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Protein-Protein Interactions (PPIs) play vital roles in most biological activities. Although the development of high-throughput
biological technologies has generated considerable PPI data for various organisms, many problems are still far from being solved. A
number of computational methods based on machine learning have been developed to facilitate the identification of novel PPIs. In
this study, a novel predictor was designed using the Rotation Forest (RF) algorithm combined with Autocovariance (AC) features
extracted from the Position-Specific Scoring Matrix (PSSM). More specifically, the PSSMs are generated using the information of
protein amino acids sequence. Then, an effective sequence-based features representation, Autocovariance, is employed to extract
features from PSSMs. Finally, the RF model is used as a classifier to distinguish between the interacting and noninteracting protein
pairs. The proposed method achieves promising prediction performance when performed on the PPIs of Yeast, H. pylori, and
independent datasets. The good results show that the proposed model is suitable for PPIs prediction and could also provide a useful

supplementary tool for solving other bioinformatics problems.

1. Introduction

Proteins are the most versatile and important macro-
molecules in life. They are vital for nearly all of the activity
in the cell, including signaling cascades, metabolic cycles,
and DNA transcription and replication [1]. Researchers found
out that proteins rarely act as isolated agents to achieve their
function. As expected, proteins are mutually matched with
each other, forming a huge and complex network of Protein-
Protein Interactions (PPIs) [2]. Therefore, research on PPIs
has become the core issue of systems biology [3, 4].

So far, a variety of experimental techniques have been
developed and designed for the detection of PPIs. The high-
throughput techniques including Yeast Two-Hybrid (Y2H)
screen [5-7], Tandem Affinity Purification (TAP) [2], and
Mass Spectrometric Protein Complex Identification (MS-
PCI) [6] spend considerable amounts of time, money, and
manpower for detecting PPIs. In addition, PPIs obtained by

biological experiments at present can only cover a small part
of the whole PPIs network [8]. Therefore, the development
of reliable computational methods which can improve the
recognition efficiency has important significance [9-11].

A large number of in silico methods for predicting PPI
have emerged [12-14]. These methods are usually based on
the information of gene neighboring [15], gene coexpression
[15], phylogenetic relationship [16], gene fusion events [17],
three-dimensional structural information [18], and so on [19].
However, the application of these methods is limited [20, 21],
because they need to rely on preknowledge of the protein.
Recently, the methods based on the sequence information of
protein amino acids for detecting PPI have been proposed
[22-24]. For example, You et al. [25] used only protein
sequence information to predict PPIL, in which a kind of
method called PCA-EELM (Principal Component Analysis-
Ensemble Extreme Learning Machine) is designed. When
performed on the PPIs data of Saccharomyces cerevisiae, this
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model yields 87.00% prediction accuracy, 86.15% sensitivity,
and 8759% precision. Martin et al. [26] designed a model
to detect PPIs by using the extended signature descriptor,
which was extended to protein pairs. In order to verify the
predictive ability of this method, when using 10-fold cross-
validation applied on the H. pylori and Yeast datasets, the
accuracy of this method is from 70% to 80%. Shen et al.
[11] considered the residues local environments and designed
the conjoint triad method. When performed on human PPIs
dataset, this method has yielded 83.9% accuracy. Guo et
al. [9] combined Support Vector Machine classifier with
Automatic Covariance features extracted from the protein
sequences to predict PPIs in Saccharomyces cerevisiae. The
average prediction accuracy of the method reached 86.55%.
In this study, we presented a sequence-based method
which combines the RF classifier and Autocovariance (AC)
algorithm to predict the interacting protein pairs [9, 27,28]. A
novel protein feature representation is derived from Position-
Specific Scoring Matrix (PSSM) [29], which gives the log-
odds score of specific residue replacement based on specific
location of evolutionary information. Then, an effective
sequence-based protein representation, Autocovariance, is
employed to extract features from PSSMs. The interaction
among a certain number of amino acid sequences was
calculated by AC algorithm. Thus, this model took into
account the proximity effect and made it possible to find
patterns throughout the sequence. Finally, the ensemble RF
classifier is established, which is using the PSSM-derived
features as input. In the experiments, the proposed model was
evaluated on Yeast and H. pylori PPI datasets. The experiment
results show that our model achieved 97.77% and 84.84%
prediction accuracy with 95.57% and 82.77% sensitivity on
these two datasets. In addition, we evaluate the proposed
model on independent datasets of the C. elegans, E. coli, H.
sapiens, and M. musculus PPIs and achieved 96.01%, 97.73%,
98.30%, and 96.81% prediction accuracy, respectively.

2. Materials and Methodology

2.1. Data Sources. In the experiments, we used nonredundant
Yeast data, which was gathered in Saccharomyces cerevisiae
core subset of the Database of Interacting Proteins (DIP) [30],
and the version is DIP 20070219 by Guo et al. [9]. Two meth-
ods, Paralogous Verification Method (PVM) and Expression
Profile Reliability (EPR) [31], have proven the reliability of
the core subset. There are 5966 interaction pairs contained
in the core subset. Sequences with less than 50 amino acid
residues were removed because they might just be fragments.
The final positive dataset was comprised of the remaining
5943 protein pairs. The CD-Hit [32, 33] algorithm was further
used with less than forty percent identity to decrease pairwise
sequence redundancy. By doing this, the rest of the 5594
protein pairs constructed the positive dataset. We chose 5594
additional protein pairs in different subcellular localization to
construct the negative dataset. Finally, the complete dataset
was constructed; it was composed of 11188 protein pairs, half
of which were positive and the other half were negative.

We also tested our method using two-hybrid mea-
surements of H. pylori introduced by Rain et al. [34].
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The H. pylori dataset (available at http://www.cs.sandia.gov/
~smartin/software.html) contains 2916 protein pairs. There
are interacting pairs and noninteracting pairs, each account-
ing for fifty percent. This dataset provides a platform for
comparing our approach and other approaches [25, 26, 35-
38].

2.2. Position-Specific Scoring Matrix (PSSM). Position-
Specific Scoring Matrix is first used in the detection of
distantly related protein, which is proposed by Gribskov
et al. [29]. Its feasibility has been verified in protein
secondary structure prediction [39], prediction of disordered
regions [40], and protein binding site prediction [41].
Structure of a PSSM is L rows and 20 columns. Suppose that
PSSM = {,; : i = 1,...,L, j = 1,...,20}. Rows of the
matrix represent the protein residues and columns represent
the naive amino acids. Each matrix can be represented by the
following formula:

91,1 91,2 91,20

02,1 92,2 62,20
PssM=| |, @)

6L,l 0L,2 6L,20

where L is the length of the corresponding protein sequence
and 6, ; in the i row of PSSM meant the probability of the
ith residue being mutated into type j of 20 native amino
acids during the procession of evolutionary information in
the protein from multiple sequence alignments.

In this experiment, we introduced the Position-Specific
Iterated BLAST (PSI-BLAST) program [42] and SwissProt
dataset on a local machine to produce PSSMs. PSI-BLAST
is more sensitive compared to BLAST, particularly in the
discovery of new members of a protein family. To generate the
PSSM, PSI-BLAST needs sequence contrast with very high
sensitivity between the input proteins and the proteins in the
database, and all sequence entries in the SwissProt database
have been carefully verified by computer tools and access
to relevant literature through the experience of molecular
biologists and protein chemists, so we put SwissProt database
as the optimal comparison database in the experiment. And
to get broad and high homologous sequences, we held
the other parameters constant, where the e-value is set to
0.001 and the number of iterations is set to 3, respectively.
Applications of PSI-BLAST and SwissProt database can be
downloaded from http://blast.ncbi.nlm.nih.gov/Blast.cgi.

2.3. Autocovariance (AC). As one of the most effective ana-
lyzing sequences of vectors statistical tools, the AC has been
widely used in protein family classification by researchers
[43, 44], prediction of secondary structure content [45, 46],
and protein interaction prediction [9]. AC is a variable
expressed in a given protein sequence of two residues’ average
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correlation, which can be calculated by

L-lg
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where lg is the distance between residues, A represents the Ath
amino acid, L denotes the length of the protein sequence, and
M, g indicates the matrix score of amino acid A at position 6.

Using the above expression, the value of AC variable M
can be figured out: M = Ig x N, where N is the number
of descriptors. When all the data in the database complete
the operation, each protein sequence was represented as a
vector of AC variables; a protein pair was characterized by
concatenating the vectors of two proteins in this protein pair.

2.4. Rotation Forest Classifier. Rotation Forest (RF) is a
popular ensemble classifier and this idea originated from
Random Forests classifier. Each decision tree in Rotation
Forest is trained on the dataset in a rotated feature space. As a
decision tree learning algorithm establishes the classification
regions using hyperplanes parallel to the feature axes and a
small rotation of axes may build an entirely different tree,
the diversity of RF can be guaranteed by the transformation.
Thus, RF model can enhance the accuracy for individual
classifier and the diversity in the ensemble at the same
time. It is more robust compared to the previously proposed
ensemble systems, such as Random Forest [32, 47], Bagging
[33, 48], and Boosting [49]. The RF algorithm is described as
follows.

Assuming {x;, y;} contains N training samples, wherein
x; = (X, Xp ..., %;p) is a D-dimensional feature vector.
Suppose that X is the training sample set (nx D matrix), which
is composed of n observation feature vector composition; S
denote the feature set, and Y denote the corresponding labels,
andthen X = (X, %5,...,%,) Y = (3, Y3+ -.» )" . Assume
a feature set with an appropriate factor randomly divided into
K subsets of the same size; in this case, the decision trees L in
the forest can be expressed as T}, T,, . .., T, respectively. The
execution steps of the training set for a single classifier T; are
shown below:

(1) Select the appropriate parameter K which is a factor
of n; let S be randomly divided into K parts of the
disjoint subsets; each subset contains a number of
features, C = n/k.

(2) From the training dataset X, select the corresponding
column of the feature in the subset T} ; and form a new
matrix X;; ;, followed by a bootstrap subset of objects

extracting 75 percent of X constituting a new training

!
set Xl-)j.

(3) Matrix X;’j is used as the feature transform for
producing the coeflicients in a matrix M; ;, with jth
column coefficient as the characteristic jth compo-
nent.

(4) The coefficients obtained in the matrix M; j are
constructed as a sparse rotation matrix R;, which is
expressed as follows:

—)L(,l)
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In the prediction period, the test sample x, generated by
the classifier T; of di,j(XRft ) to determine x, belongs to class
;. Next, the class of confidence is calculated by means of the
average combination, and the formula is as follows:

L
00 = 0., (XRY). @
i=1

Then, assign the category with the largest y;(x) value to
X.

3. Results and Discussions

3.1. Evaluation Measures. In this section, 5-fold cross-
validation is used to evaluate the performance of the pro-
posed method, in which all samples are split into five subsets.
Therefore, one subset is the test set and the remaining four
subsets are the training set. Evaluation criteria used in our
study include overall prediction accuracy (Accu.), sensitivity
(Sen.), precision (Prec.), and Matthews correlation coefficient
(MCC). The calculation formulas are listed below:

TP + TN
Accu. =
TP + TN + FP + FN
TP
Sen. =
TP + FN
TP
Prec. = —— (5)
TP + FP
MCC

- TP x TN — FP x FN
/(TP + FP) (TP + FN) (IN + FP) (IN + FN)’

where True Positive (TP) represents the number of samples
that are correctly detected as positive, True Negative (TN)
represents the number of samples that are correctly detected
as negative, False Positive (FP) represents the number of
samples that are incorrectly detected as positive, and False
Negative (FN) represents the number of samples that are
incorrectly detected as negative. We also produce Receiver
Operating Characteristic (ROC) [50] curves to assess the
capability of the classifier. Typically, the threshold value of the
classifier is 0.5 by default. When a new set of prediction results
is accepted, the threshold value will be changed with the True
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F1GURE 1: The workflow of our method.

Positive Rate versus the False Positive Rate; this change can be
drawn out with graphics. In addition, the Area Under a Curve
(AUC), with score ranges from 0 to 1, can also be expressed by
the ROC curve. When a predictor of the AUC value is greater
than another predictor, this predictor is regarded as a better
one. The workflow of our method is shown in Figure 1.

3.2. Assessment of Prediction Ability. In order to achieve
better results in the experiment, we used the grid search
method to explore the parameters of the proposed model;
concrete has parameter lg for AC and parameters K and L
value for RE Firstly, we discuss the parameters of AC; the
maximal possible Ig is the shortest sequence length (50 amino
acids) on the Yeast dataset. In this experiment, several Igs
(Ig = 5,10, 15,20, 25, 30, 35,40, 45) were evaluated in order
to achieve the best performance of the protein sequences.
The prediction results were shown in Figure 2. As seen from
the curve in the graph, the prediction accuracy gradually
increases when the parameters Ig of the AC algorithm change
from 5 to 40, and it decreases when the lg value changes
from 40 to 45. There is a peak point with an average accuracy
of 95.86% when the value of Ig was 40. We can draw a
conclusion; when the parameters lg of the AC algorithm
are less than 40 or the number of amino acids is less than
40, protein sequences will lose some useful information, but
larger lg may introduce noise rather than improvnig the
performance of the model. So we set the value of Ig as 40.
Secondly, we discuss the parameters of the RE Based on
previous studies, we chose PCA as Rotation Forest conversion
method. Additionally, the J48 decision tree was selected as the
base classifier from the WEKA database. In this experiment,
two parameters (the number of feature subsets K and the
number of decision trees L) were tested by the grid search
method in the range of values to achieve better performance.
Figure 3 shows the prediction results of different parameters.
We can see that accuracy fluctuates at the beginning and then
is slowly enhanced with the increase of L, but it seems to
be not closely related to the increase of K. Considering the
accuracy rate and the time cost of the algorithm, as a result,
we obtained optimal parameters of K = 20 and L = 3. For the
H. pylori dataset, we use the AC to extract features and RF
validation with the same parameters with the Yeast dataset.
The 5-fold cross-validation method was introduced to
reduce the dependence of the data on the prediction model
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FIGURE 2: The average prediction accuracy corresponding to differ-
ent Ig of the AC algorithm in the proposed model.

TaBLE 1: 5-fold cross-validation results obtained by using the
proposed method on Yeast dataset.

Testing set Accu. (%)  Prec. (%) Sen. (%) MCC (%)
1 97.59 100.00 95.14 95.28

2 97.54 100.00 95.03 95.19

3 98.17 100.00 96.40 96.40

4 97.59 100.00 95.01 95.27

5 97.99 99.82 96.27 96.06
Average 97.77 £ 0.29 99.96 + 0.08 95.57 + 0.70 95.64 + 0.55

[51-55]. Table1 lists all of the prediction results; the pre-
diction accuracies were greater than 97.54%, the precisions
were greater than 99.82%, and the sensitivities were greater
than 95.01%. Our proposed method can yield an average
prediction accuracy of 97.77 + 0.29%. The ROC curves
performed on Yeast dataset were shown in Figure 4. In this
figure, x-ray depicts False Positive Rate (FPR) while y-ray
depicts True Positive Rate (TPR).

3.3. Comparison with the Proposed Method on H. pylori
Dataset. For analyzing the ability of the proposed method
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TABLE 2: 5-fold cross-validation results obtained by using the
proposed method on H. pylori dataset.

Testing set  Accu. (%) Prec. (%) Sen. (%) MCC (%)
85.76 87.45 82.87 75.52
2 83.53 82.65 84.38 72.49
3 86.11 87.55 83.57 76.02
4 81.99 83.27 79.51 70.42
5 86.82 90.88 83.55 77.06
Average  84.84+£2.01 86.36+3.40 82.77+190 74.30+2.76
100 0.99
g 9g 0.98
§ 9% 0.97
5 o 0.96
< | W L 095
30 40 o SRR T 0.94
oS ——— 0 50 60 foos
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FIGURE 3: Accuracy surface obtained from Rotation Forest for
optimizing regularization parameters K and L.

to predict PPIs, we tested its ability in different dataset. We
used the proposed method to predict interactions on the
H. pylori dataset. A total of 2916 proteins were included in
this database, half of which were interacting pairs and the
other half were noninteracting pairs. Our prediction results
were shown in Table 2. We can see an accuracy, precision,
sensitivity, and MCC of 84.84%, 86.36%, 82.77%, and 74.30%,
respectively. The ROC curves performed on H. pylori dataset
were shown in Figure 5.

3.4. Comparison with Previous Method. In order to more
clearly assess the proposed method, we compared its results
with the previous models on the Yeast dataset. As a classic
classification algorithm, Support Vector Machine has a very
superior performance in identifying interacting and nonin-
teracting protein pairs. For example, Guo et al. [9] proposed
a new method with Support Vector Machine combined with
Autocovariance to predict Protein-Protein Interactions in
Yeast dataset, and the results have proven its ability. Specif-
ically, we use the same feature extraction method (AC) com-
bined with PSSMs to compare the classification performance
between Rotation Forest and SVM in the same dataset. We
use grid search method to optimize the parameters of Support
Vector Machine and set ¢ = 0.5 and g = 0.6, respectively.
The LIBSVM tools we adopted can be downloaded from
https://www.csie.ntu.edu.tw/~cjlin/libsvm/. As can be seen
from Table 3, when using SVM to predict PPIs of Yeast
dataset, we obtained excellent results with the accuracy,
precision, sensitivity, and MCC of 95.86%, 96.46%, 95.21%,
and 92.06%, respectively. Most of the SVM based methods
produce average standard values that were lower than our
method on Yeast dataset.

5
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FIGURE 4: ROC curves performed by the proposed method on Yeast
PPIs dataset.

09t R
0.8 R
0.7 ¢ R
0.6 R
0.5 R
04 | R
03 r R
0.2 | R
0.1 | R
0 1 1 1 1 1 1 1 1 1
o 01 02 03 04 05 06 07 08 09 1

1 — specificity

Sensitivity

—— 1-fold —— 4-fold
2-fold — 5-fold
—— 3-fold

FIGURE 5: ROC curves performed by the proposed method on H.
pylori dataset.

In addition, we also compared the other existing methods
on the Yeast and H. pylori datasets. Table 3 shows the average
results of the other six methods in the Yeast dataset; we can
see that the accuracy results obtained by these methods are
between 75.08% and 89.33%. The average accuracy, precision,
sensitivity, and MCC values of these methods are lower than
those of our method, which are 97.77%, 99.96%, 95.57%, and
95.64%, respectively. Table 4 shows the average predictive
values of the six kinds of methods on the H. pylori dataset. We
can see that the accuracy values obtained by these methods
are between 75.80% and 87.50%, and the accuracy value of our
proposed method is 84.84%, which also performs well in it.

3.5. Performance on Independent Dataset. Having achieved
reasonably good results on the Yeast dataset and the H.
pylori dataset, we decided to test the proposed method’s
performance on independent datasets. We built our final
prediction model using all 11188 pairs of Yeast dataset as
the training set with the parameters obtained by the grid
search method; the value of Ig is 40 in AC, the value of K
is 20, and L is 3 in RF. The feature vector uses the feature
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TaBLE 3: Different methods on Yeast dataset performance comparison.
Model Test set Accu. (%) Prec. (%) Sen. (%) MCC (%)
Guo et al’s work [9] ACC 89.33 + 2.67 88.87 + 6.16 89.93 + 3.68 N/A
AC 87.36 + 1.38 87.82 + 4.33 87.30 + 4.68 N/A
You et al’s work [25] PCA-EELM 87.00 + 0.29 8759 £ 0.32 86.15 + 0.43 77.36 + 0.44
Cod1 75.08 +1.13 74.75 £ 1.23 75.81 +1.20 N/A
Yang et al’s work [56] Cod2 80.04 + 1.06 8217 +1.35 76.77 + 0.69 N/A
Cod3 80.41 + 0.47 81.86 +£ 0.99 78.14 £ 0.90 N/A
Cod4 86.15 + 1.17 90.24 + 0.45 81.03 + 1.74 N/A
Zhou et al’s work [57] SVM + LD 88.56 + 0.33 89.50 + 0.60 87.37 £ 0.22 7715 + 0.68
SVM + PSSM 95.86 + 0.34 96.46 + 0.50 95.21+£0.70 92.06 + 0.62
Our method
RF + PSSM 97.77 £ 0.29 99.96 + 0.08 95.57+0.70 95.64 + 0.55
TaBLE 4: Different methods on H. pylori dataset performance comparison.
Model Accu. (%) Prec. (%) Sen. (%) MCC (%)
Phylogenetic bootstrap [35] 75.80 80.20 69.80 N/A
HKNN [36] 84.00 84.00 86.00 N/A
Ensemble of HKNN [37] 86.60 85.00 86.70 N/A
Signature products [26] 83.40 85.70 79.90 N/A
Boosting [38] 79.52 81.69 80.37 70.64
Ensemble ELM [25] 87.50 86.15 88.95 78.13
Our method 84.84 86.36 82.77 74.30

TABLE 5: Prediction results in independent datasets.

Species Test pairs Accu. (%)
C. elegans 4013 96.01
E. coli 6954 9773
H. sapiens 1412 98.30
M. musculus 313 96.81

extraction method (AC) based on the PSSMs to extract from
the four datasets as RF test input. Independent test dataset is
composed of the four databases (C. elegans, E. coli, H. sapiens,
and M. musculus) collected in DIP database. The results of
our model are listed in Table 5; the prediction accuracies on
C. elegans, E. coli, H. sapiens, and M. musculus are 96.01%,
97.73%, 98.30%, and 96.81%, respectively. Those results show
the excellent performance of our approach in predicting the
accuracy of the interactions of other species.

4. Conclusions

In this study, a stable and robust computational method based
on the features extracted from PSSM has been proposed
to predict PPIs. It is known that the main computational
challenge for sequence-based methods for predicting PPIs
is to find a suitable feature representation to fully describe
the important information of protein interactions. To solve
this problem, we here firstly extracted the features from the

Position-Specific Scoring Matrices (PSSMs) using Autoco-
variance (AC) method. Then, Rotation Forest (RF) model is
employed as a novel and accurate classifier for PPIs prediction
with better performance than state-of-the-art SVM classifier.
In order to evaluate the performance of the proposed method,
five PPIs datasets, that is, C. elegans, E. coli, H. pylori, H.
sapiens, and M. musculus, have been used to perform the
comparisons. As expected, the experiments results showed
that the proposed method performs better than the other
methods. Consequently, the proposed approach can be con-
sidered as a powerful tool for predicting PPI.
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