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Abstract

We report a magic angle spinning (MAS) NMR structure of the drug-resistant S31N mutation of 

M218–60 from Influenza A. The protein was dispersed in diphytanoyl-sn-glycero-3-

phosphocholine lipid bilayers, and the spectra and an extensive set of constraints indicate that 

M218–60 consists of a dimer of dimers. In particular, ~280 structural constraints were obtained 

using dipole recoupling experiments that yielded well-resolved 13C–15N, 13C–13C, and 1H–15N 

2D, 3D, and 4D MAS spectra, all of which show cross-peak doubling. Interhelical distances were 

measured using mixed 15N/13C labeling and with deuterated protein, MAS at ωr/2π = 60 kHz, 

ω0H/2π = 1000 MHz, and 1H detection of methyl–methyl contacts. The experiments reveal a 

compact structure consisting of a tetramer composed of four transmembrane helices, in which two 

opposing helices are displaced and rotated in the direction of the membrane normal relative to a 

four-fold symmetric arrangement, yielding a two-fold symmetric structure. Side chain 

conformations of the important gating and pH-sensing residues W41 and H37 are found to differ 

markedly from four-fold symmetry. The rmsd of the structure is 0.7 Å for backbone heavy atoms 

and 1.1 Å for all heavy atoms. This two-fold symmetric structure is different from all of the 

previous structures of M2, many of which were determined in detergent and/or with shorter 

constructs that are not fully active. The structure has implications for the mechanism of H+ 

transport since the distance between His and Trp residues on different helices is found to be short. 

The structure also exhibits two-fold symmetry in the vicinity of the binding site of adamantyl 

inhibitors, and steric constraints may explain the mechanism of the drug-resistant S31N mutation.
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Graphical abstract

 INTRODUCTION

Influenza A M2 is a 97 residue transmembrane protein that assembles as a tetramer1 and 

conducts protons at low pH2 in order to trigger membrane fusion in an endosome and 

unpacking of the viral genome.3,4 The N-terminus of the protein is positioned on the outside 

of infected cells, with at least the first 18 residues exposed.5,6 A single-pass α-helix places 

the C-terminal domain on the cytoplasmic side of infected cells, a portion of which forms an 

amphipathic helix responsible for stabilization of the protein.7

The M2 H+ transporter is critical for viral replication, as evidenced by the therapeutic effect 

of aminoadamantyl inhibitors known to target M2 and to reduce proton conduction.7 There 

are now several excellent structures of the wild-type (WT) protein in complex with 

aminoadamantyl inhibitors in the pore, placing the site of pharmacological binding between 

residues 27 and 34.8–12 However, resistance has developed in circulating strains of influenza, 

primarily due to a single-point mutation S31N, which has precipitated a need for new 

inhibitors that target S31N M2. Since the proton conduction process in M2 is very sensitive 

to the structure of the peptide, this motivates the determination here of the structure of S31N 

M2 in hydrated lipid bilayers.

Previous structural studies of M2 have been applied to several different constructs 

reconstituted in a variety of virus membrane mimetics. These constructs can be classified 

into three groups, the full-length protein (FL), the conduction domain (CD), and the 

transmembrane domain (TM). The CD comprises approximately residues 18–60, which 

includes both the transmembrane residues (25–46) as well as an amphipathic helix (~47–59), 

which is known to stabilize the tetrameric assembly.7,13 TM domain constructs from residue 

22 to 46 contain a single membrane-spanning helix that does not fully reproduce the 

conduction and drug inhibition of WT but remains drug-sensitive. Since the CD forms 

tetramers with conduction and drug sensitivity that are indistinguishable from that of the full 

protein, we have investigated a CD construct, M218–60.13

Within the core of the tetrameric bundle, the four His-H37 residues are known to control the 

pH-dependent rate of conduction. Measurements on M222–46
14,15 and M218–60

16 showed a 

multiplicity of H37 pKa values and pinpointed the third protonation event as being 

responsible for physiological conduction. Thus, although the channel is a homotetramer, 

H37 exists as a mix of imidazole and imidazolium,17 implying that the highest degree of 
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symmetry for doubly protonated M2 tetramers is two-fold. In lipid bilayers, we find that 

two-fold symmetry is detected even for M218–60 tetramers that are uncharged at H37.18–20

Magic angle spinning (MAS), oriented sample (OS), and solution NMR have been used 

extensively to study various constructs of M2. The initial solid-state experiments were 

published by Cross and co-workers,21–24 and more recently, Hong and co-workers11,12,14,25 

have made important contributions to the study of constructs of M2. Extensive solution 

NMR studies have been described by the groups of Chou9,13,26 and DeGrado.27–30

Here we report MAS NMR studies of the M218–60 construct carrying the drug-resistant 

mutation S31N from Influenza A dispersed in diphytanoyl-sn-glycero-3-phosphocholine 

lipid bilayers. We employed a number of dipole recoupling experiments that yielded well-

resolved 13C–15N and 13C–13C 2D and 3D MAS spectra that permit determination of 

structural constraints for membrane protein samples. Samples were isotopically labeled with 

several different schemes, including uniform 13C and 15N labeling, labeling by residue type, 

and site-specific 13C labeling using 1,6-13C glucose. Interhelical distances were measured 

unambiguously using mixed 15N/13C labeling. Several additional restraints were determined 

using extensively deuterated protein, MAS at ωr/2π = 60 kHz and ω0H/2π = 1000 MHz, 

and 1H detection of methyl–methyl contacts in 3D and 4D MAS experiments. A 

mechanistically important 15N–1H–15N distance of <3.5 Å was observed between His and 

Trp on the two different chains of the dimer. The experimental protocol could represent a 

paradigm for structural determinations of membrane protein samples. Collectively, these 

experiments yielded 283 structural constraints and permitted us to calculate a structure 

consisting of four compact transmembrane helices. However, importantly, two opposing 

helices are displaced and rotated in the direction of the membrane normal, yielding a two-

fold symmetric structure. Side chain conformations of the important gating and pH-sensing 

residues W41 and H37 are found to differ markedly from four-fold symmetry. The rmsd of 

the structure is 0.7 Å for backbone and 1.1 Å for all heavy atoms. This two-fold symmetric 

structure is clearly different from all of the previously reported structures of WT M2 and 

from the two previously reported structures of S31N M2,26,29 which were solved in 

detergent micelles.

The dimer of dimers structure reported here was determined in lipid bilayers that closely 

mimic the viral environment. We used a preparation that allowed pharmacological drug 

binding in WT M2,8 supporting the assertion that we have reconstituted a native state of the 

protein. The structure calculated from the MAS NMR constraints therefore has implications 

for the path of H+ transportation and inhibitor binding. In particular, there is direct contact 

between a His and Trp on different helices, which is likely important in H+ transport. 

Furthermore, constriction within the tetramer at residues H37 and W41 excludes passage of 

water, consistent with the current understanding that M2 conducts via H+ shuttling. Finally, 

the structure also exhibits two-fold symmetry in the vicinity of the site of adamantyl 

inhibitors, and comparison of steric constraints with drug-bound structures may explain the 

mechanism of the drug-resistant S31N mutation.
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 EXPERIMENTAL SECTION

 M2 Synthesis

Recombinant M2 was synthesized, purified, and refolded in 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC) bilayers at a lipid/protein ratio of 1:1 by weight as described 

previously.18 Briefly, overexpression was carried out in Escherichia coli BL21 DE313,18 in 

minimal media prepared per liter with 3–4 g of glucose, 1 g of ammonium chloride, standard 

salts, and Centrum adult vitamins (1.5 mL of 2 pills in 40 mL, dissolved with shaking for 30 

min). The construct used was an N-terminal fusion to TrpLE, with a His-9 tag. After nickel 

affinity purification under denaturing conditions of 6 M guanidine, the fusion was 

precipitated by dialysis against water. The fusion was cleaved in 70% formic acid using 

cyanogen bromide (1–3h at ~20 °C), diluted, and lyophilized. The resulting powder was 

dissolved in 2:1:1 formic acid/HFIP/water and injected onto a C4 column equilibrated at 5% 

isopropyl alcohol. The protein eluted near the end of a gradient from 5% isopropyl alcohol 

to 58:37:5 acetonitrile/2-propanol/water. All reverse-phase chromatography solutions had 

0.1% trifluoroacetic acid. The pure protein was lyophilized. Lyophilized protein was 

refolded by dissolving the protein in octyl glucoside detergent solution, mixing with a lipid 

solution dissolved in minimal octyl glucoside, and removal of detergent by dialysis at 

~20 °C against sample buffer (40 mM phosphate, 30 mM glutamate, 3 mM sodium azide, 

pH 7.8). For samples with mixed labeling, cells containing the differently labeled protein 

were mixed and purified together for convenience.

Deuterated and ILV methyl-labeled protein was produced as described below and 

reconstituted in 2H78 DPhPC. 2H78 DPhPC was synthesized in collaboration with 

FBReagents (Cambridge, MA). Details are provided in the Supporting Information.

 U-13C,15N M2—Per liter, 3 g of 13C glucose and 1 g of 15N ammonium chloride (CIL), 

with another 0.5–1 g of 13C glucose added at induction (150 μM IPTG, 18 °C), were added 

at an OD600 of 0.7–0.9. The final OD600 reached 3.5–4 after 18 h of expression at 18 °C and 

yielded up to 15 mg of pure protein.

 U-13C,15N-[12C,14N-ILFY] M2—Per liter, 3 g of 13C glucose and 1 g of 15N ammonium 

chloride (CIL), with another 0.5–1 g of 13C glucose, were added at induction. Cells were 

grown in 700 mL of media, with 300 mL of media used to dissolve the amino acids. When 

the OD600 reached 0.7, the reserved 300 mL of media was added, along with amino acids at 

natural isotopic abundance:31,32 150 mg of isoleucine, 150 mg of leucine, 50 mg of 

phenylalanine, and 100 mg of tyrosine (Sigma-Aldrich). Expression of protein was induced 

with 150 μM IPTG at 18 °C as before. The final OD600 reached 3.5–4.6 after 18 h of 

expression at 18 °C and yielded up to 15 mg of pure protein.

 [1-13C]Glucose-, [1,6-13C2]Glucose M2—Preparation was identical to that for 

U-13C-15N M2 except that specifically isotopically labeled glucose was used. The labeling 

pattern resulting from [1,6-13C]glucose is the same as that from [1-13C]glucose33 (Omicron 

Biochemicals) except that the [1,6-13C]glucose results in double the labeling level per site.
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 U-13C,15N,2H-[12C,13C2H2
1Hδ1-Ile, 12C,13Ca,13C′,13C2H2

1Hδ2-
Leu, 12C,13C2H2 1Hγ2-Val] M2—An overnight culture in 50 mL of 90% 2H M9, 10% 

SOC media, was grown from a fresh transformation in BL21-DE3 until reaching an OD600 

of 2–3. Cells were then pelleted by centrifugation and transferred to 1 L of 2H M9 media 

containing 3 g of 2H–13C glucose, 1 g of 15N ammonium chloride, salts, and Centrum as 

before, in 1 L of 99.8% 2H D2O. The doubling time was 2 h. At an OD600 of 0.65–0.75, ILV 

precursors were added: 75 mg of α-ketobutyric acid,34 sodium salt 4-13C 99%, 3,3,4,4-2H4, 

98% (CIL), and 350 mg of 2-(13C,2H2)methyl-4-(2H3)-acetolactate prepared as described 

previously.35 Cells were harvested after 24–36 h and yielded up to 5 mg of pure protein. 

This labeling pattern results in methyl groups with isolated 13C1H spin pairs in an 

otherwise 2H,12C background at nearby sites. The protein was purified and refolded in 1H 

buffers, resulting in complete exchange to 1H at exchangeable sites such as the backbone 

amides.

 U-13C,15N,2H-[13CH3δ1-Ile] M2—The same protocol as above was used, but the 

precursor was 75 mg of 13C4, 98%, 3,3-2H2, 98% α-ketobytryic acid, and sodium salt.

 U-13C,15N,2H-[13C2H2
1Hδ2-Leu, 13C2H2

1Hγ2-Val] M2—The same protocol as 

above was used, but the precursor was 350 mg of U-13C,2-(2H2)methyl-4-(2H3)-acetolactate.

 NMR Spectroscopy

NMR spectra were recorded on several high-field Bruker (Bruker Biospin, Billerica, MA) 

spectrometers operating at a 1H frequency of 800, 900, and 1000 MHz, and using 3.2 mm E-

free probes at 800 and 900 MHz and 1.3 mm probes at 800 and 1000 MHz. Spectra were 

also recorded using a home-built spectrometer designed by Dave Ruben and operating at 

a 1H frequency of 750 MHz equipped with a Bruker 3.2 mm E-free probe. 13C-detected 

spectra were recorded with 3.2 mm Bruker E-free probes, and 1H-detected spectra were 

recorded with Bruker 1.3 mm solenoid probes tuned to HCN or HCD. The sample 

temperature was maintained at 20–30 °C using Bruker cooling units (BCU II or BCU 

extreme) or on the 750 MHz instrument, a Kinetics Thermal System XR air-jet system 

(Stone Ridge, NY). Chemical shifts are reported on the DSS scale using adamantane as a 

secondary reference.

 Spectral Assignments

The first task in any NMR structural determination involves assigning the spectra. In the 

case of the dimer of dimers of M218–60, sequence-specific chemical shift assignments of 13C 

and 15N were determined from 3D 15N–13C–13C correlations and 2D 13C–13C correlations. 

Assignment of amide 1H and backbone 13C and 15N resonances was made independently 

using a suite of six 1H-detected spectra and automated analysis via MATCH,36 as recently 

reported.37 These backbone resonance assignments were in agreement with those made 

manually using 13C detection. Stereospecific methyl protons were assigned using 13C–1H 

and 13C–13C–1H correlations and the known 13C shifts. Since many of the approaches we 

employed are new to MAS experiments, the spectra we used for assignment are detailed 

below.

Andreas et al. Page 5

J Am Chem Soc. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NCACX and NCOCX connectivity was determined using 2D 15N–13C ZF-TEDOR38 and 

3D 15N–13C–13C TEDOR-RFDR18,39–41 spectra recorded on U-13C,15N M2 and 

U-13C,15N-[12C,14N-ILFY] M2 as described previously.18 Spectra were recorded at a field 

of 900 MHz (1H) and 20 kHz spinning, using 83 kHz RFDR pulses, ~100 kHz 1H 

decoupling during RFDR mixing, and 83 kHz decoupling during acquisition. Mixing periods 

for ZF-TEDOR and RFDR of 1.2 and 4.8 ms were used with XY-4 and XY-16 or XY-32 

phase cycling for TEDOR and RFDR, respectively. The N–13Cα plane from the TEDOR is 

shown in Figure 1, and selected strips from the 3D are shown in Figure 2. In Figure 1, we 

have differentiated the two sets of cross-peaks corresponding to the two members of the 

dimer with blue and black labels. The cross-peak doubling is particularly obvious for G34 

and P25 and also for the important residues H37 and W41. The spectra of Figure 2 illustrate 

our ability to make consecutive assignments, as shown from P25 to A29. In all, two 

continuous stretches of backbone assignments were made from these spectra, one for each 

set of peaks from D24 to D44 and from P25 to Y52. A high magnetic field of 21 T was 

instrumental in obtaining such well-resolved spectra for assignment.

In Figure 3, we illustrate a 2D HN spectrum recorded using a 1H–15N CP transfer with 

ω1/2π = 50 kHz and ~4–10 kHz on the 15N and 1H channels, respectively. In addition, we 

extended this experiment to 3D with an (H)CαNH spectrum37,42 recorded using a H–Cα CP 

with ω1/2π = 35–50 kHz ramp on 1H and 10 kHz on 13C, Cα-N CP with ω1/2π = 35 kHz and 

25 kHz on Cα and 15N, with a 10% ramp, and N–H CP with ω1/2π = 50 kHz on 15N and 4–

10 kHz on 1H. Selected strips from the spectrum are shown in Figure 4. Additional 3D 

(H)Cα(C0)NH, (HCα)Cβ(Cα)NH, and (HCα)-Cβ(CαC0)NH spectra were also recorded using 

similar parameters.42 The U-13C,15N,2H-[12C,13C2H2
1Hδ1-Ile, 12C,13Cα13C′,13C2H2

1Hδ2-

Leu, 12C,13C2H2
1Hγ2-Val] sample was used. The spectra were recorded at ω0H/2π = 1000 

MHz and are an excellent example of a MAS NMR version of a solution NMR HSQC and 

HNCα experiment and allow assignment of the 15N amide resonances as well as structural 

measurements. Note that the peak doubling is apparent due to the presence of the two 

conformations in the dimer of dimers.

 Measurement of Distance Restraints

Using an ILFY reverse-labeled sample, proton-assisted recoupling (PAR) MAS spectra were 

recorded at ω0H/2π = 900 MHz and ωr/2π = 20 kHz, with τmix = 15 ms. The spectra, shown 

in Figure 5, primarily permit identification of Cαi–Cαi+3 contacts. In addition, a 4-fold 

molar excess of rimantadine was added to the sample and had minimal impact (<0.5 ppm) 

on the chemical shifts, indicating that the inhibitor does not induce significant 

conformational changes in the S31N mutant.18

Proton-driven spin-diffusion (PDSD) spectra43 were recorded at ω0H/2π = 750 MHz and ωr/

2π = 14.287 kHz, using an ILFY reverse-labeled sample with a 4-fold molar excess of 

rimantadine. Primarily, Cα–Cα contacts are shown in Figure 6. In addition, cross-peaks 

arising from structurally important aromatic–aromatic18 contacts are present in the 

spectrum, for example, interhelical contacts from H37 Cδ2 to H37 Cδ2′ and from W41 Cη2 

to W41 Cδ1′. In these spectra, we do not observe exchange between the two sets of peaks 

and therefore conclude that the dimer of dimers is stable on the time scale of seconds.
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To establish the structure of the M218–60 dimer of dimers, it was important to have 

interhelical constraints. Accordingly, we prepared a sample with mixed 15N and 13C labeling 

and used ZF-TEDOR to detect interhelical contacts. In particular, a 1:1 mixture of U-15N 

M218–60 and 1,6-13C glucose-labeled M218–60 was refolded, ensuring that mixed tetramers 

were formed. ZF-TEDOR spectra were recorded at 7 μs 15N π pulses, 100 kHz TPPM44 

decoupling, at ω0H/2π = 800 MHz, using τmix = 7.168, 14.336, and 21.504 ms, with the 

optimal intensity for most cross-peaks being observed at 14.336 ms. The ZF-TEDOR 

experiment permitted identification of five unambiguous and one ambiguous interhelical 

contact shown in Figure 7.

In addition, 10 interhelical contacts (more than any other single experiment) were identified 

in homonuclear 13C–13C RFDR spectra of a 13C-labeled sample prepared from 1,6-13C2 

glucose. This produces the same labeling pattern as that in 1-13C glucose33 but with twice 

the site labeling level (approaching 90% incorporation). Since the 13C are magnetically 

dilute, the deleterious effects of dipolar truncation are attenuated in measurements of weak 

couplings.45 Two different spectra were recorded with broad-band RFDR using τmix = 8 and 

19.2 ms. In Figure 8, the cross-peaks labeled in red are interhelical and were acquired with 

τmix = 8 ms. Also present in the spectrum are multiple inter- and intraresidue cross-peaks 

labeled with green and black, respectively. Two additional cross-peaks (gray) are present, 

which are assigned to intertetramer contacts.

The final two experimental data sets used to constrain distances were obtained from 1H-

detected 3D and 4D spectra recorded at ω0H/ 2π = 800 MHz that used 1H–1H RFDR 

recoupling and provided inter- and intramolecular methyl–methyl and His–Trp distances. 

The pulse sequence used for acquiring 1H–1H distances between the 13C2H2
1H–13C2H21H 

groups is similar to a recently reported 4D experiment using DREAM mixing46 and to a CP-

based implementation.47 In particular, we used high spinning frequencies (ωr/2π = 60 kHz) 

and INEPT for 13C–1H and 1H–13C transfers. 1H–1H recoupling for the observation of long-

range contacts was accomplished using RFDR (ω1/2π = 100 kHz) with τmix = 8 ms, together 

with 300 ms of water suppression, as suggested by Rienstra and coworkers.48 The timing 

diagram for the experiment is shown in Figure 9, and selected strips are displayed in Figure 

10.

Finally, a 3D 15N– 1H– 1H MAS spectrum using 3.33 ms of 1H– 1H RFDR was recorded at 

ωr/2π = 60 kHz using 100 kHz RFDR pulses. The cross-peak intensities were identified and 

observed in 2D as the mixing time was varied between 0.267 and 3.33 ms. The spectrum is 

shown in Figure 13B and highlights the structurally important H37′-Hε2 to W41-Hε1 side 

chain contact in orange. Notably, the intermolecular cross-peak is more intense than similar 

intramolecular H37-W41 cross-peaks but less intense than 2.8 Å backbone amide contacts. 

This indicates a close intermolecular approach, consistent with the calculated structure, and 

is an essential new feature of the dimer of dimers motif.

 Conversion of Peak Volumes to Distance Restraints

For 13C–13C restraints, peak volumes of known distances (Cαi–Cαi+1 and Cαi-Cαi+3) and a 

distance dependence of r−3 were used to calibrate distance restraints. For 13C–13C RFDR, 

Cαi–Cαi+1 peaks (3.8 Å distance) were used for calibration, and an upper distance limit was 
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entered as 1.1 times the calculated distance plus 1 Å. For nonaromatic sites, an additional 1 

Å was added to account for differences in relaxation. We did not attempt to adjust the 

distance limits based on the site-specific degree of labeling. For 13C–13C PDSD and PAR, 

Cαi–Cαi+3 peaks (5.3 Å distance) were used for calibration, and an upper distance limit was 

entered as 1.12 times the calculated distance plus 1 Å. Several restraints from the τmix = 8 

ms PAR spectrum were adjusted manually due to consistent violations. These restraints 

tended to involve carbonyl resonances, for which relaxation is expected to be different from 

the proton-bonded carbons used for calibration.

 TALOS+ Predictions

TALOS+ predictions were made using all assigned residues both with and without the use of 

proton chemical shifts. A higher number of good predictions were made without the proton 

shifts, and we therefore excluded proton shifts in the predictions. This can be rationalized 

based on the sensitivity of the proton chemical shift to water accessibility,28 which is 

typically low in a membrane protein and perhaps the slightly altered helical geometry49 

found in membrane proteins that may not be well-represented in the TALOS+ database.

 Introduction of Helical Hydrogen Bonds

Based on the TALOS + predictions, helical hydrogen bonds were entered as distance 

restraints for assigned residues except where the TM and AP helices meet. Distances of 2.0 

± 0.2 Å for Ci′ to HNi+4 and 3.0 ± 0.2 Å for Ci′ to Ni+4 were entered from P25 to L43. For 

one pair of helices, resonances were observed for additional residues, and these restraints 

were therefore continued between residues 47 and 52.

 Highly Ambiguous Restraints

Highly ambiguous restraints were automatically identified in the RFDR spectra of 1,6-13C 

glucose-labeled M218–60 using a cutoff of 0.25 ppm, the assignment tables, and the 

spectrum. Cross-peaks arising from side bands or truncation artifacts were removed by 

manual inspection. The restraints were then filtered against a structure generated without 

these ambiguous restraints but including all manually entered restraints. Restraints that 

violated by more than 3 Å were removed. The remaining restraints were entered directly into 

XPLOR as highly ambiguous restraints.

 Treatment of Intertetramer Contacts

Contacts that do not fit the general channel architecture (a parallel tetramer with His-37 

facing inward) were excluded from the calculation and may be due to intertetramer contacts 

that arise due to the high concentration of protein in the membrane. For example, Val and 

Trp are at opposite sides of the membrane, and cross-peaks that are seen between them most 

likely arise from contacts between adjacent tetramers, which are inserted in an antiparallel 

arrangement in the membrane. This arrangement is not surprising, given the wedge shape of 

M2 with a large C-terminal base, and is the arrangement observed in crystal structures of 

TM M222–46.
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 Structure Calculations

Simulated annealing was performed using the program XPLOR-NIH.50 Due to the C2 

symmetry, there are two different interfaces between each helix and its two neighbors. Each 

restraint was therefore entered as an ambiguous restraint to either of the neighboring helices. 

Since use of ambiguous restraints results in a rough energy landscape in which the protein is 

easily trapped in a local minimum, satisfying one of the possibilities, these ambiguous 

restraints resulted in slow convergence if introduced too early. First, TALOS+ and hydrogen-

bonding restraints were introduced in a standard simulated annealing (SA) protocol, and 

once the structure converged, the four helices were aligned loosely by applying four-fold 

symmetric restraints (upper bound 6 Å) from D44Cγ–R45Cζ, H37Cε1– H37Cε1, and 

V27Cγ–V27Cγ. Next, noncrystallographic restraints (NCS) were turned on to ensure C2 

symmetry, and 33 structures were calculated that satisfied these modeling restraints, TALOS

+, and hydrogen-bond restraints. Modeling restraints were turned off and all experimental 

restraints were included in the final two annealing cycles. First, 30 structures were calculated 

from each of the 33 structures from the previous annealing. Next, the lowest energy structure 

from each set of 30 structures was taken as input for calculation of an additional 30 

structures. From each of these sets of 30 structures, the lowest energy structure was selected, 

and the lowest 20 out of 33 final structures were included in the reported ensemble. During 

annealing, a database-derived potential for side chain rotamers (Rama) was ramped from 

0.02 to 0.2. Flat-well harmonic potentials were used, with force constants ramped from 25 to 

100 kcal mol−1 Å−2 for distances (dipole couplings) and 20–100 kcal mol−1 rad−2 for 

TALOS-based backbone dihedral restraints. Additional force constants used in the annealing 

were van der Waals of 0.02–4.0 kcal mol−1 Å−2, improper of 0.1–1.0 kcal mol−1 degree−2, 

and bond angle of 0.4–1.0 kcal mol−1 degree−2. The temperature was reduced from 1000 to 

20 K in steps of 20 K and 4 ps of Verlet dynamics at each temperature with 1.5 fs time steps. 

The mass of all atoms was set to 100 for the annealing.

 RESULTS

A set of 283 restraints consisting of 70 intrahelical distance measurements, 49 interhelical 

distance measurements, 72 highly ambiguous distance measurements, and 92 TALOS 

restraints were used to calculate an atomic resolution structure of M218–60 with greater than 

5 restraints per residue. Interhelical restraints are depicted in Figure 11 and listed in the 

Supporting Information. The precision of the structure is characterized by an ensemble of 

twenty low-energy structures with an rmsd of 0.7 Å for backbone heavy atoms and 1.1 Å for 

all heavy atoms (Figure 12). The rmsd was calculated for the structured region of the 

protein, which extended from P25 to R45 and P25 to S50 for the two asymmetric helices, 

and corresponds to all consistently observed residues. Part of the amphipathic helix was 

observed for only one set of resonances. The residues that are not observed can be assumed 

to undergo microsecond to millisecond motion that interferes with the 1H decoupling in 

MAS experiments and attenuates the intensities. This asymmetry is again consistent with the 

dimer of dimer structure.

The structure is packed tightly together with a narrow pore. It displays a hydrophobic 

surface in the direction of lipids (Figure 12) as expected for membrane proteins. At the C-
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terminal base, the hydrophilic residues of the amphipathic helix are positioned to interact 

with the hydrophilic head groups of the lipids. In Figure 12C, the interior surface of the 

tetramer is drawn using the program HOLE.51 Consistent with the understanding that the 

conserved residues H37 and W41 are responsible for ion selectivity and pH dependence, the 

narrowest part of the channel is found at these residues. The surface is colored red where 

less than one water molecule can fit in the channel, in green where no more than one water 

molecule can fit, and in blue where the pore diameter fits multiple water molecules.

Four W41 side chains are found in two distinct secondary structures (Figure 12D), with two 

helices in an “indole in” (W41 in Figure 13A) conformation, and the other two in an “indole 

out” (W41′ in Figure 13A) conformation, which in combination with the helix displacement 

allows the tetramer to pack into a tight bundle with a continues hydrophilic interior. Notably, 

the M2 channel contains very few hydrophilic residues lining the pore, particularly toward 

the N-terminus, where a stretch of six hydrophobic residues from P25 to A30 span nearly 

two helical turns. The result that adjacent helices are out of register decreases the distance 

between hydrophilic residues, improving the ability of the channel to form a hydrophilic 

pathway for proton conduction along the pore. The two-fold symmetric structure raises the 

possibility for an intermolecular mechanism of H+ translocation in which the protons first 

bind to the more N-terminal H37 (Figure 13A) before continuing to the more C-terminal 

H37. Subsequently, given their proximity in the structure, an intermolecular transfer between 

H37′ and W41 could possibly precede proton exit on the C-terminal side of the protein 

(Figure 13A and Figure 15). Although this suggestion is consistent with the observed 

geometry, we do not at present have direct evidence for this pathway.

 DISCUSSION

 Drug Resistance

Despite the S31N mutation occurring near the pharmacological drug-binding site,52,53 the 

precise influence of N31 on drug binding is unclear in the literature due to the substantial 

differences in reported structures that were solved for a variety of constructs under sample 

conditions that may not adequately mimic the viral membrane. There are two reported 

structures of the S31N mutant. The first of these was determined under conditions that did 

not bind drug in the pore of WT.20 The other was solved with an inhibitor different from 

amantadine and rimantadine.21 While previous structures have pointed toward either helix 

packing9,20 or direct interaction10 to explain drug resistance, the two-fold symmetric 

structure contains elements of both. In particular, the side chain of N31 points toward the 

pore in two helices and toward an adjacent helix in the other two, with neighboring N31 side 

chains close enough to form polar contacts. N31 is well-shielded from contact with the 

hydrophobic lipid membrane. In contrast, drug-bound structures of M29,26 show position 31 

in the interface between two helices, with the side chain oriented toward the lipids. This 

implies that two of the helices of S31N must rotate for the molecule to adopt the drug-bound 

structure (see Figure 14). In S31N, the larger hydrophilic N31 side chain would disfavor this 

motion due to interaction with hydrophobic lipids. In addition, a direct interaction between 

the N31 side chain in the pore and the drug would be unfavorable. While both effects could 

contribute to resistance, it is unclear which is more important. The simplest explanation is 
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that in the drug-bound state position 31 points toward lipids which is favorable for serine but 

not asparagine. Thus, the new dimer of dimer structure of S31N shows the necessary 

rearrangement of the N31 orienting it away from the lipids. According to the structure of the 

rimantadine-bound chimera M2, this S31N structure clearly does not contain the 

adamantane binding pocket. For the design of a novel inhibitor, it may be useful to block the 

channel in the apo structure, without a helix rotation. The structure presented herein should 

find use in the search for novel inhibitors, which has recently identified several promising 

compounds.25,29,30,54 As evident in Figure 12, the largest pocket in the pore that might be 

targeted by an inhibitor is the pharmacological binding site of adamantane-based drugs, near 

residue 31.

Regulation of the pH-dependent proton conduction and selectivity is determined largely by 

the conserved HxxxW motif, with the rate of conduction tuned by the pKa of H3714,15 and 

the unidirectional flow of protons controlled by W41.55 Previous explanations of the unusual 

pKa of H37 led to the proposal of imidazole–imidazolium dimerization in which the first 

two protons to enter the tetramer were shared in a low barrier hydrogen bond (LBHB).15 An 

alternative explanation places H37 in a His-box conformation,27 with water as the hydrogen-

bonding partner.14 The present structure deviates from a His-box conformation, but since it 

was solved at pH 7.8, above the first pKa of this construct, and therefore does not rule out a 

LBHB at lower pH. If the dimerization does occur, some rearrangement of the helices would 

be expected in order to bring the δ1 and ε2 nitrogens of adjacent H37s near enough to form a 

hydrogen bond (~5 Å in the structure). Alternatively, tuning of the H37 pKa could be 

accomplished with favorable cation–π interactions. The two-fold symmetric structure has a 

network of π systems that could form favorable cation–π interactions between histadine and 

tryptophan, both within a helix, and between neighboring helices.

As noted above, the two-fold symmetric structure of the tetramer reveals that the side chain 

N–H groups of H37′ and W41 are in close proximity (Figure 13A). This feature emerged in 

the initial structure calculations and suggested the possibility that it could be confirmed 

with 1H detected MAS experiments. Thus, we performed a (H)NHHRFDR experiment which 

yielded the 2D 1H–15N spectrum illustrated in Figure 13B which shows strong H37′–W41 

cross peaks providing an N–N distance constraint of <3.5 Å. The proximity of these two 

residues suggests that an intermolecular proton transfer might be involved in the conduction, 

and a possible mechanism entailing this process is depicted in Figure 15. Initially, H37′ is 

protonated, and the transfer from H37′ through the channel is mediated via W41. An 

interesting question is then what is the function of the other two H37′s and W41′s in this 

mechanism. If significant structural changes occurred along with the proton release via W41 

then, the other pair of intermonomer H37–W41 contacts might form. So it is possible that a 

proton relay might involve alternating formation of intermonomer H37–W41 complexes. 

However, the second pair of H37–W41′s are some distance removed and this would then 

average the two sets of cross peaks observed in the spectra. Clearly additional experiments 

are required to resolve these interesting questions.
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 Other Structures of M2

M2 structural models and structures have been determined under a variety of sample 

conditions, including both lipid bilayers, in detergent micelles, and crystallized from 

detergents. Among the complete tetramer structures, these investigations have either been 

conducted in detergents or have included a limited set of interhelical restraints, resulting in 

reported structures that show a high degree of conformational variability, which must be 

explained primarily from the difference in sample preparations. Surprisingly, none of the 

tetramer structures reported thus far are a dimer of dimers, as was recently observed in lipids 

via peak doubling,18–20 except for a recent structure56 based on oriented sample NMR and 

molecular dynamics simulations in which the deviation from four-fold symmetry was 

restricted to the side chain of H37.

In this oriented sample NMR structure, the helical tilt angle was determined experimentally, 

and a tetramer was assembled using molecular dynamics simulations. However, such 

orientation constraints57 are invariant with respect to translation and rotation about the 

bilayer normal. Since the four-fold symmetry of the backbone is primarily broken by 

translation in the S31N structure in lipids, this structure is in general agreement with the 

previously reported oriented sample measurements of WT M2, although there may be some 

differences due to the mutation. This highlights the importance of measuring interhelical 

contacts in the determination of structure. Ideally, restraints from oriented samples would 

also be included in structure determinations because orientation restraints can provide long-

range information that is complementary to distance measurements. However, currently, 

such data are not available for the S31N mutant, and we instead used an overdetermined set 

of distance restraints. Finally, we should mention that the possibility of a dimeric structures 

for various constructs of M2 has emerged from two recent MD simulations.58,59

 CONCLUSION

We have determined the structure of the drug-resistant S31N mutant of M2 in lipid bilayers. 

The experimental protocol, particularly the experiments to detect interhelical distances, 

could represent a paradigm for structural determinations of membrane protein samples. The 

side chain of the mutated residue occludes the binding site of inhibitors in the n-terminal 

pore, explaining drug resistance. The protein was found to adopt a dimer of dimers structure, 

with significant deviation from two-fold symmetry, particularly for functionally important 

residues H37 and W41. A short distance of <3.5 Å was found between polar side chain 15N 

of these H and W residues, suggesting that proton conduction may progress by direct 

transfer from histidine to tryptophan.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
15N–13Cα region of the ZF-TEDOR spectrum of U-13C,15N S31N M2; τmix = 1.2 ms was 

used in order to observe only one bond transfer. Note the two sets of cross-peaks (labeled 

with blue and black) that correspond to the two different molecules of the M2 dimer; ω0H/ 

2π = 900 MHz.
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Figure 2. 
Selected strips from the 3D ZF-TEDOR-RFDR spectrum recorded at ω0H/2π = 900 MHz, 

showing the consecutive assignment of residues P25 to A29. Mixing periods were τmix = 1.2 

and 4.8 ms for ZF-TEDOR and RFDR, respectively, at ωr/2π = 20 kHz. The NCACX 

transfer is shown in red and NCOCX transfer in blue.
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Figure 3. 
Cross-polarization-based HN spectrum showing the completed backbone amide assignments 

for M218–60. Note the cross-peak doubling denoted with blue and black labels on the cross-

peaks in the spectrum; ωr/2π = 60 kHz and ω0H/2π = 1000 MHz.
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Figure 4. 
Selected strips from the 3D (H)CαNH spectrum of 2H M218–60 back exchanged with 1H at 

amide sites; ω0H/2π = 1000 MHz.
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Figure 5. 
13C–13C MAS spectrum of ILFY-labeled M218–60 recorded at ω0H/2π = 900 MHz and ωr/2π 

= 20 kHz using PAR mixing with τmix = 15 ms. A 4-fold molar excess of rimantadine drug 

was present in the sample and produced minimal perturbations of the chemical shifts, as 

expected from an S31N M218–60.
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Figure 6. 
Cα–Cα region of a PDSD spectrum with τmix = 400 ms recorded at ω0H/2π = 750 MHz and 

ωr/2π = 14.287 kHz. A 4-fold molar excess of rimantadine drug was present in the sample 

and did not perturb the chemical shifts of the S31N mutant.
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Figure 7. 
15N–13C aliphatic correlations from a 15N–13C ZF-TEDOR spectrum of a 1:1 mixture 

of 15N and 1,6-13C glucose-labeled M218–60 recorded with τmix = 14.3 ms.
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Figure 8. 
13C–13C RFDR spectrum of 1,6-13C glucose-labeled M218–60 showing interhelical cross-

peaks (red labels) inter-residue cross-peaks (green), and intraresidue cross-peaks (black). 

Gray labels indicate cross-peaks that can only be explained due to the presence of 

intertetramer contacts. The spectrum was acquired with broad-band RFDR at τmix = 8 ms, 

ω1/2π = 100 kHz of 1H TPPM decoupling, ωr/ 2π = 20 kHz, and ω0H/2π = 900 MHz.
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Figure 9. 
Timing diagram for the 4D 13C2H2

1H–13C2H2
1H distance in the HCHHCH spectrum shown 

in Figure 10. Narrow and wide pulses represent 90 and 180° pulses, respectively. The delay 

Δ was optimized for transfer via the C–H J-coupling. RFDR and H2O suppression blocks 

were looped to reach the correct time. Low-power TPPM or WALTZ decoupling was used 

during 1H acquisition. Phases were X unless indicated, and ϕ1 = 13, ϕ2 = 1111 3333, ϕ3= 

0022, and ϕrec = 0220 2002.
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Figure 10. 
Methyl spectra of M218–60 labeled with 13C2H2

1H groups in the I, L, and V residues. The J-

transferred 2D spectrum of the stereospecifically 13C2H2
1H-labeled sample is shown in A, 

with assignments of isoleucine Cδ1, leucine Cδ2, and valine Cγ2 methyl groups. Notice the 

excellent resolution and the peak doubling observed in other 13C/15N spectra. B–E show 

selected planes from a 1H-detected 4D using 1H–1H RDFR and τmix = 8 ms and J-coupling-

based transfers for 13C–1H correlation. Interhelical correlations are shown in green. 

Autocorrelations are indicated with asterisks. Details of the pulse sequence are shown in 

Figure 9.

Andreas et al. Page 24

J Am Chem Soc. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Helical wheel representation of a two-fold symmetric M2 tetramer depicting the set of 

interhelical restraints (dashed lines) used in the final annealing, after resolution of 

ambiguities. The side chains of important residues N31, H37, and W41 are indicated with 

solid black lines.
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Figure 12. 
Dimer of dimers structure of M2. (A) Ensemble of seven low-energy structures. The 

backbone and all heavy atom rmsd values are 0.7 and 1.1 Å, respectively. (B) Surface 

representation showing a continuous hydrophobic exterior. (C) Pore surface as calculated 

using the program HOLE, colored in red, green, and blue for pore widths of <1 water, 1 

water, and >1 water, respectively. (D) C-terminal view of the pore with H37 in red and W41 

in blue in two distinct side chain conformations. W41 adopts an “indole in” conformation 

for one helix and an “indole out” conformation in the other. Unstructured N- and C-terminal 

residues are not displayed.
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Figure 13. 
(A) Assembly of four H37 and W41 residues within the dimer of dimers is shown. A short 

intermolecular distance of 3–3.5 Å is observed between H37′ and W41 in the ensemble of 

calculated structures calculated from the 13C–15N and some of the 1H detected data. (B) 

This proximity was subsequently confirmed by an (H)NHHRFDR spectrum recorded showing 

H37′–W41 cross peaks recorded with τmix = 3.33 ms of 1H–1H RFDR recoupling. The 

buildup of this peak is shown for a range of mixing times together with other assigned 

crosspeaks including a 1H–15N backbone distance a calibration.
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Figure 14. 
S31N and drug-bound structures explain drug resistance.The S31N structure in lipids (A) 

places N31 in the pore or in the helix–helix interface. The WT chimera structure (B) with 

bound drug (pdb code 2LJC) places S31 in the helix–helix interface pointing out toward the 

lipid membrane mimetic. Drug is shown in magenta, the drug-binding pocket (V27 and 

A30) is depicted as green sticks, and residue 31 (serine or asparagine) is shown as spheres.
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Figure 15. 
A possible conduction mechanism consistent with the close proximity of H37′ and W41 

found in the dimer of dimers structure (Figure 13A). The black H represents a proton that 

enters the channel from the n-terminal side. The blue H represents a proton transferred from 

H47 to W41. The red H represents the proton that can be readily released into the virus. 

Tautomerization of the H37 side-chain brings the protein back to the original state.
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