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Abstract

Background: Inhabitants of Guadeloupe are chronically exposed to low dose of chlordecone via local food. The
corresponding health impacts have not been quantified. Nevertheless the public authority implemented an
exposure reduction program in 2003. We develop methods for quantifying the health impacts of chlordecone and
present the results in 2 articles: 1. hazard identification, exposure-response functions (ERF) and exposure in
Guadeloupe, 2. Health impacts and benefits of exposure reduction. Here is the first article.

Methods: Relevant data are extracted from publications searched in Medline and Toxline. Available knowledges on
mode of action and key-event hazards of chlordecone are used to identify effects of chlordecone that could occur
at low dose. Then a linear ERF is derived for each possible effect. From epidemiological data, ERF is the delta
relative risk (RR-1) divided by the corresponding delta exposure. From animal studies, ERF is the benchmark
response (10 %) divided by the best benchmark dose modeled with BMDS2.4.0. Our goal is to obtain central values
for the ERF slopes, applicable to typical human populations, rather than lower or upper bounds in the most
sensitive species or sex.

Results: We derive ERFs for 3 possible effects at chronic low chlordecone dose: cancers, developmental
impairment, and hepatotoxicity. Neurotoxicity in adults is also a possible effect at low dose but we lack quantitative
data for the ERF derivation. A renal toxicity ERF is derived for comparison purpose. Two ERFs are based on
epidemiological studies: prostate cancer in men aged >44y (0.0019 per μg/Lblood) and altered neurodevelopment in
boys (−0.32 QIpoint per μg/Lcord-blood). Two are based on animal studies: liver cancer (2.69 per mg/kg/d), and renal
dysfunction in women (0.0022 per mg/kg/d).

Conclusion: The methodological framework developed here yields ERFs for central risk estimates for non-genotoxic
effects of chemicals; it is robust with regard to models used. This framework can be used generally to derive ERFs
suitable for risk assessment and for cost-benefit analysis of public health decisions.

Keywords: Chlordecone, Low-dose, Mode of action, Key-events, Exposure-response function, Risk assessment,
Non-mutagenic agent, Endocrine disrupter
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Background
The inhabitants of the French West Indies are chronic-
ally exposed to low doses of chlordecone via local food.
The corresponding public health issues have not been sat-
isfactorily quantified because of the lack of an appropriate
risk assessment method. Nonetheless, several million
euros have been invested every year since 2003 for the re-
duction of exposure in Martinique and Guadeloupe [1–3].
Official investigations had revealed that 1.3 % of adults in
Guadeloupe were exposed above the “no effect threshold
dose” (the reference dose RfD) of 0.5 μg/kg/d [4]. Expos-
ure to chlordecone seems more common in children 3 to
5 years old than in adults, with up to 18.5 % above RfD in
Martinique [5]. These estimates of ingestion exposures are
based on food consumption survey data matched with the
results of chlordecone measurements in food made for
the screening and control program. The main activities of
the control program are to withdraw food from the mar-
ket and water from the distribution system when chlorde-
cone is above the limit values [6]. However, some polluted
food from individual gardens could be eaten by the
owners or the relatives and friends because they escape
the market control system.
The RfD is based on a chronic animal study that ob-

served an increase in kidney damage (glomerulosclero-
sis) in female Wistar rats [7]. However, monitoring of
poisoned workers manufacturing chlordecone in the
USA (Hopewell and Baltimore) revealed no renal func-
tion impairment [8, 9]. In addition, a recent study
showed that only mouse strains predisposed to auto im-
mune diseases developed kidney lesions after ingesting
chlordecone [10]. Accordingly, the hazards of chlorde-
cone in people with exposure above this RfD are uncer-
tain, and the results of exposure studies are difficult to
translate into public health decisions. In particular, they
do not provide answers to the following questions:

� What effect will occur in persons exposed above
RfD: that observed at the lowest dose tested in
animals, other effects known at some higher doses,
or even the effect of another ubiquitous pollutant
that is enhanced by chlordecone?

� If exposure exceeds the RfD what is the likelihood
that an effect occurs?

� Are we sure that there will be no effect from
exposures below RfD?

Several epidemiological studies have recently been car-
ried out in Guadeloupe. The results show that chronic
low exposure to chlordecone, mainly below the value of
the RfD, is correlated with an increased risk of prostate
cancer in men over 45 years [11] and with impaired neu-
robehavioral development in the young child [12, 13].
Other effects were investigated but were not significantly

associated with low exposure to chlordecone: change in
sperm quality [14, 15], and the rate of circulating hor-
mones in men [16]. No studies looked at possible kidney
damage, the critical effect found in laboratory animals
[17, 18] nor at liver cancer which is significantly in-
creased in a chronic animal study by the NCI [19]. The
latter is used by the US-EPA to develop a cancer slope
factor. In epidemiological studies exposure was esti-
mated via blood chlordecone concentration (Cl-b).
Another concern for chlordecone health risk assessment

is that we do not know sufficiently well the correspond-
ence between Cl-b and the dose by ingestion expressed as
mg/kgBW. First, an ad hoc study in Guadeloupe published
in 2010 found that exposure data based on food consump-
tion combined with food concentration of chlordecone
are poorly correlated (R2 = 0.20) with blood chlordecone
[20]. Second, there was no PBPK (physiologically based
pharmacokinetic) model available at the time of the litera-
ture search that could help to convert a dose by ingestion
into a blood concentration of chlordecone.
Health risk assessment cannot be quantitative without a

quantitative relationship between exposure and response.
They are commonly available for carcinogenic effects but
not for other effects that have a non-genotoxic mode of
action. To quantify the public health impacts of chlorde-
cone in Guadeloupe exposure-response functions (ERFs)
are necessary. Following the recommendations of the
Silver Book [21], we assume that non-genotoxic effects
can occur at low doses if the mode of action has been
found to be active at low doses and is shared by a frequent
human disease or a ubiquitous chemical. In that case
exposure-response functions, similar to those for geno-
toxic carcinogens, can be derived for non-genetoxic ef-
fects. Our objective is to develop a methodological
framework based on: 1. the selection of potential hazards
from low dose exposures; 2. deriving ERFs from human or
animal data; 3. evaluation of health and economic impacts;
4. compare costs of the exposure control program with
public health gains resulting from the decrease in popula-
tion exposure. Because of their length, methods and re-
sults are described in 2 separate articles. In this first
article, the objectives are: to identify and select the hazard
of low dose chlordecone to derive the corresponding ERF
and to find population exposure data that could fit re-
quirements for risk assessment. The second article focuses
on the quantitative assessment of the risks, impacts
and costs. The overall objective is to carry out a cost-
benefit analysis of the exposure control program that
has been implemented in Guadeloupe since 2003, i.e.
compare its cost with the benefit of reduced health
impacts. Since the IOM report in 1981 [22] it is
widely accepted that the cost of environment-related
health effects should be consistently evaluated for de-
cision making in public health.
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Methods
Document search
In April 2013, we searched publications on pharmaco-
kinetics, mechanisms of action and toxicity of chlorde-
cone in MEDLINE and TOXLINE with the following
key words: “Chlordecone” OR “Kepone” OR “143-50-0”
without any other limitation. Some French scientific re-
vues that are not indexed in MEDLINE were also
screened. We excluded articles that are:

1. Abstracts only or conference proceedings
2. Editorials
3. Review articles on general topics (pesticides,

organochlorides, reproductive toxins, etc.)
4. Anonymous references (no author name)
5. Reference duplicates
6. Eco-toxicity studies
7. The development of chemical or biochemical tests

studies
8. Studies only of mirex, photomirex or kelevan

Based on information in the title and abstract, studies
were classified into categories of interest for health risk
assessment: Pharmacokinetics (absorption, distribution,
metabolism, excretion); Mechanisms of action; Toxic
Effects; Epidemiological Studies; Reviews and various.

Chronic low dose hazard identification
We use 2 definitions of “low dose”. When analyzing
mode of action (MOA) for key-event identification in
mechanistic studies, the “low dose” hazard is: an adverse
biological change occurring in the range of typical hu-
man exposures or at doses lower than what has been
used in standard toxicology testing protocols [23].
Mechanistic studies that explore the key event for a
MOA are not chronic and mostly not low dose, because
one needs dose levels high enough to produce the effect.
Our objective is to assess risk from chronic exposure to
low dose of chlordecone, because this is the situation in
Guadeloupe. The gap between the available knowledge
and the information needs for decision making is very
frequent in environmental health. Here, to decide if an
adverse effect can result from low dose exposure the
available knowledge comes from acute exposure studies
and there is no alternative. First we identify the key-
events of a MOA in mechanistic studies, and then if the
data meet our criteria (see below) we assume the effect
resulting from the key-events to be possible at chronic
low-dose.
The first human data on adverse effects of chlordecone

come from a cohort of workers poisoned in a chlorde-
cone factory because of poor industrial hygiene. Expo-
sures were very high (above 1 mg/lblood) and caused
poisoning cases ranging in severity from a mild illness to

a severe, totally disabling infirmity [24, 25]. Then toxi-
cologists tried to understand the adverse effects ob-
served among the workers. Hence, chlordecone has
undergone many toxicological studies in vitro or in vivo
using mostly relatively high doses (>10 mg/kg/d). These
studies are old and almost entirely devoted to acute and
subchronic effects. However, many mechanistic studies
have identified the role of chlordecone in endocrine dis-
ruption, liver enzyme induction and unbalanced cellular
energy. The analysis of available knowledge on the mode
of action (MOA) aims to identify the effects of chlorde-
cone that can occur at low doses, effects for which we
will derive ERFs. After verifying consistency between the
human and animal data or consistency between the ani-
mal species tested, the effects whose MOA meets at least
2 of the following 3 criteria will be selected as potentially
effective at low dose:

1. The key-event for a MOA is observed at
concentration ≤ 1 μM or dose < 1 mg/kg/d

2. The MOA is identical to that of a frequent human
disease

3. A ubiquitous chemical follows the same MOA

For chlordecone we have chosen the low dose values
based on an inventory of the range of doses used in toxi-
cological studies. Most of them are between 10 and
40 mg/kg/d, for acute effect testing. As mechanistic
studies are often based on one dosage, we consider that
less than 1 mg/kg/d is a low dose for acute chlordecone
exposure. The corresponding concentration is approxi-
matively 0.1 μM based on information reported by End
et al. 1979 [26]. They wrote that a brain concentration
of 2 μM corresponded to an external dose of 40 mg/kg.
This is a 0.05 μM per mg/kg that we rounded to 0.1 μM
taking into account the fact that the brain is not the
most impacted organ after a 40 mg/kg dose (see Figure I
in Additional file 1).

Deriving ERFs
Having identified via MOA analysis the possible ef-
fects at low dose, we derive the ERFs based on quan-
titative data from either human or animal studies.
Studies used to derive an ERF must meet all the fol-
lowing criteria:

1. Epidemiological studies (cohort or case–control
only); or animal studies following the OECD or
US-EPA guidelines, with at least 2 dose groups in
addition to the control group;

2. Study outcomes corresponding to one of the effects
identified as occurring at low dose;

3. Quantitative measurement of chlordecone exposure
(biomarkers or external doses);
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4. Exposure duration ≥ 1 year or exposure in utero +
post natal;

5. Medical or histopathological diagnosis of the disease;
6. Statistical tests of risk indicators;
7. Cofactor control in epidemiological studies

(smoking, weight, age, gender, income level, other
exposures, etc.).

Our study limited the ERF derivation to chronic ex-
posure studies. In animal studies, this criterion corre-
sponds to a length of at least 1 year of day to day
consecutive exposure. Developmental studies need other
criteria because in rodents developmental period is less
than 1 year. Exposure only in utero or only post-natal
will not adequately reflect the exposure of a new born
and infant. It is why we selected only studies where ex-
posures happen during gestation and early stage of life
(postnal).

ERF Derivation methods
In regulatory risk assessment, the objective is to protect
the population from exposures that can lead to un-
acceptable risks. Here, we seek to know what are the ac-
tual risks in the French Indies population exposed to
chlordecone. Accordingly, we are interested not only in
the critical effect (generally defined as the first one to
appear in the dose range tested) but all effects at low
dose. There will be as many ERFs as effects of chlorde-
cone at low dose for which there exist quantitative hu-
man or animal data. Then we are looking for
representative average data and not just the data about
the most sensitive specie or sex. If an effect is significant
in both sexes or in both species, the ERF will be calcu-
lated as an average risk of both sexes or both species.
However, if the effect is significant in only one of the 2
sexes, the ERF will be derived only from data of that sex
and will apply in the risk assessment to persons of the
corresponding sex. From animal studies as well as from
epidemiological studies the derivation of ERFs involves 2
steps: choose a point of departure (POD) then draw a
straight line from the POD to the origin [27].

ERFs based on epidemiological studies
When deriving ERFs from epidemiological results, atten-
tion must be paid to causality [28]. Greenland indicated
that, even with a systematic analysis of the well-known
Hill’s criteria [29], causality will have little support or
plausibility if the mode of action is unknown. As our
framework starts with a systematic analysis of MOA,
ERFs based on epidemiological will only be established
for effects with known MOA.
Some epidemiological studies give an ERF directly.

Otherwise, the ERF is estimated with the data presented
in the study. The POD for the ERF is the risk indicator:

relative risk (RR) or odds ratios. Extrapolation of this
POD towards the origin is to divide the difference in risk
(RR-1) by the exposure difference between the exposed
group and the reference group. If an epidemiological
study gives risk indicators for more than 2 groups (ex-
posed/not exposed), use the risk indicator of the first
group statistically different from the reference group.
This rule is made to prevent obvious uncertainty propa-
gation and is discussed with results on prostate cancer.
For cancer effects, we assume that the probability of re-
sponse is proportional to the duration of the exposure. In
this case, the average (or median if average is not avail-
able) length of exposure in the study is used to standardize
the ERF for a standard human lifetime (i.e. 70 years). The
ERF is calculated with the following equation:

ERF ¼ RRa− 1ð Þ = a � TW ð1Þ

ERF = Exposure-response function (lifetime) expressed
as invers of unit exposure
a = exposure difference between the reference group

and the RR exposed group (in μg/L)
RRa = relative risk related to the exposure difference “a”
TW= time weighted factor = standard human lifetime

(70y)/mean duration exposure in the study (used only
for cancer effects).

ERF from animal studies
Experimental animal data are modeled as benchmark
dose (BMD) [30]. A BMD is a dose corresponding to a
specified probability of occurrence (the risk) of the ad-
verse effect (the hazard), also called benchmark response
(BMR). Many models (or functions) can be fit to toxico-
logical data. The US-EPA has developed software that
simultaneously estimates several models from study
data. We use the BMDS v2.4.0 software for BMD deter-
mination from animal data. This software is freely avail-
able on the website of the US-EPA [31].
From animal data, the POD will be the best BMD. The

best BMD is the one from the model with the best fit to
the data, or, when statistical tests cannot decide between
different models, the geometric mean of the respective
BMDs. US EPA, in order to protect the population, uses
the lower limit of the confidence interval at 95 % around
the BMD (Noted BMDL) as POD. In our work the ob-
jective is to obtain the best estimate of the impacts and
costs, so we have to think in terms of expected value
and not in terms of safety margin. Therefore, we will use
the central value of the BMD.

Statistical tests before modeling the data
Original data from animal studies are organized into a
data set which consists of 3 items: administered doses
(e.g.: 0, 5, 10, 25, 50 mg/kg/d); number of animals per
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dose group; number of sick animals in each group. A
data set is defined by gender, species and effect. Each
data set is subjected to statistical tests before modeling.
The first test, the Cochran Armitage trend test, verifies
that the data set shows a significant trend of increasing
incidence with increasing doses. It is performed with
BMDS2.4.0 software. Second, the incidence rates of each
dose group are tested against the incidence in the con-
trol group. The evaluation of the χ2 test is performed
with the R software [32]. If the unilateral trend test (inci-
dence should increase with dose) does not reject the null
hypothesis (p > 0.025 or Z <1.96), there is no significant
increased trend and the data set is excluded. A dose
group not significantly different from the control group
is excluded from modeling. After exclusion of one or
more dose groups, the data set is modeled if there re-
main at least 2 dose groups other than the reference
group, otherwise it is excluded.

Benchmark dose modeling (BMD)
Briefly, in the BMDS2.4.0 software the models available
for a dichotomous endpoint (quantal endpoint) are:
Gamma*, Logistic, Log-Logistic*, Log-Probit*, Multi-
stage*, Multistage-cancer, Probit, Weibull* Quantal-linear.
The models marked with a star can be constrained by ei-
ther power ≥ 1 (Gamma and Weibull) or slope ≥ 1 (Log-
Logistic and log-probit) or number of polynomial coeffi-
cient ≥ 0 (Multistage). The Multistage-cancer model is
available with 1, 2 or 3 stages. The polynomial coefficients
of the Multistage-cancer model are always constrained to
be ≥ 0. Thus, they are 16 models available. We do not give
more details on the equations and parameters of these
models because they are fully described in the user guide
of the BMDS2.4.0 software [31].
BMDs can be computed relative to the background

incidence as a Relative Risk (noted “extra risk” in
BMDS software) or independent of the background
incidence as an Absolute Risk (noted “added risk” in
BMDS software). But since the background incidence
in animals cannot be considered representative for
humans, the BMDs will be computed as Absolute
Risk, so that ERF can be used in any human popula-
tion without knowing the background incidence. Each
data set will be computed with the 16 models, and
the best is selected according to the statistical tests
described above.

Choice of risk level (BMR)
As a general rule, the BMR (the probability of an adverse
effect) should be selected close to the incidence in the
first dose group so that modeling does not exceed too
much the range of observations. A default 10 % BMR is
recommended by US EPA for conventional animal data,
because usually that corresponds to the power of studies

with 20–50 animals per group. Here, we will use in all
cases a 10 % BMR because this will facilitate comparai-
son with other BMDs derived by Public Agencies.

Dosimetric adjustments
After modeling, animal BMDs are converted to human
BMD (BMDHED) with a dosimetric adjustment (DAF),
following the recommended use of “Body Weight3/4” as
the default method [33]:

BMDHED ¼ BMD � DAF ð2Þ
DAF : Dosimetric Adjustment Factor for oral exposure

(−) = (BWA/BWH)
1/4

BWA = Animal body weight (kg)
PCH = human body weight (kg)

Point of departure (POD)
The point of departure is the best BMD10-HED (BMDHED

for a 10 % BMR). Out of the 16 model results, we ex-
clude results that are significantly different from the data
set: Goodness of Fit test with p <0.1; residual value near
the BMR is higher than │2│; those that give aberrant
BMD (usually infinitesimal); those for which the calcula-
tion of statistical tests failed; and those which have more
parameters than the number of dose groups modeled. In
quantal models, often a background parameter quanti-
fies the probability that the outcome being modeled can
occur in the absence of exposure. This information
comes from the zero dose groups, so these groups are
included in the number of groups taken into account. If
several models remain acceptable after this procedure, a
further test is applied: if the ratio between the lowest
and the highest BMD is less than or equal to 3, then the
POD is equal to the geometric mean of acceptable
BMDs; if the ratio is greater than 3, then the POD is
equal to the BMD having the smallest value of AIC
(Akaike's Information Criterion). The AIC test refers to
the principle of parsimony: the smallest value of AIC
means, in a group of models, the one that best fits with
the least possible parameters.

Exposure-response function derivation
The ERF is the risk (here the BMR) divided by the point
of departure (here the BMD10-HED):

ERF ¼ BMR10=POD ð3Þ
ERF = Exposure-response function expressed as (mg/

kg/d)−1.
BMR10 = Benchmark response of 10 % (−)
POD = BMD10-HED = Benchmark dose human equiva-

lent for a BMR of 10 % (mg/kg/d)
Assuming that the probability of cancer at a constant

dose increases linearly with exposure duration, a time
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weighting is applied to ERFs for carcinogenic effects if
the exposure duration in the original study is not equal
to the standard default lifespan of the animal species
tested. Standard lifespans for humans, rats and mice, are
respectively 70 years, 2 years and 2 years [34]. The weight-
ing is to multiply the ERF by the ratio of the standard life-
span and the duration of exposure in the study.

Grouping data sets
Because grouping data sets can strengthen the statistical
power and robustness of the derived BMD it could be
interesting to group data sets before modeling them if
they meet some statistical and biological criteria. Unfor-
tunately there was no possibility for grouping data sets
with the available data on chlordecone. So this point will
not be detailed here. Interested readers can find descrip-
tion of the methods and discussions on advantage and
weakness elsewhere [35].

Exposure data from the Guadeloupe population
Two approaches have been used in the past to assess ex-
posures to chlordecone in the Guadeloupe population:
biomarker measurement (called here “blood chlorde-
cone”) and exposure estimated by food consumption
combined with concentrations of chlordecone in food
(called here “dose by ingestion”). An ad hoc study pub-
lished in 2010 found that dose by ingestion in
Guadeloupe is poorly correlated (R2 = 0.20) with blood
chlordecone [20]. Moreover, for the comparative analysis
of health costs and expenditures for preventive actions
(see article 2) we need data spaced over time to estimate
the exposure difference attributable to the exposure re-
duction program. The chronology of the public actions
for reducing exposure was reported in a recent study
[36]. Accordingly, one can consider that the exposures
measured until 2003 describe the situation before the re-
duction program. Those measured since 2004 are influ-
enced by this program [1–3].
Due to the specific persistence of chlordecone in

blood, the best indicator of chronic exposure appears to
be the blood chlordecone concentration (expressed in
μg/Lblood). Furthermore there are no ingestion exposure
data before 2005, which prevents estimating the inges-
tion exposure difference due to the program. Therefore
we sought all studies that have measured blood chlorde-
cone concentrations in Guadeloupe.

Substitution method for censored data
Where measurements are below the limit of detection
(LD), the maximum likelihood estimation method
(MLE) is often considered the gold standard for substi-
tuting values for the censored data. Ganser and Hewett
published a simplified method called “β-substitution”
giving very similar results, sometimes better than the

MLE method and always better than the simplified DL/2
or DL/√2 methods [37]. Here, the mean exposure of
groups that are below the LD will be estimated by using
the β-substitution method from Ganser and Hewett.

Data preparation
Distributions that are not normal can be described by
the value of quartiles or other percentiles deemed appro-
priate. With quartiles, the population is divided into 4
groups: those whose exposure is between zero and the
25th percentile (P25), then those between P25 and P50,
those between P50 and P75 and finally those from P75
to the maximum value. When a sample includes cen-
sored data due to the LD, the first group is divided in 2
parts: those whose exposures are somewhere between 0
and LD and those between LD and P25. For this particu-
lar group average value will be calculated according to
β-substitution method called “βM”. Finally, the average
exposure in each group shall be calculated as follows:
1st group (results < LD), exposure equals the mean

β-substitution (βM)
2nd group (from βM to P25), exposure equals the

geometric mean of βM and P25
3rd group (P25-P50), exposure equals the mean of P25

and P50
4th group (P50-P75), exposure equals the mean of P50

and P75
5th group (P75-max), exposure equals the geometric

mean of P75 and max.
If the proportion of results < LD exceeds 25 %, then

the second group takes the average value of βM and P50
and there are only 4 exposure groups. If the proportion
of results < LD exceeds 50 %, then the second group
takes the average value of βM and P75 and there are
only 3 exposure groups.

Results
Available studies on the toxicity of chlordecone for low
dose hazard identification (mode of action and key-
events) are numerous but generally old. These studies
were analyzed in depth, and the details are reported else-
where [35]. Here we provide a summary of the main re-
sults for MOA and key events. The studies were mainly
focused on the acute toxic effects observed in workers
poisoned in the 70s because of poor industrial hygiene in
a chlordecone factory (Hopewell, USA) [24, 25, 38–41].
Chlordecone is a known endocrine disruptor in humans

with low agonist affinity for estrogen receptor ER-α
[42–49]. There are numerous studies on estrogen affinity
in other species. They are less relevant and not different
from those in humans. However, its adverse effects involve
mechanisms partially comparable to estradiol. Chlorde-
cone follows other toxicological pathways, mainly:
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� induction of hepatic cytochrome [50–69].
� inhibition of ATPase in the liver [52–55, 69].
� inhibition of ATPase in the brain [70–82].
� perturbation of neurotransmitters such as dopamine,

epinephrine, norepinephrine, serotonin, beta-
endorphin, enkephalin and gamma-aminobutyric
acid [50, 83–100].

� leakage of intracellular calcium [26, 101–106].

The US EPA and the IARC considered chlordecone
non-genotoxic. Some epigenetic mechanisms of chlorde-
cone carcinogenicity have been tested on human cell
culture. It has proved capability to: inhibit arginine
methylation [107], inhibit aromatase activity [108], cause
DNA single strand breaks [109], limit intercellular com-
munication [110, 111] and increase the activity of certain
protein kinases (MAPK, PI3-K) [112]. Most of these ef-
fects are also observed in laboratory animals [113–116].
Finally, a recent study showed the ability of chlordecone
to promote angiogenesis and neovascularization via acti-
vation of ER-α at low doses [117].
Our in depth analysis of MOA and key-events led us

to consider 4 non-genotoxic effects of chlordecone po-
tentially effective at low dose:

� increased mostly hormone-dependent cancers
(prostate and breast),

� hepatotoxicity,
� neurotoxicity,
� and developmental impairment (brain and probably

heart),

For cancer promotion, the MOA effective at low doses
are aromatase inhibition [108], disruption of intercellular
communication [116, 118], and the increase of angiogen-
esis [117]. The ubiquitous substances that share the
same MOA are bisphenol A, DDT, DDE and lindane.
Regarding hepatotoxicity, the MOA is the induction of
cytochrome P450 [60, 62], which can also led to cancer
development via reactive oxygen species production. In-
duction of CYP450 is a reversible effect but it is shared
by numerous chemicals ubiquitous in the human envir-
onment: 2,3,7,8-TCDD, PCBs and lead. Regarding
neurotoxicity in adulthood, the key-event observed at
low doses is a decrease of ATPase activity [73, 76, 80,
81]. This can be related to human diseases, for example
lower brain ATPase activity in the elderly may contrib-
ute to the onset or worsening of neurodegenerative dis-
eases such as Parkinson’s disease or Alzheimer’s. This
MOA is shared by acrylamide and cadmium and other
ubiquitous metals. Other key-events were studied for
neurotoxicity in adulthood, like cellular calcium leakage
or perturbation of neurotransmitters (see references
above) but unfortunately not studied at low doses.

Moreover, we made the hypothesis that if those key-
events (decreased ATPase cellular, calcium leakage and
some specific endocrine disruption) occurred in utero
and during early months of life, the central nervous sys-
tem development could be impacted leading to cognitive
impairment. These key-events have not been studied in
“developmental studies”. In vivo developmental studies
involved in low dose neurotoxicity looked mostly at al-
tered stress response [119–122] that is less relevant in
human. Our hypothesis is reinforced with the fact that
other developmental neurotoxic substances (i.e. heavy
metals) that impair cognitive ability of children, share
some of the same cellular key-events. At least, authors
of the TIMOUN cohort study (description of this study
appears in next section) have postulated the same hy-
pothesis, mostly based on endocrine disruption, and
found inverse correlation between chlordecone blood
concentration of mothers during pregnancy and de-
crease in neurological performance in boys at 18 months
of age but not in girls (this discrepancy could confirm
that an endocrine mechanism is involved).
Nephrotoxicity is not among possible low dose effects

according to our analysis of the MOA, mainly because
the underlying mechanisms remain unclear (Is the chlor-
decone responsible for triggering autoimmune diseases
that will subsequently impact the kidneys? Or it has a dir-
ect toxicity to the kidney glomeruli?), there are inconsist-
encies between humans and animals and inconsistencies
between different rodent species or strains. However, a
doubt remains as to the role of chlordecone in promoting
autoimmune diseases like systemic lupus erythematosus.
Kidney damage is the critical effect chosen by several
health safety agencies [17, 18, 123]. All have derived a ref-
erence dose from data of the Larson et al. study [7]. In
order to compare the risk assessment of this effect with
others, we will derive an ERF for kidney damages follow-
ing the same methods.
For deriving ERFs we found quantitative studies (epi-

demiological and toxicological) for only 3 out of the 4 pos-
sible low-dose effects of chlordecone: cancer promotion,
liver toxicity, and developmental impairment. Neurotox-
icity in adults is a possible low dose effect of chlordecone
but for which no ERF can be derived up to now (December
2015) for lack of a quantitative study.
In humans, studies of workers poisoned in the Hope-

well factory are not suitable for deriving chronic ERFs
because the exposure time could have been less than one
year; moreover, all neurological, hepatic, or fertility symp-
toms disappeared some weeks after exposure cessation
[24, 25, 38–41]. There are 2 recent epidemiological studies
in the French Antilles with exposure time longer than
1 year and eligible effects. The first is a case control study
that found a statistically significant dose-dependent asso-
ciation between risk of prostate cancer and blood levels of
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chlordecone [11]. The second is a cohort of mothers and
children followed from birth (cohort TIMOUN). Pub-
lished in 2012, the first results have identified signs of
neurotoxicity in children 7 months after birth correlated
with chlordecone levels in cord blood and breast milk
[12]. New results published in 2013 confirmed the previ-
ous results 18 months after birth and with more detail. Al-
teration of neurobehavioral development at 18 months is
characterized by a decrease in fine motor skills statistically
significant only in boys [13].
In animals 3 chronic (>1 year) and multi dose studies

meet our criteria [7, 19, 124]. The NCI study shows a
significant increase in liver cancers (carcinomas) in rats
(Osborne-Mendel) and mice (B6C3F1) [19]. It is of inter-
mediate quality because the initial doses, due to their ex-
cessive toxicity, were reduced during the course of the
experiment. In addition, the control groups consisted of
10–20 animals against 50 in the dose groups. This weak-
ness was offset by the addition of control animals from
other experiments in the same laboratory during the
same period. The doses were subject to time weighted
averaging, which is acceptable from a mathematical
point of view but maybe not from a biological point of
view. The Reuber study [124] looked at liver cancers in
albino rats (unspecified strain). Published data are in-
complete and far from scientific quality standards.
Nevertheless, the results could be modeled for compari-
son. The Larson et al. study [7] reports several effects in-
cluding hepatotoxicity. Six dose groups were tested (1, 5,
10, 25, 50, 80 ppm), but in the last 2 groups all animals
died during the first 6 months (unspecified cause of
death). The dose group at 1 ppm is part of a separate ex-
periment. There are also high rates of missing animals at
the end of the study, ranging from 30 % in the controls
to over 80 % in the group of 25 ppm. The causes of
these “disappearances” are not reported. Despite these
weaknesses, the study data could be modeled because its
scientific qualities were considered sufficient to support
a reference dose derivation by many health safety agen-
cies [17, 18, 125].
Available data for exposure characterization come dir-

ectly from epidemiological studies conducted in
Guadeloupe since 1999. They provide some distributions
of the blood chlordecone concentration in the sampled
population. The first one, called INSERM, is a cross-
sectional study held between 1999 and 2001 with 2 dif-
ferent sample populations: agricultural workers (n = 42)
and non-agricultural workers (n = 45). It aimed to meas-
ure the exposure of men to chlordecone and to study its
impact on male fertility [15]. We will use only non-
agricultural worker data because the exposures of the
agriculture workers were much too high to be representa-
tive of the general population. The second study, called
HIBISCUS and conducted in 2003, aimed to investigate

the cross sectional prevalence of exposure to chlordecone
in pregnant women (n = 112) and neonates (n = 109)
[126]. The third, called cohort TIMOUN and carried out
between 2004 and 2007, aimed to assess the impact of the
exposure on the course of pregnancy (n = 371) and on the
development of the child (n = 265) [20]. The fourth, called
KARUPROSTATE and carried out between 2004 and
2007, is a case–control study (n = 623/671). It aimed
to investigate the relationship between the risk of
prostate cancer and exposure to chlordecone in men
aged over 44 years [11]. The quartiles of measured
Cl-b levels in these studies were reported in a recent
review article [127].
The ERFs derived from the available epidemiological or

experimental studies are presented in Table 1. The bench-
mark dose model results are shown in Tables 3, 4 and 5.
For prostate cancer, the KARUPROSTATE study in-

cludes 623 cases (new cases of prostate cancer diagnosed
in Guadeloupe between 2004 and 2007) and 671 con-
trols. Exposures are measured by Cl-b (LD = 0.25 μg/
Lblood). The authors found an increased risk of cancer
significantly correlated with the increase in current Cl-b
(p trend = 0.002). The odds ratio is only significant in
the most highly exposed group. The Table 2 presents the
ERFs of the 3 exposure groups, calculated using Equa-
tion 1. The ERF retained is that of the most exposed
group: 0.114 (μg/Lblood)

−1. Linear regression of the 3
ERFs gives a fairly similar slope factor of: 0.096 (μg/
Lblood)

−1 (cf. Fig. 1). The mean exposure duration was
33y, thus the ERF weighted for a standard lifespan ex-
posure is 0.242 (μg/Lblood)

−1. According to the cancer
registry, the background incidence of prostate cancer in
Guadeloupe is 259 per 100 000 (gross rates, all ages),
based on an average 510 new cases a year [128]. Assum-
ing there is no risk of prostate cancer before the age of
44 years and taking the number of men aged over
44 years (65000 in 2007, according to INSEE), the inci-
dence rate is 770 per 100000 (510 cases/65000 men).
Hence, the ERF based on relative risk can be converted
to an absolute risk equivalent of 0.0019 (μg/L)−1 (=0.242
(μg/L)−1 × 0.0077). The latter applies to any population
of men aged over 44 years.
For developmental impairment, in the prospective co-

hort TIMOUN cognitive ability scores were measured in
141 young children exposed to chlordecone during preg-
nancy and lactation. The exposures were measured at
birth by chlordecone concentration in cord blood (μg/
Lcord-blood) and 3 months later by the chlordecone con-
centration in breast milk. The latter is not used here.
There are 30 % of censored data in cord blood measure-
ments (LD = 0.06 μg/Lcord-blood). Cognitive abilities were
measured at age 7 months [12] then at 18 months [13].
At 18 months, the authors used a standardized proced-
ure to evaluate cognitive development named “Age and
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Table 1 Exposure response function (ERF) and main information taken into account for derivation

Effect Study Design Species/
sex

Exposure duration DAF (−) BMR or ΔRR POD TW (−) Raw
ERFTW

Absolute
ERFTW

Unit* Population
affected

Dominant source of variability
of risk estimated with this ERF

Prostate cancer A Case/control Human/M Digestive 33 y na 0.77 6.741 2.12 0.242# 0.0019 (μg/Lblood)−1 Men > 45
years

IC95 % OR

Developmental
cognitive
impairment

B Prospective
cohort

Human/M in utero +
post-natal

Gestation +
post-natal

Slope factor taken from
the study

−0.320 −0.320 (μg/
Lcord-blood)

−1
Male
newborn

Equivalence between 1 QI
point and 1 fine motor point
at 18 months of age

Liver cancer C Experimental Mouse/
FM

Digestive 80 wk. 0.15 0.10 0.048 1.30 2.692 2.692 (mg/kg/d)−1 All Conversion of ingestion dose
to blood concentration

Renal lesions D Experimental Rat/F Digestive 20 month 0.26 0.10 0.012 na 7.923# 0.0022 (mg/kg/d)−1 Women Conversion of ingestion dose
to blood concentration

A: Multigner 2010 [11], B: Boucher 2013 [13]; C: NCI 1976 [19]; D: Larson 1979 [7]. DAF: dosimetric adjustment factor for animal to human dose conversion. BMR: benchmark response. ΔRR = RR-1. POD = BMD10-HED or
Δexpo. BMD10-HED = BMD10 × DAF. Δexpo = average exposure in RR group less average exposure in referent group. TW: time weighted factor (only for cancer effects). ERF: Exposure response function. Raw ERFTW: ERF
resulting from Eq. 1 or 3 and weighted for time if necessary: Raw ERFTW = BMR/POD × TWF. Absolute ERF is the raw ERF from which background incidence (I0) was subtracted if necessary (POD derived from relative
risk or effect restricted to a part of the population): prostate cancer in men > 45y (I0 = 0.0079), renal lesions (I0 = 0.00027). For renal lesions, the background incidence is annual new cases of women with erythematous
systemic lupus. Absolute ERFTW = Raw ERFTW × I0. SLE: systemic lupus erythematosus. F = Female. M =male. “na” not appropriate
* Same unit for raw and absolute ERF. The unit of the POD is the inverse of the ERF unit. Cancer ERFs are for lifetime exposure
# Those ERFs must be used together with background incidence rates. For renal lesions, the incidence is for women with erythematous systemic lupus
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Stage Questionnaire” (ASQ). It includes 5 items: “per-
sonal-social”, “Communication”, “Problem solving”,
“Fine motor skills”, and “Gross motor skills”. Only fine
motor skills scores of boys were significantly and in-
versely correlated with the concentration of chlordecone
in the cord blood. According to the authors, this is con-
sistent with the available knowledge including the endo-
crine disruption mechanism. This article gives a slope
coefficient of the multivariate linear regression of −0.32
points of fine motor skills per μgchlordecone/Lcord-blood.
The relationship between the ASQ scores and IQ scores
is not well known. For the purposes of our study we
considered that an ASQ fine motor point equals an IQ
point. According to our hypothesis the ERF would be

−0.32 IQ point per μg/Lcord-blood and applies only to
newborn males.
The ERF for liver cancer is based on animal studies.

With the NCI data on hepatic carcinomas, we obtained
4 sets of data: female and male rats, female and male
mice. There is no significant difference between the con-
trol group and the first dose group in male and female
rats (see: Additional file 2: Table B). After excluding the
first group in both datasets there remains only one dose
group. This is insufficient for modeling, so those data-
sets are excluded. In B6C3F1 mice, all dose groups were
significantly different from the control group and trend
tests are significant. The grouping of males and females
before modeling is not recommended because the

Table 2 Prostate cancer risk increase and ERF calculation (data from Multigner, 2010 [11])

Exposure groups in the study
(μg/Lblood)

ORmultivar (IC95 %) (−) Delta OR (−) Averaged exposure
(μg/Lblood)

Delta Expo
(μg/Lblood)

ERF
(μg/Lblood)−1

<0.25 (LD) 1 Ref. 0.125a Ref. Ref.

>0.25 to 0.47 1.11 (0.75-1.65) 0.11 0.360b 0.235 0.468

>0.47 to 0.96 1.22 (0.82-1.83) 0.22 0.716b 0.591 0.373

>0.96* 1.77 (1.21-2.58) 0.77 6.866c 6.741 0.114

ERF are calculated with Eq. 1
Results in bold face are used to derive the ERF
LD = limit of detection. Ref. = reference group
Delta OR = OR - 1; delta expo = average exposure value – 0.125; ERF = delta OR/delta expo
* The maximal value in the study is 49.1 μg/L (cf. Guldner 2011 [127])
a = Value stated by Multignier et al. to compute the test for trend
b = arithmetic mean of the minimum and maximum values of this exposure group
c = geometric mean of the minimum and maximum values of this exposure group, respectively: 0.96 μg/L and 49.1 μg/L

Fig. 1 Linear regression for the ERF from three exposure groups in the KARUPROSTE study. ERFs calculated with equation 1 for each exposure
group in the KARUPROSTATE study are plotted as squares. Dashed line is the “best” regression (best R2) between delta exposure and delta risk
(Power function: y = 0.2685x0.5664, R2 = 0.9919). The thick line is the linear regression (equation and R2 values shown to the left). The thin line is
the graphical representation of the final ERF (equation and R2 values shown to the right) derived from the first exposure group that significantly
differs from the reference group, i.e. the highest exposed group
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incidence of hepatocellular carcinomas in the female
control group is zero while it is 21 % in males (p
<0.0006). Only one out of the 16 tested models fits the
female data (unconstrained Multistage). Ten models dif-
fer significantly from the data (p <0.1). The results of
Probit and Logistic models exhibit residuals greater than
2. Computation failed with 2 models: log-Probit, log-
logistic. One model gives an outlier result: gamma (see
Table 3). The BMD10 of the Multistage model is
0.274 mg/kg/day, and a BMD10-HED of 0.0412 mg/kg/d is
calculated with a DAF of 0.15 (see DAF calculation in
Additional file 2: Table A).
In male mice, 4 models fit the data (Logistic,

Multistage-cancer1, Probit, quantal-linear). Goodness of
fit test was not computable with the other models (see
Table 4). The ratio between the smallest and the largest
BMD is 2.1. The geometric mean BMD10 is equal to
0.372 mg/kg/d and the BMD10-HED equal to 0.057 mg/
kg/d (DAF = 0.152). The geometric mean of the 2
BMD10-HED (male mice and female mice) is 0.0483 mg/
kg/d, and the ERF is 2.071 (mg/kg/d)−1 for an absolute
risk of 10 %. In this study, mice were exposed for 80

consecutive weeks, shorter than the standard lifespan. A
temporal weighting of 1.30 (=104/80) must therefore be
applied. The ERF for liver cancer with a lifetime expos-
ure in men and women is 2.692 (mg/kg/d)−1.
The Reuber study provides 2 sets of data for liver can-

cer (male and female rats). None of the 3 dose groups
were significantly different from the control group (see:
Additional file 2: Table C). According to the criteria ex-
posed in the section “statistical test before modeling”,
the results of this study cannot be modeled (no signifi-
cant difference from the control group).
In the Larson study, examination of rats showed some

hyperplasia lesions (3 females at 10 ppm and 1 female
and 2 males at 25 ppm) that could be precancerous
(without histopathological confirmation). The doses are
expressed as ppm chlordecone in the diet. From the
average food consumption (in gfood/kg/d) by group and
by sex measured at different time intervals (5, 13, 26, 52
and 104 weeks) we calculated the weighted average
doses of males and females with this data (see:
Additional file 2: Table D). Only one dose group is sig-
nificantly different from the control group in males

Table 3 BMD10 for liver carcinomas in female mice (from NCI, 1976)

Model Total number of parameters
in the model

AIC Goodness of fit
test P-value

Scaled residual
near BMR

BMD10

(mg/kg/d)
BMD10-HED (mg/kg/d)

Gamma-Restricted 3 147.182 0.014 0 0.671 0.1005

Gamma 3 141.305 0.568 0 2E-35 na

Logistic 2 166.361 0.000 3.47 1.824 0.2734

LogLogistic-Restricted 3 143.927 0.081 0 0.464 0.0695

LogLogistic 3 139.233 0.881 0 computation failed

LogProbit-Restricted 3 149.575 0.004 0 1.149 0.1722

LogProbit 3 139.233 0.881 0 computation failed

Multistage-Restricted 2 147.182 0.014 0 0.671 0.1005

Multistage 2 140.979 1.000 0 0.275 0.0412

Multistage-Cancer 1 2 147.182 0.014 0 0.671 0.1005

Multistage-Cancer 2 3 147.182 0.014 0 0.671 0.1005

Multistage-Cancer 3 4 147.182 0.014 0 0.671 0.1005

Probit 2 164.975 0.000 3.509 1.704 0.2553

Weibull-Restricted 3 147.182 0.014 0 0.671 0.1005

Weibull 3 147.182 0.014 0 0.671 0.1005

Quantal-Linear 3 147.182 0.014 0 0.671 0.1005

Minimal BMD na

Maximal BMD na

Ratio max/min na

BMD from best AIC model 0.0412

Geometric mean of BMDs for acceptable models na

The benchmark response is 10 %. AIC: Akaïke’s Information Criterion. BMD10: Benchmark dose for 10 % excess risk. Results in bold are acceptable models
according to these criteria: total number of parameters does not exceed the number of groups modeled (n = 3); and p-value > 0.1; and scaled residual <│2│ and
no computation error or unrealistic graphical BMD10. If ratio max/min is less than 3, then geometric mean of acceptable models is selected, else the best AIC
model is selected. “na”: not applicable
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(25 ppm) or in females (10 ppm) (see: Additional file 2:
Table E). Hence, these datasets cannot be modeled (not
enough of dose groups for modelisation).
For other endpoints of hepatotoxicity there is no data

meeting our criteria. The Larson study shows hepatotox-
icity characterized by some hyperplasia in the high dose
group and changes of liver fat in all dose groups. Two
data sets (male and female) were created by adding these
2 effects (see: Additional file 2: Table F). In males as in
females only a single dose group is statistically different
from that of the control group. These data sets are
therefore excluded. There is no other quantitative data
for chronic hepatotoxicity of chlordecone.
For renal dysfunction, ERF data are from animal stud-

ies. The Larson study has found a significant adverse ef-
fect of chlordecone on kidneys. In females the trend test
is significant. The incidence of kidney damage (15 %) in
the first dose group is not different from the control
group (12 %) contrary to the other dose groups (see:
Additional file 2: Table G). This dose group is excluded
from modeling. In males, the trend test was not signifi-
cant (p = 0.094). No dose group is different from the

control group whose background incidence (55 %) is
already very high. Combining the 2 sexes is not accept-
able because of a significant difference in the incidence
in the control groups of males and females (p <0.0005).
Only the female data set, without the first dose group,
can be modeled to estimate a BMD. All models, except
Logistic and Probit, fit the data set (see Table 5). The
ratio between the smallest and largest BMD was 29, so
the BMD10 having the smallest AIC score (LogLogistic
restricted) is retained: 0.0495 mg/kg/d. From this a
BMD10-HED of 0.0126 mg/kg/d (DAF = 0.255) is calcu-
lated, yielding an ERF of 7.923 (mg/kg/d)−1 for increased
kidney damage among women with SLE (Systemic
Lupus Erythematosus). The ERF is limited to women
with SLE because glomerulosclerosis in mice and
rats are found only in strain prone to SLE [10]. The
incidence of SLE in women remains poorly quantified
between 15 and 50 per 100 000. We assume a geo-
metric mean incidence rate of 27 per 100 000 to
convert the ERF for women with SLE into an ERF of
0.0022 (mg/kg/d)−1 (=7.923 (mg/kg/d)−1 × 0.00027) for
all women.

Table 4 BMD10 for liver carcinomas in male mice (data from NCI, 1976)

Model Total number of parameters
in the model

AIC Goodness of fit
test P-value

Scaled residual
near BMR

BMD10 (mg/kg/d) BMD10-HED (mg/kg/d)

Gamma-Restricted 3 157.911 NA 0 0.841 0.1279

Gamma 3 157.911 NA 0 0.841 0.1279

Logistic 2 155.911 0.9773 0.002 0.545 0.0828

LogLogistic-Restricted 3 157.911 NA 0 1.136 0.1725

LogLogistic 3 157.911 NA 0 1.136 0.1725

LogProbit-Restricted 3 157.911 NA 0 1.078 0.1638

LogProbit 3 157.911 NA 0 1.078 0.1638

Multistage-Restricted 2 157.911 NA 0 0.536 0.0814

Multistage 2 157.911 NA 0 0.536 0.0814

Multistage-Cancer 1 2 156.027 0.733 0.007 0.257 0.0391

Multistage-Cancer 2 3 157.911 NA 0 0.536 0.0814

Multistage-Cancer 3 4 159.911 NA 0 0.373 0.0567

Probit 2 155.914 0.9557 −0.005 0.535 0.0812

Weibull-Restricted 3 157.911 NA 0 0.674 0.1024

Weibull 3 157.911 NA 0 0.674 0.1024

Quantal-Linear 3 156.027 0.733 0.007 0.257 0.0391

Minimal BMD 0.0391

Maximal BMD 0.0828

Ratio max/min 2.1

BMD from best AIC model 0.083

Geometric mean of acceptable models BMD 0.057

The benchmark response is 10 %. AIC: Akaïke’s Information Criterion. BMD10: Benchmark dose for 10 % excess risk. Results in bold are acceptable models according to
these criteria: total number of parameters does not exceed the number of groups modeled (n = 3); and p-value > 0.1; and scaled residual <│2│ and no
computation error or unrealistic graphical BMD10. If ratio max/min is less than 3, then geometric mean of acceptable models is selected, else best AIC model is
selected. “NA”: not applicable
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Exposure data are from epidemiological studies and
presented in Table H of Additional file 2. Parameter
values of the β-substitution model for each study are
also in Additional file 2 (Table I). The average exposure
values spread into 5 groups are shown in Table 6. To

compare these exposure data with the RfD (0.5 μg/kg/d)
we converted the RfD to a blood chlordecone concentra-
tion equivalent with a conversion factor CFe/i of 0.0064
(μg/kg/d)/(μg/l) (see details in Additional file 1) giving a
value of 7.81 μg/l. This level is reached only in the last

Table 5 BMD10 for glomerulosclerosis in female rat (data from Larson, 1979, dose group 1 excluded)

Model Total number of parameters
in the model

AIC Goodness of fit
test P-value

Scaled residual
near BMR

BMD10 (mg/kg/d) BMD10-HED (mg/kg/d)

Gamma-Restricted 3 73.996 0.218 −0.25 0.0857 0.0219

Gamma 3 74.198 0.594 0.01 0.0043 0.0011

Logistic 2 78.734 0.009 1.19 0.2102 0.0537

LogLogistic-Restricted 3 72.206 0.848 −0.02 0.0495 0.0126

LogLogistic 3 74.083 0.679 0.01 0.0259 0.0066

LogProbit-Restricted 3 73.859 0.215 −0.15 0.1235 0.0315

LogProbit 3 74.093 0.671 0.01 0.0288 0.0073

Multistage-Restricted 2 73.996 0.218 −0.25 0.0857 0.0219

Multistage 2 73.915 0.969 0.00 0.0552 0.0141

Multistage-Cancer 1 2 73.996 0.218 −0.25 0.0857 0.0219

Multistage-Cancer 2 3 73.996 0.218 −0.25 0.0857 0.0219

Multistage-Cancer 3 4 73.996 0.218 −0.25 0.0857 0.0219

Probit 2 79.168 0.016 1.28 0.2378 0.0607

Weibull-Restricted 3 73.996 0.218 −0.25 0.0857 0.0219

Weibull 3 73.996 0.218 −0.25 0.0857 0.0219

Quantal-Linear 3 73.996 0.218 −0.25 0.0857 0.0219

Minimal BMD 0.001

Maximal BMD 0.032

Ratio max/min 29

BMD from best AIC model 0.0126

Geometric mean of acceptable models BMD Not applicable

The benchmark response is 10 %. AIC: Akaïke’s Information Criterion. BMD10: Benchmark dose for 10 % excess risk. Results in bold are acceptable models according to
these criteria: total number of parameters does not exceed the number of groups modeled (n = 4); and p-value > 0.1; and scaled residual <│2│ and no
computation error or unrealistic graphical BMD10. If ratio max/min is less than 3, then geometric mean of acceptable models is selected, else best AIC model is
selected. “na”: not applicable

Table 6 Blood chlordecone concentrations: averages by exposure group for purpose of risk assessment

Study name (time period) Population Group 1 (μg/L) Group 2 (μg/L) Group 3 (μg/L) Group 4 (μg/L) Group 5 (μg/L) Weighted mean

INSERM (1999–2001) Men 20-45y 1.06 1.56 3.90 7.25 14.79 7.14

KARUPROSTATE (2005–2006) Men >44y 0.17 0.22 0.40 0.90 7.60 2.32

Difference : after 2003 - before 2003 −0.90 −1.34 −3.50 −6.35 −7.19 −4.82

HIBISCUS (2003) Mother 17-45y 0.32 0.62 1.70 3.05 8.05 3.43

TIMOUN (2004–2007) Mother 17-45y 0.18 nc 0.29 0.65 4.17 1.37

Difference : after 2003 - before 2003 −0.15 −0.40 −1.30 −2.15 −0.45 −1.11

HIBISCUS (2003) Newborn 0.39 nc 0.55 0.95 2.11 1.00

TIMOUN (2004–2007) Newborn 0.19 nc nc 0.24 2.62 0.81

Difference : after 2003 - before 2003 −0.21 −0.71 +0.51 −019

Group 1 = βM value. βM is calculated with the β-substitution method from Ganser and Hewett 2010 [37]. Group 2 = geometric mean βM-P25. Group3 = arithmetic
mean P25-P50. Group 4 = arithmetic mean P50-P75. Group 5 = geometric mean P75-Max. When a percentile value is censured by the limit of detection (example:
P25 in Hibiscus newborn), means are not calculated. Then, for the next group the mean is calculated with βM and percentile value. Weighted means are the sum
of group values weighted by the proportion of population in each group. Group 1 + group 2 = 25 %, group 3 = 25 %, group 4 = 25 % group 5 = 25 %. For TIMOUN
new-born group 1 + 2 + 3 = 50 %, group 4 = 25 % and group 5 = 25 %

Nedellec et al. Environmental Health  (2016) 15:75 Page 13 of 20



group of exposure (group 5) of 2 populations: adult men
and women only before 2003. The weighted mean (last
column in Table 6) of all groups are below this value.
Therefore, blood chlordecone concentrations measured
in epidemiological studies are mainly under the RfD
value. If chlordecone would not cause some effects at
this low exposure levels, epidemiological studies that
take cofactors and confounders into account would
probably not be able to detect significant associations es-
pecially in newborns. The analytical limits of detection
(LD) were lowered between the first studies (1.5 and
0.5 μg/L) and those realized after 2003 (0.25 μg/L). Des-
pite this decrease, the rates of results below the LD in-
crease significantly after 2003. This indicates that the
exposure decrease is associated with a strong shift in the
distribution to the left. However, the maximum values
do not seem to follow the same decreasing trend and are
even higher after 2004 in pregnant women and new-
borns. Because of the known kinetics of chlordecone in
human blood (half-life of about 6 months), these obser-
vations could be interpreted as a decrease in exposures
of continuous and homogeneous nature, for example via
tap water, and the persistence of higher intermittent ex-
posures, for example via food consumed occasionally.
These exposure data will subsequently be used to assess
the risks and impacts and the health and economic ben-
efits attributable to the exposure control program.

Discussion
Our literature search has been updated from January 2014
up to March 2016. Only 5 new toxicological mechanistic
studies were found. Two of them confirm estrogenicity of
chlordecone and were more designed to develop new es-
trogenic tests [129, 130]. One study shows how chlorde-
cone among others regulates the liver drug transporter
activity and expression [131]; that may contribute to the
liver toxicity that we have already taken into account. An-
other study [132] does not add anything beyond what is
already known about chlordecone neurotoxicity. The last
study, using quantitative PCR, revealed an induction of
genes involved in defense mechanism against oxidative
stress (catalase and selenium-dependent glutathione per-
oxidase) in prawns exposed to low environmental concen-
trations of chlordecone after 12 and 24 h of exposure. In
prawns reared in a contaminated farm, transcription of
genes involved in the biotransformation process (cyto-
chrome P450 and glutathione-S-transferase (GST)) was
induced after 8 days of exposure [133]. None of these
studies change our conclusions on key-events and MOA.
Several new epidemiological studies have been pub-

lished, mostly based on data from the TIMOUN cohort
[134–138]. No significant associations were observed
between chlordecone exposure and the risk of pre-
eclampsia or gestational diabetes mellitus. This study

suggests an inverse association between chlordecone ex-
posure during pregnancy and gestational hypertension.
The authors conclude that further studies are required
to determine the underlying mechanism [134]. A 1-
log10 increase in chlordecone concentration was associ-
ated with a decreased length of gestation (−0.27 weeks)
and an increased risk of preterm birth (60 %). These as-
sociations may result from the estrogen-like and
progestin-like properties of chlordecone [136]. Perinatal
exposure to chlordecone may affect thyroid-stimulating
hormone (TSH) and thyroid hormone levels at 3 months,
differently according to the sex of the infant. This dis-
ruption however did not appear to intervene in the path-
way between prenatal chlordecone exposure and fine
motor development of children [137]. Chlordecone in
cord blood was associated with a higher BMI in boys at
3 months and in girls at 8 and 18 months. Postnatal ex-
posure was associated with lower height, weight and
BMI at 3, 8 and 18 months, particularly in girls. Chlor-
decone exposure may affect growth trajectories in chil-
dren aged 0 to 18 months [138]. Based on incident
prostate cancer cases from 1981 to 2005 in Martinique
Cancer Registry, incidence was found to increase by 5.07
% annually during this period of time. But an inverse as-
sociation between exposure area and prostate cancer risk
was found, with the highest prostate cancer incidence
observed in urban zones showing the lowest soil con-
tamination levels by chlordecone [135]. The studies con-
firm and amplify previous knowledge on developmental
effects of chlordecone. The last study could raise doubts
about chlordecone and prostate cancer. Nevertheless, the
strength of an ecological design is not enough to negate
the results of a case control designed study (here the
KARUPROSTATE study). Moreover, because exposure to
chlordecone is mainly due to food contamination (vege-
table and seafood product) exposure to chlordecone is not
limited to people living on contaminated soil. No ERF can
be derived from these new epidemiological studies.
Following NRC 2009 recommendations for health risk

assessment we assume a low dose effect if the MOA is
active at low dose and/or is shared by a human disease
and/or by a ubiquitous chemical [21]. Based on analysis
of MOA studies, we have identified 4 potentially effect-
ive low dose effects of chlordecone: cancer promotion,
developmental impairment, hepatotoxicity, and neuro-
toxicity. Only hepatotoxicity is not driven by an endo-
crine disruption mechanism. ERFs with a linear shape at
low dose have been derived for these effects from epi-
demiological studies (prostate cancer and cognitive de-
velopment) and animal studies (liver cancer). There are
no quantitative data for neurotoxic effects in adulthood.
Since the early 80s when damage to DNA appeared to
be a major cause of most cancers, non-mutagenic che-
micals (such as chlordecone) have been thought unable
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to generate cancers in human. In a very recent collab-
orative research, involving almost 200 cancer biologists,
examination of MOA found that among 85 non-mutagenic
chemicals (not IARC group 1, carcinogens) only 15 % show
evidence of a dose–response threshold, whereas 59 %
exerted low-dose effects (no dose–response information
was found for the remaining 26 %). The authors suggests
that the cumulative effects of individual non-carcinogenic
chemicals acting on different pathways, and a variety of re-
lated systems, organs, tissues and cells could plausibly con-
spire to produce carcinogenic synergies [139]. Moreover,
some endocrine disrupting chemicals are known to have
adverse effects at low-dose. Most of them could act on de-
velopment, fertility, immunity response, or central nervous
system. Nonmonotonic dose response seems to be a com-
mon hallmark endocrine disrupting chemicals, with stron-
ger response at the low-dose than at higher doses [140].
Thus our findings on chlordecone appear consistent with
others involving new approaches based on MOA and
weight of evidence analysis.
An additional ERF was derived for kidney damage to

allow comparison with the 3 low dose effects. Kidney
damage is considered by health and safety agencies as
the most sensitive effect. Unfortunately its mechanism
of action is not well known. Chlordecone seems to favor
the occurrence of SLE (Systemic Lupus Erythematosus)
in genetically susceptible animals [10], but this effect is
not observed in strains that are not lupus-prone [10].
The underlying mechanism favoring autoimmunity
could be an increase of B cells in ways that are not fully
comparable with those of a pure estrogen such as estra-
diol [141]. On the other hand, direct toxicity of chlorde-
cone on renal tissues cannot be excluded [18].
Unfortunately, data from Larson et al. relate to the onset
of kidney damage and not to the onset of SLE. Given
these shortcomings one can hypothesize that if chlorde-
cone causes kidney damage it is only in individuals
prone to SLE.
We have derived 4 ERFs to quantify those effects at

low doses of chlordecone, each with a different MOA.
Cancers of the liver may be due to the production of re-
active oxygen species via induction of CYP450. The
other 3 effects are potentially linked to endocrine dis-
ruption mechanisms but they affect different organs and
different population categories: brain development of
boys, prostate cancer in men over 44 years, and renal
disease in women. Using these 4 ERFs in the same popu-
lation therefore cannot produce double counting of
damages. An adult can suffer from 2 effects of chlorde-
cone via 2 distinct mechanisms occurring in 2 distinct
organs, for men: liver cancer and prostate cancer; for
women: liver cancer and kidney damage.
Animal data were modeled as absolute risk (“added

risk” in BMDS). In addition all data sets have been

modeled with the option of relative risk (“extra risk” in
BMDS) for comparison purposes (results not shown).
When the incidence in the control group is zero (for ex-
ample liver cancer in rats of both sexes and in female
mice) relative risk and absolute risk BMD10 are identical.
When the incidence of hepatocellular carcinoma in the
control group is not zero, like in male mice, the relative
risk BMD10 (logistic model: 0.44 mg/kg/d) is less than
the absolute risk BMD10 (logistic model: 0.54 mg/kg/d).
This is an increase of 22 % of the dose giving a 10 % risk.
This proportion corresponds to the background inci-
dence in male mice: 21 %. This is also true for kidney
damage where the incidence in the control group of fe-
male rats is 12 %. The difference between the relative risk
BMD10 (0.109 mg/kg/d) and the absolute risk BMD10

(0.126 mg/kg/d) is 15 %. But since the background inci-
dence of diseases in laboratory animals cannot be consid-
ered representative of the background incidence in human
population, we recommend using the option of absolute
risk when estimating BMD for ERF derivation. Thereby
our ERF from animal data is used for humans without the
need to know the background incidence.
The ERFs from human studies are based on relative

risk and weighted by the background incidence, whereas
those from animal studies are based on absolute risk.
We wanted to know if the use of relative risk with ani-
mal data would change the numerical value of the ERF.
This is possible only when the background incidence of
the effect is not zero. In the Larson study, the incidence
of kidney damage in the female control group was not
zero (12 % of kidney damage). So we calculated the rela-
tive risks using the R software as in an epidemiological
study. ERFs are then derived according to equation 1:
ERF = (RR-1)/a. The geometric mean of the 3 ERFs for
the 3 dose groups significantly different from the control
group was 67 (mg/kg/d)−1. If we multiply this ERF by
background incidence (I0), an absolute risk ERF is ob-
tained (RR-1/a × I0 = (I0 - Ie)/a). Here the absolute risk
ERF would be 8.04 (mg/kg/d)−1 = 67 (mg/kg/d)−1 × 12 %.
This value is close to the absolute risk ERF obtained
through BMD modeling: 7.92 (mg/kg/d)−1. If one derives
the ERF from the first significant dose group, then the
absolute ERF is 10.26 (mg/kg/d)−1, with the second
group it is 10.74 (mg/kg/d)−1 and with the third group
4.72 (mg/kg/d)−1. The 2 approaches appear to give com-
parable results. Conversely, one could derive an ERF from
epidemiological data with BMD models, but in the case of
chlordecone there is no data for testing this approach. It
would require cohort studies because in the case–control
studies background incidence is not known. One would
also need at least 2 exposure groups in the epidemio-
logical study significantly different from the reference ex-
posure group. The corresponding epidemiological data for
these 2 conditions are unusual. In summary the 2
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approaches, epidemiological RR or BMD modeling, can be
considered as equivalent for ERF derivation.
The study used to derive the ERF for prostate cancer

was conducted in Guadeloupe. With over 600 incident
cases, it was the largest study on the association between
exposure to organochloride pesticides and risk of pros-
tate cancer known at the time of its publication. The
multivariate adjustment increases the odds ratios, which
is unusual and may indicate the presence of protective
cofactors among confounders. The measured increased
risk does not include the exposure during the periods of
development in utero or of adolescence, critical periods
for carcinogenic effects and endocrine disruption. The
authors discuss the role of chlordecone as promoter via
its affinity for cell estrogenic receptors (ERα), confirmed
by our analysis of the MOA. Affinity for this receptor
ERα could also promote angiogenesis [117]. The ERF
based on this study derives from the highest exposure
group because it is the only one that is statistically sig-
nificant. The ERF from the lower exposure group would
be 4 times higher and would estimate 4 times more risk
and impacts. However, that would propagate high uncer-
tainty because the lower bound of this RR is less than 1
(meaning less risk in this exposed group than in reference
group). Thus, our ERF appears to be of good quality and
there are more arguments in favor of an underestimation
of risk than in favor of an overestimation.
A strength of the study supporting the ERF for altered

cognitive development is its prospective cohort design.
However the number of children involved is quite low.
Some results are inconsistent, for example for communi-
cation skills the slope is negative (deterioration) in the
low exposure group and positive (improvement) in the
high exposure group; however, those results are not sta-
tistically significant. Only the decrease in fine motor
skills in boys is statistically significant. The greatest un-
certainty related to this effect is not in the results of the
study but in the interpretation we have made for the
monetary valuation. The measurement of cognitive de-
velopment levels uses the ASQ scores, but we do not
know the monetary value of an ASQ point while we
know quite well that of an IQ point. We assume that an
ASQ score point at 18 months is equal to an IQ point at
age 6–7 years. It is very difficult to know if this assump-
tion overestimates or underestimates the true strength
of the effect because there are no relevant studies. To
estimate the uncertainty we consider as lower bound
that an ASQ point of fine motor skills at 18 months
equals 1/5 IQ point at 7 years (only one of 5 ASQ scores
is reduced by chlordecone), and as the upper bound
we consider that an ASQ point is equal to 2 IQ points
(the deterioration of cognitive development suffered in
utero continues in the following years since exposure is
continuous).

The ERF for liver cancer due to chlordecone derives
from an animal study [19]. Another study found in-
creased liver hyperplasia [7] but did not use histological
examinations to know if the lesions are carcinogenic or
not. The NCI study involves 2 species (mouse and rat),
both sexes in each species and 50 animals per dose
group. Many other organs were subjected to histological
examinations but only the hepatic carcinomas were cor-
related with chlordecone doses. However, the NCI study
has weaknesses already mentioned. The US EPA has used
a time to tumor model to estimate BMD10 for female rats
and mice of both sexes [18]. The geometric mean of 3
BMD10 obtained with the time to tumor model is
0.075 mg/kg/d, that of mice only is 0.038 mg/kg/d. By
comparison, our results with the time adjustment are:
0.076 mg/kg/d and 0.037 mg/kg/d. In theory the time to
tumor model is better but it needs the date of onset of tu-
mors, information that is not always available in publica-
tions. Here the 2 approaches give very similar results; this
indicates a good robustness of our approach.
The ERF for prostate cancer derives from a recent hu-

man study that took into account the cofactors and its
variability seems to us properly represented by the 95 %
confidence interval of the odds ratio. In the study on im-
paired cognitive development, the main uncertainty
comes from our assumption about the relationship be-
tween ASQ scores and IQ points. We used a simple as-
sumption, easily modifiable when better knowledge
becomes available. For the ERF derived from animal
studies, the main variability comes from either the BMD
value or the conversion factor of ingestion dose to blood
chlordecone concentration (CFe/i). This factor is based
on chlordecone pharmacokinetic knowledge that is de-
scribed in the Additional file 1. The available human
data indicate a half-life of blood chlordecone ranging
from 63 to 192 days with an average of 127.5 j. The CFe/i
obtained from these half-lives are: mean CFe/i = 0.064
(mg/kg/d)/(μg/L); low CFe/i = 0.043 (mg/kg/d)/(μg/L); high
CFe/i = 0.131 (mg/kg/d)/(μg/L) (see Additional file 1),
numbers we use for framing the variability of the ERF if
the range (range = 3.1 = 0.131/0.043) is larger than the
range between the smallest and the largest BMD value.
There are only 2 exposure studies before 2003

(INSERM and HIBISCUS) and their enrollment is lower
than in the studies after 2003 (KARUPROSTATE and
TIMOUN). The representativeness of the INSERM study
data for men ages 20 to 45 is uncertain because the par-
ticipants are workers followed by the occupational med-
ical service. This excluded those who are unable to
work, unemployed or independent workers. However
these are the only data available before 2004. In addition,
one of the objectives of this cross-sectional study was to
describe the exposure to chlordecone in adult men.
Moreover the age group in the INSERM study (20–45
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years) does not match the age group in the KARUPROS-
TATE study (>44 years). In KARUPROSTATE the con-
trol group is a random sample of men aged over
44 years summoned by the national health insurance for
free and systematic health screening; a recruitment bias
is unlikely. The representativeness of the HIBISCUS
study of women of childbearing age also involves uncer-
tainty, but more limited than for INSERM. Recruitment
for HIBISCUS was similar to the TIMOUN study:
women in the sixth month of pregnancy planning to give
birth in a public hospital in Guadeloupe (about 70 % of
births). In summary, the exposure data available before
2004 aimed to assess the exposure of men and women
of reproductive age. The representativeness of HIBIS-
CUS and especially of INSERM for the general popula-
tion involves uncertainties that are difficult to estimate.
Anyway, these are the only exposure data available in
2013, and they will be used to assess the risks and im-
pacts of exposure to chlordecone in Guadeloupe.

Conclusions
This is the first study, to our knowledge, to yield explicit
exposure-response functions (ERFs) for non-genotoxic ef-
fects of chronic low exposure to chlordecone. It is also one
of the first studies explicitly designed to implement the rec-
ommendations of the North American National Academy
of Sciences, described in the Silver Book in 2009 [21].
The methodological framework developed here allows

estimating ERFs that produce a central risk estimate. These
ERFs are robust with regard to choice of models, thus our
methodological framework could be used generally. Further-
more, the ERFs obtained could be used in any population,
without need to know the background incidence of a
disease. Some ERFs are expressed in blood chlordecone
concentration (μg/l), others are expressed in dose by inges-
tion (chlordecone from food intake). For use in a risk assess-
ment study, it may be necessary to have a conversion factor
between ingestion dose and blood levels of chlordecone. In
the evaluation of health and economic impacts, the ERF un-
certainties can be framed by the lower and upper bounds of
each ERF. In any case, these ERF pave the way for a quanti-
tative assessment of risks and impacts for non-mutagens
chemicals, a great added value for public health decisions.
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