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Abstract

Immunotherapy strategies against cancer are emerging as powerful weapons for treatment this 

disease. The success of checkpoint inhibitors against metastatic melanoma and adoptive T-cell 

therapy with CARTs against B-cell derived leukemias and lymphomas are only two examples of 

developments that are changing the paradigms of clinical cancer management. These changes are a 

result of many years of intense research into complex and interrelated cellular and molecular 

mechanisms controlling immune responses. Promising advances come from the discovery of 

cancer mutation-encoded neoantigens, improvements in vaccine development, progress in delivery 

of cellular therapies and impressive achievements in biotechnology. As a result, radical 

transformation of cancer treatment is taking place in which conventional cancer treatments are 

being integrated with immunotherapeutic agents. Many clinical trials are in progress testing 

potential synergistic effects of treatments combining immunotherapy with other therapies. Much 

remains to be learned about the selection, delivery and off-target effects of immunotherapy used 

alone or in combination. The existence of numerous escape mechanisms from the host immune 

system that human tumors have evolved still is a barrier to success. Efforts to understand the rules 

of immune cell dysfunction and of cancer-associated local and systemic immune suppression are 

providing new insights and fuel the enthusiasm for new therapeutic strategies. In the future, it 

might be possible to tailor immune therapy for each cancer patient. The use of new immune 

biomarkers and the ability to assess responses to therapy by non-invasive monitoring promise to 

improve early cancer diagnosis and prognosis. Personalized immunotherapy based on individual 

genetic, molecular and immune profiling is a potentially achievable future goal. The current 
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excitement for immunotherapy is justified in view of many existing opportunities for harnessing 

the immune system to treat cancer.

 Introduction

CD8 T lymphocytes, NK cells and certain CD4 T helper lymphocytes are the only cell types 

in the organism that acquire the ability to kill sister cells as a mechanism of defense for 

eradicating or controling intracellular pathogens. As immunotherapists, our efforts are 

focused on harnessing and redirecting these cell-killing mechanisms to destroy malignant 

tissues and thus improve therapeutic efficacy against cancer. In modern oncology, attempts 

to harness and direct the power of the immune system against cancer are best exemplified by 

therapeutic vaccines. These are formulations of tumor antigens that are expected to elicit 

immune responses able to arrest cancer progression and prevent it from recurring. Vaccine 

development has required extensive preclinical and clinical research and has unraveled pro- 

and anti- cancer immune mechanisms, but has delivered very little to clinical practice (1). 

This has created skepticism towards cancer immunotherapy among clinical oncologists. In 

the last 20 years, two lines of research have dramatically changed this unfavorable view of 

immune therapies: (i) modulation of immune cells with immunostimulatory monoclonal 

antibodies (mAbs) (2) and (ii) adoptive T cell therapy (3).

The development of immunostimulatory mAbs (4) owes much to the pioneering work of 

James Allison (5), Lieping Chen (6), Tasuko Honjo (7) and Gordon Freeman (8), who 

discovered the critical role of surface receptor- ligand pairs, now known as checkpoint 

inhibitors, in downregulating T-cell immunity. Checkpoint inhibition could be interfered 

with by mAbs able to restore T-cell activation and enable T cells to control cancer 

progression. This line of research has resulted in unprecedented objective clinical efficacy 

against cancer starting with CTLA-4 blockade in metastatic melanoma (9, 10) and with 

PD-1/PD-L1 blockade in NSCLC, extending to a growing list of other malignancies, 

including RCC (11), bladder cancer (12), refractory Hodgkin lymphoma (13), head and neck 

cancer (14), ovarian cancer (15), MSI colon cancer (16), etc. Table 1 lists recent FDA 

approvals for clinical use of agents blocking immune checkpoints.

The other strategy that has improved efficacy of cancer immunotherapy is adoptive transfer 

of T cells. This field was pioneered by Steven Rosenberg whose team developed methods for 

isolation and culture of tumor-infiltrating lymphocytes (TILs) which can be re-infused 

together with exogenous IL-2 to patients rendered lymphopenic by preconditioning regimens 

(17). Durable response rates of TIL-based adoptive therapies are remarkable and are being 

replicated in cancer centers worldwide (18). Adoptive T-cell therapy has benefited from 

Zelig Esshar’s seminal work (19). By engineering T-cells with transmembrane receptors 

encompassing extracellular single-chain Abs and intracellular signaling domains, impressive 

efficacy has been attained in clinical trials against B-cell derived malignancies (20). The 

most successful chimeric receptors pioneered by Carl June and Michael Sadelain include 

anti-CD19 mAb and the intracellular signaling domains of CD3ζ plus either CD137 or 

CD28. Results in pediatric ALL, CLL, non-Hodgkin’s lymphoma and myeloma(21–24) 
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have introduced well justified optimism for broader applicability of this therapy to 

hematological and solid malignancies (20).

Many other recent developments in immunotherapy have contributed to making it “popular” 

among oncologists and patients. The most promising developments are discussed in this 

CCR Focus and include: (i) characterization of non- synonymous mutations in cancer giving 

rise to neoantigens (25); (ii) discovery of new checkpoints and other targetable 

immunosuppressive mechanisms (26); (iii) progress in the field of T cell trafficking to 

tumors (27); (iv) an enlarged repertoire of immunologic biomarkers for monitoring 

responses to therapy and understanding the underlying biology(28); (v) potentiation by 

immunotherapy of abscopal effects of radiotherapy (see below); and (vi) re-invigoration of 

therapeutic cancer vaccines by improving tumor antigen presentation and cross-priming 

(29).

A potential barrier to wide application of immunotherapy has been a concern about 

toxicities. The concern is legitimate, as most immunotherapies, whether with cells, 

antibodies or cytokines, are associated with adverse events. These can be readily managed. 

However, in cancer one additional concern is critical, and this is a possibility of accelerated 

tumor growth as a result of immune therapy. Therapeutic disturbance of the relationship 

between the tumor and immune system could result in tumor growth, e.g., if re-activated 

immune cells produce an excess of factors that will favor proliferation of residual tumor 

cells or cancer stem cells. For this reason, combinatorial therapies designed to first eliminate 

these cells and then re-juvenate anti-tumor immunity are under development. More 

important, the immune system is calibrated to prevent excessive activation that could 

damage tissues. Hence, Treg and MDSC and other regulatory cells play a key role in 

maintaining the balance. Its disturbance by re- activating T cells with, e.g., checkpoint 

inhibitors, is likely to call on regulatory cells to dampen this activation. This is a “rebound 

effect” which naturally occurs after T-cell activation and leads to expansion of regulatory 

elements in the immune system. When initiated and/or maintained by therapeutic T-cell 

activation, it could result in temporary or permanent suppression of anti-tumor activity by 

endogenous immune regulation. Thus, disturbing the immune balance with the intention of 

restoring potent anti-tumor responses might induce resistance to further activation. This and 

other aspects of interference with the physiology of the immune system by immunotherapies 

may be one of the major challenges that the field will have to overcome.

Although the use of antibodies in cancer has a relatively long history, and clinicians have 

learned how to deal with related toxicities, therapies with immune cells are much less 

familiar to oncologists. The widely prevalent perception that cellular therapies for cancer, 

e.g., with TILs or CARTs, are difficult to manage and costly has limited the production of 

cells for therapy and their use to few specialized centers. This perception is persisting 

despite the fact that technological advances in the production, transport and delivery to 

patients of therapeutic cells have made this therapy more affordable, safe and more widely 

available. Expectations are that this barrier will disappear, as oncologists become more 

familiar with cellular therapies and their use.

Whiteside et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2017 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Current enthusiasm for immunotherapy is justified because overwhelming evidence 

indicates that it is effective, albeit not in all cases, where conventional therapies were not. 

Nevertheless, many challenges still exist and will have to be overcome to make it universally 

available to those patients with cancer who need immune intervention in addition to other 

therapies.

 Immunotherapy Combinations: The Land of Opportunity

Immunotherapeutic synergy defined as a therapeutic effect superior to the additive effect of 

each of the components in a combination is generally perceived as the most potent engine 

for progress (30, 31). The first immunotherapy combination which has received FDA 

approval for metastatic melanoma has been the double CTLA-4 and PD-1 blockade (32–34) 

(Table 1).

Building on successes of the PD-1/PD-L1 blockade, numerous clinical trials of 

immunotherapy combinations are in progress (162 entries in Clinical Trials gov. and more 

under preparation). Combinations include various immunotherapy agents as well as 

combinations of immunotherapy agents with standard-of-care treatments (30, 31). It would 

be very surprising if these combinations do not deliver success. However, in some instances, 

combinations might give positive results at the expense of safety concerns (32–34) and thus 

become non-tolerable. One promising approach undergoing clinical trials is the combination 

of co-stimulatory agents and checkpoint inhibitors. As indicated in Figure 1 

immunomodulation relies on the presence of an ongoing baseline immune response to 

cancer neoantigens (25) and our abilities to remove the brakes as well as press gas pedals 

driving this response (35).

Concomitant and sequential use of the palettes of new treatments in various combinations is 

likely to lead to much needed synergistic efficacy. For instance, recently disclosed results 

from the combination of an IDO inhibitor and PD-1 blockade with excellent safety and 

efficacy profiles in a phase I/II trial further justify optimism for this and similar therapeutic 

strategies (36).

Interestingly, the aforementioned brightest stars in immunotherapy (immunomodulatory 

monoclonal antibodies and adoptive T-cell therapy) are clearly synergistic in animal models 

(37).

 Understanding Immunosuppression in the Tumor Microenvironment

The tumor microenvironment (TME) consisting of tumor cells, stroma, vascular elements 

and tumor-draining lymph nodes is a milieu in which multiple and complex cellular 

interactions take place that shape anti-tumor immune responses and determine eventual 

efficacy of immunotherapy. The immunosuppressive nature of TME is well known (38, 39), 

and the realization that each tumor creates its own, unique TME and orchestrates 

interactions between various cells present in the TME is likely to individualize our strategies 

for cancer immunotherapy. Immune cells infiltrating the TME are instructed to preferentially 

adopt the functional phenotypes and activities that support tumor progression. The 

instructive signals are delivered by the tumor in the form of soluble factors (cytokines, 
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chemokines, inhibitory factors) or exosomes (virus-size vesicles) which alter the behavior of 

local or distant immune and tissue cells and/or invite the entry of regulatory immune cells 

into the tumor milieu. As Table 2 summarizes, many immunosuppressive factors and cells 

lurk in the TME; however, not all are present in all tumors. For example, some human 

tumors express COX-2 and secrete PGE2, others produce adenosine or express 

idoleamine-2,3 dioxygenase (IDO) and still others are avid TGF-β or IL-10 producers (40). 

The immunosuppressive profile appears to be related to tumor aggressiveness and 

determines the presence and degree of T-cell activation or exhaustion/dysfunction prevailing 

in the TME (26, 40).

Much has been learned recently about Treg and MDSC accumulating in the TME (41–43). 

Emerging data suggest that these regulatory cells are unlike ordinary garden variety T cells 

or monocytes/macrophages that reside in tissues or blood of normal donors. MDSC in the 

hypoxic TME are programmed to produce an excess of iNOS, ROS, arginase-1, TGF-β and 

PGE2, the factors known to interfere with differentiation of DC, effector functions of T cells 

and to alter the tumor stroma. A high burden of MDSC in the chronically inflamed TME 

favors tumor progression(43). Therefore, strategies to eliminate MDSC or block their 

functions are being actively translated into the clinic, including, pharmacologic interference 

with the major suppressive pathways, e.g., by inhibition of the IDO and tryptophan pathway 

with indoximod or regulation of the myelopoiesis, e.g., by the administration of all-trans-

retinoic acid (ATRA) alone or together with IL-2 to promote differentiation of myeloid cells. 

Alternatively, prevention of myeloid cells trafficking to tumors by direct targeting 

chemokines (including CCL2, CCL3, CCL4 and CCL5) or blocking their production by the 

tumor can be pursued. Other approaches involve reduction in the frequency or blocking 

functions of MDSC, e.g., by utilizing chemotherapies, which when delivered at lower doses 

deplete MDSC and induce anti-tumor immunity. Not surprisingly, MDSC accumulation in 

tumors appears to interfere with anti-PD1 immunotherapy, and targeting of CXCR2+ MDSC 

with antibodies was reported to improve efficiency of the checkpoint blockade (44). Other 

approaches already in clinical development involve targeting the CSF1-R (45). 

Neutralization of MDSC as an adjunct strategy to other immunotherapies is a significant 

component of the novel anti-tumor therapeutics.

Treg present in the TME are highly suppressive and, in contrast to other tumor-infiltrating T 

cells (TILs) are not dysfunctional. Intra-tumoral CD4+CD25hiCD39+ FOXP3+ Treg up-

regulate immunosuppressive molecules (e.g., CD39 or TGF-β-associated molecules, LAP 

and GARP) and inhibitory receptors (46). Treg isolated from patients’ peripheral blood or 

tumor tissues co-expressed several inhibitory receptors and their suppressive activity within 

tumor-infiltrating lymphocytes (TIL) far exceeded that of Treg in the periphery (47). As 

these Treg had high expression levels of PD-1, it was expected that strong negative signaling 

via this receptor would inhibit Treg functions. However, early studies in mice showed that 

PD-L1 signaling via PD-1 promoted Treg cell development and functions, synergized with 

TGF-β to enhance conventional T-cell conversion to iTreg, maintained FOXP3 expression 

and increased Treg survival. It appears that PD-1, and perhaps other checkpoint receptors, 

function not as inhibitory but as stimulatory receptors in Treg (48). These data suggest that 

in Treg, PD-1 is programmed to function differently than in conventional T cells. Thus, anti-

PD-1 antibodies, which release the break in conventional T cells restoring their functions, 
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would be expected to block Treg-mediated suppression and further enhance anti-tumor 

responses benefiting the host. However, there is a concern that in Treg, which overexpress 

PD-1 in the TME, PDL-1 signaling up-regulates PTEN expression, blocks the Akt/mTOR 

pathway and activates STAT5/STAT3 signaling (49), leading to expansion of Treg and 

promoting their suppressive functions. This scenario, based on unique molecular signaling in 

Treg, implies that anti-PD-1 antibody therapies could have unexpected effects on Treg. 

Already evidence emerges that ipilimumab targeting CTLA-4 is not completely effective in 

eliminating Treg by ADCC (T.L. Whiteside; unpublished data) as suggested in mouse 

models (50). Depending on conditions prevailing in the TME, the surviving Treg might 

expand and interfere with benefits of checkpoint inhibitors. Despite many approaches used 

in the clinic for Treg depletion [reviewed in (51, 52) ] their persistence and resistance to 

chemotherapies (53) have been a problem. In addition, considerable functional heterogeneity 

of these cells and their essential role in preventing autoimmunity, compels us to think of how 

to deplete or muzzle “bad” iTreg operating in the TME without sacrificing “good” natural 

Treg necessary for maintaining homeostasis and keep autoimmunity at bay. Successful 

management of cancer-associated iTreg remains one of the challenges of cancer 

immunotherapies today.

 Reversal of T- cell Dysfunction at the Tumor Microenvironment and 

Checkpoint Inhibitors

There is ample evidence in experimental models and in humans that CD8+ T cells become 

exhausted/dysfunctional upon chronic antigen exposure in the tumor microenvironment 

(TME). These dysfunctional/exhausted T cells exhibit defective proliferative capacities and 

cytokine production (54). However, they are not totally inert and appear capable of exerting 

lytic functions (26). Dysfunctional CD8+ T cells upregulate a number of inhibitory receptors 

(IRs)/immune checkpoints (55) that bind to their ligands expressed by tumor cells and 

antigen-presenting cells (APCs)(56) in TME, including PD-1, CTLA-4, Tim-3 (57), LAG-3, 

BTLA (58) and TIGIT (59). Hence, dual immune checkpoint blockade appear to better 

enhance T cell expansion and functions and promote tumor rejection in vitro and in vivo. 

The recent success of dual CTLA-4/PD-1 blockade, which has been approved by the FDA 

(Table 1) in advanced melanoma underlines the clinical efficacy of such strategy.

While CD8+ TILs in the TME appear to upregulate IRs, they also upregulate a number of 

activating receptors (ARs) like 4-1BB, OX40 and GITR (60). These are members of the 

TNFR family that can readily co-stimulate T cell functions upon ligation. Agonist 

monoclonal antibodies show promising therapeutic effects against cancer mouse models are 

under development in clinical trials (61–63). At least in preclinical models these agonist 

agents are strongly synergistic with checkpoint inhibitors (30, 31).

One important question is to determine among cancer patients who is more likely to respond 

to immunotherapies targeting immunoregulatory pathways and when additional strategies 

may be needed to induce T cell responses to tumors. The answer to this question may come 

from the gene signature studies of metastatic melanoma, which propose to classify tumors 

into “inflamed” and “non-inflamed” phenotypes (28). While inflamed tumors are 
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spontaneously immunogenic and may be more likely to respond to immune interventions to 

counteract the mechanisms of tumor-induced T cell dysfunction, non-inflamed tumors lack 

tumor-infiltrating T cells and may likely need to be treated with novel targeted therapies 

(sting agonists, inhibitors of β catenin pathway) to induce T-cell activation and migration 

into the tumors (64–66).

 Radiotherapy and Immune-Mediated Abscopal Effects

The above mentioned successes of immune checkpoint inhibitors have clearly demonstrated 

that treating the host immune system in addition to killing the neoplastic cells can be very 

effective at achieving long-term tumor control. However, responses are limited to patients 

with some degree of pre-existing tumor-reactive T cells infiltrating the tumor. In this context, 

ionizing radiation therapy (RT), a local cancer treatment used for almost a century to kill 

cancer cells is finding a new role. The convergence of technological progress in the precise 

delivery of RT with improved understanding of the inflammatory signals associated with 

various cell death pathways triggered by radiation (67, 68) has enabled a conceptual 

transformation whereby RT is considered a promising partner for immunotherapy due to its 

ability to induce a cell death that is immunogenic potentially converting the tumor into an in 

situ vaccine (69–71).

The ability of RT to enlist the help of the immune system against the tumor has important 

implications not only for improved local control of the irradiated tumor (72, 73), but most 

importantly for systemic tumor control (74) (Figure 2). The regression of metastases outside 

the field of radiation after irradiation of one tumor site is known as “abscopal effect”. It is a 

rare but well-documented phenomenon that has been reported more frequently in patients 

with more immunogenic tumor types (75). Sensing of tumor-derived DNA by tumor-

infiltrating dendritic cells activates type I interferon (IFN) production via the stimulator of 

IFN genes (STING) pathway, a mechanism critical for generation of spontaneous anti-tumor 

T cells responses to immunogenic tumors (76). Importantly, recent data show that the same 

pathway is amplified by RT (77), providing a possible explanation for the occurrence of 

abscopal effects. However, the ability of RT to induce T cell responses in less immunogenic 

tumors is limited by immunosuppressive networks operating in the TME., This explains why 

abscopal effects are very rare. For example, TGF-β is a critical barrier to RT-induced 

priming of T-cell responses to multiple endogenous tumor antigens, exacerbated by the 

conversion of TGF-β from its latent to active form by RT-generated ROS (78). Other barriers 

include regulatory T cells and MDSC (79, 80). Pre-clinical studies have demonstrated that 

multiple immunotherapies that either block immunosuppressive mechanisms or improve 

immune activation can work in concert with RT to generate an in situ tumor vaccine and 

induce abscopal effects (81).

Importantly, these pre-clinical data are beginning to show clinical relevance. Combination of 

RT with cytokines that enhance dendritic cell numbers and function or TLR agonists that 

improve immune activation within the irradiated tumor induced abscopal responses in close 

to 30% of the patients in early clinical trials (82, 83). In another phase I study markedly 

improved response rate to high dose IL-2 was seen in melanoma and renal cell carcinoma 

patients treated with RT (84). Several trials are ongoing to test RT in combination with 
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various immunotherapy agents, including OX40 agonist and TGFβ neutralizing antibodies 

(85).

Perhaps the most exciting hypothesis being tested in the clinic is that RT can “raise the roof” 

of responders to immune checkpoint inhibitors. Extensive pre-clinical evidence and a 

growing number of clinical reports in melanoma patients unresponsive to anti-CTLA-4 

support this hypothesis (86–88). Importantly, a striking synergy of RT with anti-CTLA-4 has 

also been seen in a patient with non-small cell lung cancer (NSCLC), a tumor type where 

anti-CTLA-4 alone has no activity (89, 90), raising hope that RT could be used to extend the 

benefits of this treatment to multiple tumor types. Recent results of a prospective clinical 

trial support the synergy of RT with anti-CTLA-4 in NSCLC (91). However, in another large 

study in metastatic castrate-resistant prostate cancer the addition of anti-CTLA-4 to RT 

failed to improve responses (92). While reasons for this difference are unclear, the RT dose 

and fractionation used (93), the tumor type or the site chosen for irradiation may all play a 

role in determining the responses, and need to be further investigated. Several trials testing 

the synergy of PD-1/PD-L1 targeting agents with RT are ongoing, and will provide 

important results.

Overall, RT has a strong appeal as a commonly available, cost-effective treatment to 

generate T cells specific for neo-antigens expressed by each individual patient’s tumor (94). 

Research is ongoing to define the antigenic targets of T cell responses at the irradiated and 

abscopal tumor sites, the optimal RT doses and fractionation and the optimal partnerships 

with immunotherapy.

 The Road Ahead of Us and Our Patients

In the cancer immunotherapy community, the overall state of mind is optimistic. Much 

knowledge painstakingly accumulated over the years is driven to clinical translation at an 

incredibly fast pace. Big pharmaceutical and biotechnology companies are committing their 

best resources to the field and we expect good news in the following months and years. In 

this climate, the following points should be considered:

1. We will be mainly constructing and developing drug combinations based 

on the success of PD-1 and PD-L1 blockade. And we will especially focus 

on the non-responders to PD-1 blockade monotherapy.

2. There are interesting opportunities in targeting engineered biomolecules to 

the tumor microenvironment (95) and in intratumoral delivery of 

immunotherapeutic compounds (96).

3. Local and systemic virotherapy (96) will become more widely used as the 

best way to alert the immune system and render tumors immunogenic hold 

great promise especially regarding combinations (30, 31). An agent of this 

kind based on HSV-1 has recently received FDA approval for melanoma 

(Table 1) to be used by direct intra-tumoral injections (97).
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4. We will concentrate efforts on strategies to improve therapy of tumors 

endowed with low antigenicity (25) or those which are refractory to T- cell 

infiltration (27, 66).

5. We will be developing better, more predictive preclinical models to test 

immunotherapies including humanized mice implanted with human 

tumors and human immune systems (98).

6. Access to ever-improving personalized genetic and molecular profiling of 

tumors together with assessments of the patients’ immune status will 

provide a basis for individualized and potentially more effective selective 

immunotherapy

7. Numerous clinical trials will be needed to demonstrate efficacy and learn 

the biology necessary for building most effective combinations and 

addressing malignant diseases that are classically considered to be non-

amenable to immunotherapy.

8. Acknowledging that our knowledge of the immune system functions in 

cancer patients is incomplete, we will increase discovery efforts and focus 

attention on the development of new biomarkers that could improve early 

diagnosis, serve as surrogates of response to immune therapies and predict 

responses.

9. Looking at the impressive Kaplan Meier survival plots of pivotal 

immunotherapy clinical trials, we are encouraged to remember that there 

are many opportunities for making improvements in terms of both 

patients’ survival and the quality of life. Hence it will be acceptable to take 

balanced risks in the pursuit of improvements.

Reviews in this in CCR Focus have been selected to concentrate on the new trends and 

challenges in cancer immunotherapy. We should “never underestimate the dark side of the 

force”, but if we are doing the right things now, the eyes of our medical students of today 

will see in their patients things that we would have never dreamt of only fifteen years ago.
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Figure 1. A conceptual palette of immune interventions designed to mix potentially effective 
combined immunotherapies
For immunomodulatory interventions to be effective a baseline immune response must be 

available. Such antitumor responses can be built up by means of vaccines, adoptive cell 

transfers or by enhancing tumor tissue immunogenicity using one or more of the f listed 

strategies. Manipulation of the tumor microenvironment appears to be most important to 

achieve the goal. Adapted from Meleroand colelagues (35).
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Figure 2. Concept of immune mediated abscopal effects
Schematic representation of immune mediated effects. The scheme describes the systemic 

pro-inflamatory effects of gamma irradiation of the irradiated tumor lesion well that become 

hot and acts as an in situ tumor-attenuated vaccine against distant non-irradiated tumors. 

Such local response can be enhanced by immunostimulatory monoclonal antibodies to attain 

a systemic effect. Exploiting the systemic immune-mediated effects of radiotherapy offers 

opportunity to maximize the effect of novel immunotherapies. DC, dendritic cell; CTL, 

cytotoxic T cell.
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Table 2

Immunosuppressive factors and cells that contribute to T-cell dysfunction in the TME and immune therapies 

for restoration of anti-tumor immune competence a)

Factor/cell/cell product Effects in T cells Potential immune therapy References

Inhibitory receptor ligands T-cell exhaustion via IRs signaling 
plus the TCR-mediated chronic 

stimulation with TAs

Checkpoint inhibition: partial or complete 
restoration of T-cell functions translating into 

clinical responses

(32, 99, 107, 
108)

Soluble factors:
IL-10
TGF-β
IL-35
IDO

Galectin-9
Arginase

COX-2/PGE2

Adenosine
Oxygen radicals

Alone or in cooperation with PD-1 
inhibit functions of TA-specific CD8+ 

T cells by utilizing various relevant 
molecular pathways (referenced in the 

last column)

Neutralizing Abs; Abs targeting/blocking 
receptors, pharmacologic inhibitors; selective 

drug blockade

(109–116)

Regulatory cells:
iTreg

MDSC

Down-regulation of effector T-cell 
functions by contact-dependent or 
contact-independent delivery of 

inhibitory proteins, killing-inducing 
mediators or oxygen radicals

Treg or MDSC depletion or inhibition of their 
suppressor activities with blocking antibodies, 

immune checkpoint inhibitors or 
pharmacological agents

(40–42, 44)
(115–130)

Tumor-derived
immunoinhibitory

exosomes

Negative signals inhibit
Teff functions but promote regulatory 

cell expansion; inhibitory miRNA 
transfer

Removal of exosomes (plasmapheresis); 
blockade of signaling or inhibition of 

exosome release

(131)

MHC class I down-regulation/loss; 
β2-microglogulin inactivation on 

tumor cells

Interferes with Ag presentation by 
silencing Ag presenting machinery by 
tumors and with tumor recognition by 

T cells

Up-regulation of MHC-I expression by 
interferons or other immune therapies

(132, 133)

Metabolic checkpoints, e.g., 
glucose deprivation

Limits aerobic glycolysis in TILs; 
decreases the mTOR pathway activity 

and the ability to produce IFN-ɣ;

Up-regulation of metabolites regulating 
aerobic glycolysis in the TME

(134, 135)

a)
The table lists the best known inhibitors of T-cell functions in the TME. The list is not comprehensive, as additional blocking factors may be 

present. Each tumor develops its own unique immunosuppressive signature and the degree of T-cell dysfunction in the TME varies broadly from 
one tumor to another depending on the prevailing signature. Abbreviations used: TCR, T-cell receptor; TAs, tumor antigens; IDO, idoleamine-2,3 
dioxygenase; PGE2, prostaglandin E2; iTreg, inducible regulatory T cells; MDSC, myeloid-derived suppressor cells; MHC, the major 

histocompatibility complex; APM, antigen processing machinery.
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