Skip to main content
. 2015 May 22;4:25. doi: 10.1186/s13742-015-0065-6

Table 5.

Classification accuracy of machine learning algorithms compared with BioCAT for predicting sex

Method Training images Testing images Sex (± Standard error)
BioCAT Olympus 40× Olympus 40× 85.0 %
Olympus 40× Olympus 20× 50.0 %
Olympus 40× cropped Olympus 20× cropped 50.0 %
Leica 40× cropped Leica 40× cropped 93.0 %
Olympus 40× cropped Leica 40× cropped 73.7 %
Olympus & Leica 40× cropped Olympus 40× cropped 73.3 %
Olympus & Leica 40× cropped Leica 40× cropped 86.0 %
Landmarks Olympus 40× landmarks Olympus 40× landmarks 98.2 % (±1.6)
Olympus 40× landmarks Olympus 20× landmarks 81.2 % (±1.4)
Leica 40× landmarks Leica 40× landmarks 97.8 % (±0.69)
Olympus 40× landmarks Leica 40× landmarks 79.1 % (±1.3)

Machine learning algorithms using landmark and semi-landmark features, compared with Hessian features extracted by BioCAT, trained and tested across microscopes and magnifications