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Abstract

Transcriptional regulatory networks (TRNs) encode instructions for animal development and 

physiological responses. Recent advances in genomic technologies and computational modeling 

have revolutionized our ability to construct models of TRNs. Here, we survey current 

computational methods for inferring TRN models using genome-scale data. We discuss their 

advantages and limitations. We summarize representative TRNs constructed using genome-scale 

data in both normal and disease development. We discuss lessons learned about the structure/

function relationship of TRNs, based on examining various large-scale TRN models. Finally, we 

outline some open questions regarding TRNs, including how to improve model accuracy by 

integrating complementary data types, how to infer condition-specific TRNs, and how to compare 

TRNs across conditions and species in order to understand their structure/function relationship.

 Introduction

Gene expression can be regulated at multiple steps along the process, including 

transcriptional initiation and elongation, RNA stability, and accessibility and rate of 

translation. In this review, we focus on regulation of transcriptional initiation by the action of 

transcription factors (TFs) and cis-regulatory DNA elements. For the purpose of discussion, 

we define transcriptional regulatory networks (TRNs) as regulatory interactions among TFs 

and their target genes. Edges in a TRN thus represent direct interactions between a TF and 

its target genes. Models of TRNs provide systems-level explanation of developmental and 

physiological functions. Accurate knowledge about TRNs can benefit a range of basic and 

applied biomedical researches. It can help us better understand the molecular mechanisms of 

development and cellular reprogramming, which can lead to better strategies to generate 

various cell types for regenerative therapies. Mechanisms of diseases that are characterized 

by dysfunction of TRNs can also be elucidated. Knowledge about TRNs can also guide 
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selection of novel drug targets and development of efficient strategies for cellular 

engineering.

TRNs are highly complex as reflected by the number of regulatory components and 

complicated connectivity patterns among the components. They typically exhibit highly 

dynamic and often nonlinear behaviors in response to external or internal signals. For this 

reason, computational modeling is an essential component in TRN research.

In recent years, high-throughput technologies have greatly expanded our ability to collect 

complementary data types that can be used for computational modeling of TRNs. This 

article reviews recent developments and discusses their implications for future research. We 

start by reviewing computational methods for inferring TRN models using genome-scale 

data sets. TRNs inferred using large-scale data tend to have less precision but can be used to 

infer network components and wiring, which is particularly critical for largely 

uncharacterized TRNs. We discuss their relative advantages and limitations. Next, we 

summarize representative TRNs constructed using large-scale approaches in both normal 

and disease development. We then discuss insights into the structure/function relationship of 

TRNs, based on examining various large-scale TRN models. Finally we outline some open 

questions regarding TRNs, including how to integrate heterogeneous data types to improve 

model accuracy, how to infer condition-specific TRNs, and how to compare TRNs under 

different conditions and across species to understand their structure/function relationship.

 Computational approaches for constructing genome-wide TRN models

Current approaches to constructing computational models of TRNs can be grouped into 

three classes based on the type of data used for inference (Figure 1). A list of methods 

discussed in this review along with their availability is provided in Table 1. The first class 

utilizes gene expression data as the only input1–8. Because they start with the regulatory 

output (e.g. expression level), collectively, this class of methods is known as the reverse 

engineering approach. A number of methods in this class have been developed using various 

computational frameworks, including linear regression5,9–13, statistical correlation2,3,14–16, 

and Bayesian network17–21. The basic assumption of regression-based approaches is that the 

expression levels of the TFs that directly regulate a target gene are the most informative, 

among all TFs, to predict the expression level of the target gene. When the expression level 

of a target gene is regressed on the expression levels of TFs, a non-zero regression 

coefficients indicate statistical dependency which in turn is interpreted as a regulatory 

interaction between the TF and the gene. Because there are many candidate TFs to consider 

in a regression, to identify the regulating TFs, a feature selection procedure is typically 

applied using regularized regression techniques.

Correlation-based approaches examine variation in gene expression across different 

conditions. Variation of gene expression in a large set of conditions provides a means to 

correlate statistically the expression of a specific TF with the set of expressed genes. The 

most commonly used correlation measures are Pearson and Spearman correlations. 

However, they cannot capture nonlinear relationship between two random variables. For this 

purpose, mutual information has been introduced3,14. Neither correlation measures nor 
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mutual information can distinguish indirect dependencies in a gene-triplet, i.e. dependency 

between two genes because the expression of both genes is dependent on a third gene. To 

remove indirectly dependencies, partial correlation coefficient and data processing inequality 

(DPI) measure have been introduced for correlation- and mutual information-based 

approaches.

Bayesian networks (BNs) are a class of probabilistic graphical models that represent 

statistical dependencies among a set of random variables. Formally, a BN is defined by a 

directed acyclic graph, a set of conditional probability distributions and their parameters, 

which collectively specify a joint distribution over the set of random variables. In the context 

of TRN modeling using BNs, nodes in a BN are genes and edges between nodes indicate the 

conditional dependencies between them. Learning BNs involves two steps: determining the 

network structure (i.e. structure learning) and estimating the conditional probability values 

associated with nodes (i.e. parameter learning). The computational challenge underlying 

BN-based methods is to exhaustively search the space of possible conditional dependencies 

(i.e. regulatory relationships). Given the numbers of genes and regulatory relationships 

among them in a typical metazoan species, a full implementation of a BN is intractable. 

Thus, heuristic approximation methods have been developed that used locally constraint 

search techniques, making the computational complexity manageable.

The major advantage of the first class of methods is their broad applicability because of the 

minimal requirement for input data. However, to achieve good performance, these methods 

typically require a large number of transcriptome profiles, usually at least as many as the 

number of TFs under study22. However, in most studies, sample size is much smaller than 

the number of TFs due to high experimental cost. Limited sample size makes the 

correlations between genes sensitive to noise, and thus highly correlated gene pair needs not 

imply a true regulatory relationship. A recent study assessed 35 reverse engineering methods 

using both experimental (E. coli and S. cerevisiae) and computationally simulated data22. 

The study revealed that no single inference method performs optimally across all data sets. 

In contrast, integration of predictions from multiple inference methods shows robust and 

high performance across diverse data sets.

Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques, such as 

sequencing or microarray (ChIP-Seq/Chip, hereafter refer to as ChIP-X) can provide 

genome-wide occupancy information for a given TF. Such data has become increasingly 

abundant in recent years. Although helpful, the utility of ChIP-X data alone for inferring 

regulatory interactions is limited because binding events detected by ChIP-X is only 

necessary but not sufficient for functional regulatory interactions. To address this 

shortcoming, the second class of methods combines gene expression profiling data with TF 

ChIP-X data to infer TRNs23–30. These methods fall into two categories in terms of their 

assumptions and approaches. In the first category, the methods identify subsets of ChIP-X 

binding sites for which the regulated genes have highly correlated expression profiles, and 

thus are co-regulated23,28. Methods in the second category use various regression techniques 

to fit ChIP-X binding data to the observed gene expression profiles in order to infer 

regulatory interactions24–26,30. Common to these approaches, a linear relationship between 

gene expression changes and TF binding affinities is assumed.
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All class II methods except that by Maienschein-Cline et al. use the gene nearest to a ChIP-

X binding site as the candidate regulated gene. This approach works well for compact 

genomes (e.g. bacteria and yeasts) and promoter-proximal TF binding sites. However, for 

metazoan species, functional TF binding sites may not reside next to their targets. A number 

of recent studies using chromosome confirmation capture (3C) based technologies have 

shown that the majority of enhancers do not target genes closest to them31–33. For this 

reason, accurate identification of enhancer-promoter interactions becomes a critical first step 

towards constructing accurate TRNs. Once the enhancer-promoter pairing is predicted, DNA 

motif analysis of the enhancer sequences is used to infer regulatory interactions between TFs 

that bind the enhancers and the paired gene promoters. The enormous amount of public data 

generated by projects such as ENCODE and Epigenomics Roadmap has opened up the door 

for integrative approaches to constructing TRNs for metazoan species. These integrative 

approaches represent the third class of methods for modeling TRNs. At the core of these 

methods is a strategy for linking transcriptional enhancers with target promoters. A general 

assumption of these methods is that the chromatin states of bona fide enhancers-promoter 

pairs tend to be correlated across cell/tissue types. Under this general assumption, different 

genome-wide chromatin state data have been used, including histone modifications34 and 

chromatin openness (as measured by DNase I hypersensitivity)35. Further development 

along this line has correlated chromatin state of enhancers with expression profiles of 

promoters36,37. He et al.38 took this approach further and identified three additional genomic 

features in addition to chromatin state correlation, including co-expression between 

promoter and genes encoding transcription factors that occupy the enhancer under 

consideration, sequence co-evolution between enhancer and promoter. These features when 

combined with chromatin state correlation were shown to significantly improve the 

inference accuracy of enhancer-promoter pairs.

 Large-scale mapping of TRNs during normal development

In the past several decades, through the effort of individual labs and large research consortia, 

large-scale TRN models have been constructed for various metazoan species. The TRN 

controlling sea urchin endomesoderm patterning is the largest and most extensively 

validated developmental TRN to date39. In C. elegans, TRN for the intestine has been 

constructed using yeast one-hybrid assay40. At a more global scale, ChIP-Seq was 

performed for 92 transcription factors spanning 11 developmental stages by the 

modENCODE consortium. Integration of ChIP-Seq and expression data produced a 

spatiotemporally resolved TRNs for this species41. In D. melanogasters, dorsal/ventral and 

anterior/posterior patterning have been studied extensively. TRNs for these two 

developmental processes have been mapped using ChIP-X assays and computational 

modeling42–45. Like C. elegans, the modENCODE project also generated TRN models 

based ChIP-Seq data for 38 fly TFs in different developmental stages and cell types46. In 

mammalian species, TRNs in various cell types have been constructed by individual labs, 

including dendritic cell47, macrophage48, embryonic stem cell49–52, hematopoietic stem 

cell53–55, B cells1, Th17 cells56,57 and T-cell fate specification58. By integrating TF ChIP-

Seq data, gene expression profiles, and chromatin modification ChIP-Seq data, the 
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ENCODE and mouse ENCODE projects have also generated TRN models for various 

human and mouse cells/tissues36,59–61

 TRNs in diseased cells

Given the key role of transcriptional regulation in development and cellular homeostasis, it 

is not surprising that perturbations to TRNs can lead to many diseases. Such perturbations 

include mutations in regulatory DNA sequences and in transcription factors, co-factors, and 

chromatin regulators. In order to understand the roles of mutations in pathogenesis, the 

underlying disease-specific TRNs in which the mutated factors operate need to be defined. 

Nowadays, the same high throughput technologies used to interrogate TRNs in normal cells 

are increasingly being applied to study TRNs underlying various human diseases especially 

cancer62–69. The developing insight is that the same TRNs in normal cells are either rewired 

or acquire altered activities in diseased cells to promote pathogenesis.

Reverse engineering approaches have been applied to construct TRNs in cancer cells. Carro 

et al. constructed a glioma-specific TRNs and identified two TFs (C/EBPβ and STAT3) as 

synergistic master regulators of oncogenic transformation62. Gatta et al.67decipher the 

oncogenic TRNs controlled by the two TFs, TLX1 and TLX3, in T cell acute lymphoblastic 

leukemia (T-ALL).

As ChIP-X technology became mature and more sensitive, they have been increasingly used 

to map TRNs in cancer cells. A recent study revealed that the oncogenic TF TAL1 forms an 

interconnected autoregulatory loop with two TF partners (RUNX1 and GATA3) in T-ALL. 

This circuitry contributes to the sustained activation of TAL1-regulated oncogenic 

program66. Many oncogenic TFs are generated by chromosomal translocation events. A 

well-known one is the RUNX1/ETO fusion TF, which is generated by the chromosomal 

translocation t(8;21)70. Using ChIP-Seq and expression profiling, Ptasinska et al.68 showed 

that the transcriptional program underlying leukemic propagation is regulated by a dynamic 

equilibrium between the TRNs regulated by the RUNX1/ETO fusion TF and intact RUNX1 

complexes. Using the same approach, TRNs in breast cancer64, prostate cancer69, and lung 

cancer63 have also been studied.

 Structure/function relationship of TRNs

Previous effort on mapping TRNs (both small-scale and large-scale) has yielded a large 

number of TRN models. Analysis of available TRN architectures has revealed the following 

organizational principles. First, TRNs have a global hierarchical topology36,59,71. TRNs for 

embryonic development of animal body parts, such as that for specification of 

endomesoderm in sea urchin39, for specification of gut and mesoderm in C. elegans72, and 

for specification of eye lens field in zebra fish73,74, tend to have deep hierarchical 

organization. In comparison, TRNs for terminal fate choice from multipotent stem cells and 

physiological responses, such as that for specification of erythroid versus myeloid fates 

bifurcate75,76, T helper versus killer cells diversification77, innate immunity response78, are 

relatively shallow. The structural difference between embryonic development TRNs and 

terminal fate TRNs reflects the difference in their functional requirement. Development of 

He and Tan Page 5

Curr Opin Genet Dev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the body plan requires a long sequence of progressive decisions that need to be made in 

different spatiotemporal domains. In contrast, terminal cell fate can be specified with fewer 

decisions.

Embedded in the global hierarchical topology of TRNs are many over-represented small 

connectivity patterns, the so-called network motifs79,80. Different types of network motifs 

are characterized by their different connectivity patterns and distinct functions associated 

with them. Some of the simplest and most prevalent motifs are feedback loops, either 

positive or negative. Positive feedback loops are often observed in systems that show switch-

like behavior, memory, or bistability. Negative feedback loops are functionally associated 

with systems that show strong noise resistance to perturbations. A slightly more complex 

motif is feedforward loop (FFL). This motif consists of three genes: a TF, X, which regulates 

TF Y, and gene Z, which is regulated by both X and Y. FFL motifs fall into two classes 

depending on the net sign of the regulatory actions of the two arms of the motif. Coherent 

FFL motifs have two arms with the same net sign of actions whereas incoherent FFL motifs 

have two arms with different net signs of action. Coherent FFLs has been shown to filter out 

brief spurious pulses of signal. Thus, gene Z only respond in the presence of persistent 

signal that is over its threshold, instead of a brief signal81,82. In incoherent FFLs, the two 

arms of the FFL act in opposition. They have been shown to generate pulse-like response 

dynamics by Z after X is activated83. For detailed treatment of other types of network motifs 

and their structure/function relationship, readers are referred to a number of excellent 

reviews on this topic80,84,85.

 Summary and Outlook

A large number of studies have demonstrated the enormous value that the assembly of TRN 

models has in understanding normal and disease development. In this review, we only 

considered networks involving transcription factors and their target genes. However, these 

networks are part of a much larger and more complex cellular network composed of many 

other types of molecules and their interactions. For this reason, combining multiple, 

independently generated observations (such as gene expression, in vivo TF binding and 

chromatin modification states, protein abundance measure, physical and genetic interactions 

among genes) to infer network structure can strengthen the resulting models and provide 

novel insights. Although the majority of current computational methods use only gene 

expression and/or ChIP-X data as the input to infer TRNs, more integrative methods have 

been developed in the past few years. For instance, researchers have integrated chromatin 

modification ChIP-Seq data to construct TRNs (e.g. class III approach). Such integrative 

approaches will become increasingly powerful as more data becomes available.

Most computational methods and TRN models discussed in this review are global networks. 

That is, regulatory interactions in these networks are not specific (or not specific enough) to 

a particular phenotype under study. Such condition-specific-interactions are critical for 

better understanding the behavior of the network. Advanced methods (both computational 

and experimental) are needed to allow capturing more nuanced network models.
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As models of TRNs start to accumulate rapidly, novel computational methods are needed to 

allow principled comparisons of TRNs to gain insights into the structure, function and 

evolution relationship of TRNs. For instance, comparing TRNs of normal and diseased cells 

will be particularly fruitful for understanding the molecular mechanisms of pathogenesis. 

Similarly, comparing developmental TRNs across species will provide valuable insights into 

their evolution and organization principles.
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Figure 1. Three classes of computational methods for inferring transcriptional regulatory 
networks
ChIP-X represents ChIP-ChIP or ChIP-Seq protocol. In the panel representing class III 

methods, arcs over genome loci and transcription start sites indicate enhancer-promoter 

links.
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Table 1
List of computational methods for modeling transcriptional regulatory networks

Class I, methods that only use gene expression profiles as their input data; Class II, methods that integrate both 

gene expression and transcription factor ChIP- X data. Class III, methods that integrate gene expression, 

transcription factor, and chromatin interaction ChIP-X data. These methods explicitly address a critical 

subproblem of TRN modeling, i.e. identifying enhancer-promoter interactions.

Method Download link Reference

Class I

ARACNe http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE 1

Inferelator https://sites.google.com/a/nyu.edu/inferelator/home 6

DREM http://www.sb.cs.cmu.edu/drem 7

GeneXPress http://robotics.stanford.edu/~erans/module_nets 8

TSNI http://dibernardo.tigem.it/softwares/time-series-network-identification-tsni 9

GENLAB http://genlab.tudelft.nl/larna.html 11

TIGRESS http://cbio.ensmp.fr/~ahaury/svn/dream5/html/index.htm 12

NetProphet http://mblab.wustl.edu/software.html 13

MI3 http://sysbio.engin.umich.edu/~luow/downloads.php 15

NetRec http://www.sissa.it/fa/altafini/papers/SoBiAl07 16

DBmcmc http://www.bioss.ac.uk/people/dirk/Supplements 20

Class II

GRAM http://groups.csail.mit.edu/cgs/onePageGraml 23

MA-Networker http://bussemaker.bio.columbia.edu/papers/MA-Networker 24

plsgenomics https://cran.r-project.org/web/packages/plsgenomics/index.html 25

PUMA http://umber.sbs.man.ac.uk/resources/puma 26

EMBER http://dinnergroup.uchicago.edu/downloads.html 27

ChIPXpress http://www.biostat.jhsph.edu/~gewu/ChIPXpress 28

ModEnt http://acgt.cs.tau.ac.il/modent 29

NCA http://www.seas.ucla.edu/~liaoj/downloads.html 30

Class III

PreSTIGE http://prestige.case.edu 37

IM-PET http://www.healthcare.uiowa.edu/labs/tan/IM-PET.html 38
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