, kdy) exhibits a strong degree of synergism
[28].

To apply our method to the CREB model, we define the degree of bifurcation-based
synergistic combinatorial perturbation, following the definition of the degree of non-linear
blending synergism in [28]. Here, the maximum distance between the two-parameter bifur-
cation curve and the control line is defined as the degree of synergism, i.e., the larger the
distance is, the better the combinatorial effects become. With the standard parameter values
in Table 2, protein CREB1 is at a low stable state. An increase in synthesis rate vx of CREB1
enhances the strength of the positive auto-regulatory loop of CREB1, thus promoting the
state transition from a low stable state to a high stable one via saddle-node bifurcation. In
addition, an acceleration in the degradation rate kdy of CREB2 suppresses not only the neg-
ative auto-regulatory loop of CREB2, but also the negative feedback between two CREB
proteins, thus inducing a similar state transition to the case of increasing vx . Furthermore, it
is found that concurrent increases of parameters vx and kdy exhibit a good synergism when
inducing a state transition. We also detect the synergism of all 28 parameter pairs by using
the bifurcation-based approach and find that concurrent perturbations of vx and kdy have a
stronger synergism than other parameter pairs, as shown in Fig. 6, which is consistent with
the results in [28] and further supports the validity of our approach.
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Fig. 6 Different combinatorial effects in the CREBmodel. a Concurrent perturbations of synthesis rate vx of
CREB1 and degradation rate kdy of CREB2 show a stronger synergism; b Synergism induced by combinato-
rially perturbing synthesis rate vx of CREB1 and degradation rate kdx of CREB1; c Additive effects induced
by combinatorial perturbations of synthesis rate vx and dissociation constant Kx ; d Synergism induced by
combinatorially perturbing dissociation constant Kx of CREB1 and degradation rate kdy of CREB2

4 Discussion

Recent developments in genetic engineering have made the design and the implementation
of tunable synthetic biomolecular circuits realistic from both theoretical and experimen-
tal viewpoints [36], which makes efficiently modulating and even rewiring endogenous
networks for therapeutic applications realistic. The bifurcation-based technique provides
a simple procedure to combinatorially perturb endogenous networks if their mathematical
models have been developed. This is particularly relevant since combination drug thera-
pies have been applied in the treatment of diseases such as cancer, AIDS, neurological
disorders, diabetes, mycobacterial diseases and many other chronic infectious diseases [21,
37, 38]. The potential benefits of synergistic therapy are drug dose and toxicity reduction,
minimizing undesirable effects and drug resistance. Therefore, many experimental and the-
oretical works have been performed to understand the molecular mechanisms underlying
the synergism determined by combinatorial drugs [21, 22, 37–39].
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In this paper, we develop a new methodology based on combinatorial perturbations and
bifurcation analysis to detect synergism induced by concurrent perturbations of parame-
ter pairs or different regulation combinations. The approach depends only on stable states,
therefore; the effects of transient states of molecular components can be fully neglected.
In addition, the bifurcation-based approach is computationally efficient because two-
parameter bifurcation curves can be easily obtained. These results have implications for
the rational design of combination drugs and other combinatorial control strategies, e.g.,
combinatorial control of gene expression.

The synergism of combinatorial perturbation was investigated by using the bifurcation-
based method. In fact, the method holds for a general class of biological systems although it
is just presented by studying the state transitions of bistable systems in which only saddle-
node bifurcation is involved. As mentioned in Section 1, the method is associated with state
transitions via occurrence of different kinds of bifurcations. Thus, the bifurcation-based
method, besides being applied to the case of bistability, is also feasible when used to check
synergism of combinatorial perturbation relating to state transitions via other bifurcations,
e.g., pitchfork, transcritical, and Hopf bifurcations.

It is worth noting that many approaches address only the efficiency of combinatorial
perturbations and ignore other correlated factors. For instance, in the studies of combina-
tion drug therapies, suppression of resistance, reduced toxicity and other aims that often lie
outside the purview should be amenable to quantitative study. In addition, most combina-
tion therapies focus mainly on fixed-dose combinations of drugs, which may be a barrier to
the development of combinatorial drug therapies because the synergism may depend on the
initial setting of individual parameters. Indeed, quantitative analysis of combinatorial per-
turbations should include the process of both detecting synergism and determining optimal
perturbation quantities in synergistic pairs, which are the main desirable properties of the
bifurcation-based approach.
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