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Abstract

Fibroblast growth factor 5 (Fgf5) has been widely used as a marker for the epiblast in the
postimplantation embryo and epiblast stem cells (mEpiSCs) in the mouse, making it valu-
able for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here,
we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg) mice and
show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral
endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg
mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogram-
ming into naive state, Venus was suppressed. Furthermore, while most Tg mEpiSCs
expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopula-
tion of Venus-negative cells that were capable of conversion to Venus-positive cells, indicat-
ing that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together,
Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for devel-
opmental biology as well as stem cell biology research.

Introduction

Mouse embryonic stem cells (mESCs) are the first pluripotent stem cell type that was derived
from the inner cell mass of the developing blastocyst [1,2]. Self-renewal and pluripotency are
the defining features of mESCs, meaning that these cells can be maintained indefinitely in cul-
ture while retaining their ability to differentiate into all cell lineages of an adult organism. It is
well-known that the core pluripotency transcription factor network formed by Oct3/4, Sox2,
and Nanog is connected with extracellular signaling pathways, such as leukemia inhibitory fac-
tor (LIF), bone morphogenetic protein, and Wnt, which shields mESCs from differentiating
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stimuli [3-5]. mESCs can be grown either in conventional medium supplemented with LIF
and serum or in serum-free medium containing dual inhibitors (known as 2i) for mitogen acti-
vated protein kinase (Mapk) and glycogen synthase kinase-3 (Gsk3) [6].

Subsequent studies led to the establishment of another pluripotent stem cell type, termed
epiblast stem cells (mEpiSCs), which are isolated from the postimplantation mouse epiblast
[7,8]. Unlike mESCs whose pluripotency relies on LIF/Janus-associated kinase-signal trans-
ducer and activator of transcription 3 (Jak-Stat3) signaling, mEpiSC self-renewal is dependent
on basic fibroblast growth factor (bFGF) and Activin/transforming growth factor beta (TGFp)
signaling. In addition, when injected back into the host blastocyst, mESCs highly contribute to
chimera formation while only a very small fraction of mEpiSCs analogous to the early postim-
plantation epiblast can do so [9]. However, a recent study reported that mEpiSCs could readily
form chimeras including germ cell lineage provided they were grafted to gastrulating embryos
that retained pluripotency of the postimplantation epiblast [10]. Thus, the inherent discrepan-
cies in colony morphology, molecular and epigenetic status and chimera formation support the
notion that mESCs and mEpiSCs are representatives of distinct pluripotent states termed naive
and primed pluripotency, respectively [11]. Interestingly, these naive and primed pluripotent
states can be interconverted in defined culture conditions. Naive mESCs can achieve a primed-
like state by stimulating bFGF and Activin/TGFp signaling while mEpiSCs can be repro-
grammed back into a naive-like state by a combination of 2i/LIF and forced expression of plur-
ipotency-related factors, such as Nanog, Esrrb, Kif2, KIf4 or KiIf5 [12-16].

Heterogeneity is an inherent feature of mESCs when grown in the conventional culture con-
dition containing LIF and serum [17-20]. mEpiSCs also exhibit heterogeneous expression of
Oct3/4 and T (also known as Brachyury), resulting in differences in differentiation potential of
subpopulations [9,21]. Oct3/4-negative mEpiSCs could not incorporate into the host blastocyst
for chimera contribution, whereas a very small fraction of Oct3/4-positive mEpiSCs harboring
distal enhancer activity of Oct3/4 could efficiently form chimeras [9]. Furthermore, while T-
positive mEpiSCs were prone to differentiate towards mesoderm and endoderm fates, a feature
similar to that of in vivo epiblast cells that ingress through the primitive streak during gastrula-
tion process, T-negative mEpiSCs had a propensity to give rise to the neuroectoderm cell line-
age [21].

Fibroblast growth factors (FGFs) are structurally related proteins comprising 22 members
in mammals [22]. The interactions between FGFs and FGF receptors (FGFRs) play important
roles in regulating a wide variety of biological processes, ranging from modulation of tissue
repair, inflammation, cell proliferation, survival and differentiation [23] to pluripotency and
lineage specification [24] and regulation of energy expenditure [25]. Among the FGF family
members, Fgf5 is transiently expressed at different stages of the developing embryo [26]. Subse-
quent studies proposed a potential role of Fgf5 in the process of gastrulation through stably
maintaining the mobility of cells subjected to become the prospective embryonic germ layers
[27-30]. Fgf5 has since been used as a marker for epiblasts in pre-streak and streak stages of
mouse embryos [31-33]. Fgf5 is also strongly expressed in mEpiSCs [7,15,34,35], whereas it is
hardly detectable in mESCs [36]. These findings implicated Fgf5 as a valuable marker for differ-
entiation study of various tissues and epiblast cells in vivo and in vitro. Therefore, generation of
an animal model mimicking Fgf5 expression in vivo and in vitro would be useful for a better
understanding of epiblast cells and other biological events occurring during development as
well as cell fate decision made by mEpiSCs.

Here we report for the first time the generation of Fgf5-P2A-Venus BAC (bacterial artificial
chromosome) transgenic (Tg) mice to trace Fgf5 expression during early embryonic develop-
ment. Our results show the recapitulation of endogenous Fgf5 expression governed by
Fgf5-P2A-Venus BAC Tg in the postimplatation epiblast and visceral endodermal layer of E6.5
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and E7.5 embryos as well as in mEpiSCs. Furthermore, surprisingly, while most Tg mEpiSCs
expressed Venus abundantly, Tg mEpiSCs contained a minor subpopulation of Venus-negative
cells that were capable of conversion to Venus-positive cells. This observation indicates that
even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. These will serve as valuable
tools for marking Fgf5-expressing cells during development and studying lineage commitment
initiated by mEpiSCs.

Material and Methods
Construction of the Fgf5-P2A-Venus BAC Tg

The BAC clone (RP23-153124) harboring the Fgf5 gene was purchased from Invitrogen (Carls-
bad, CA, USA). For generation of the reporter cassette, the PGK-gb2-neo sequence flanked by
FRT sites was ligated to a DNA fragment encoding P2A- Venus-ipacpA (Gene Bridges, Heidel-
berg, Germany). The cassette was then inserted into the first or third exon of Fgf5 by PCR
amplification. The resulting BAC targeting vector and RED/ET expression plasmid (Gene
Bridges) were co-transformed into Escherichia coli. After screening with Kanamycin, recombi-
nants were identified by PCR analysis.

Generation of Tg mice

Recombinant BAC DNAs were purified with a NucleobondXtra BAC Kits (Macherey-Nagel,
Diiren, Germany) and then linearized by P1-Scel digestion. Pronuclear injection was performed
in fertilized eggs isolated from C57B6/] females, followed by transplantation into pseudo-preg-
nant ICR females (SLC Inc., Shizuoka, Japan). Tg mice were confirmed by PCR genotyping
with the following primer sequences: 5'-TTCAAGGACGACGGCAACTACAAGAC-3' and
5'-GCTTCTCGTTGGGGTCTTTCTCAG-3'. The Tg mice were maintained on an ICR or B6
genetic background. This study was approved and conducted in accordance with the Regula-
tions for Animal Experimentation of Shiga University of Medical Sciences.

Immunohistochemical analysis

Mice were sacrificed by cervical dislocation. Embryos were then dissected, staged in accordance
with Downs and Davies [37], and fixed in 4% paraformaldehyde for 30 min at 4°C. After wash-
ing twice in PBS, embryos were permeabilized in 0.5% TritonX-100 (Sigma-Aldrich, St. Louis,
MO, USA) in PBS (0.5% TPBS) for 30 min at 4°C. Permeabilized embryos were then blocked
in blocking solution containing 10% donkey serum (Immuno Bioscience, Mukilteo, WA,
USA), 0.1% bovine serum albumin (Sigma-Aldrich) and 0.01% PBST (0.01% Tween20 in PBS,
Nacalai Tesque, Inc., Kyoto, Japan) for 1 h at 4°C, followed by incubation overnight at 4°C
with anti-Oct3/4 rabbit polyclonal antibody (1:300; Cat #Ab19857, Abcam, Cambridge, UK)
and anti-Gata4 goat polyclonal antibody (1:300; Cat #sc-1237, Santa Cruz Biotechnology, Dal-
las, TX, USA) or anti-T goat polyclonal antibody (1:200; Cat #AF2085, R&D Systems, Minne-
apolis, MN, USA). After three washes with 0.5% TPBS, embryos were incubated with donkey
anti-goat IgG Alexa-Fluor633-conjugated secondary antibody (1:500; Cat #A21082, Molecular
Probes Inc., Eugene, OR, USA) and donkey anti-rabbit IgG Cy3-conjugated antibody (1:500;
Cat #711-165-152, Jackson ImmunoResearch, West Grove, PA, USA) for 3 h at 4°C. Embryos
were then washed three times with 0.5% TPBS and incubated with anti-GFP rabbit polyclonal
antibody Alexa-Fluor488 conjugate (1:300; Cat #A21311, Molecular Probes Inc.) for 3 h at 4°C.
Nuclei were stained with Hoechst33342 (2 ug/ml; Cat #H3570, Molecular Probes Inc.) for 20
min at 4°C. Images were captured using a Leica TCS-SP8 confocal microscope (Leica Microsys-
tems, Wetzlar, Germany).
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Immunohistochemical analysis for mESCs and mEpiSCs was performed as previously
described [16].

Whole-mount in situ hybridization

Fluorescent mRNA labeling by cytoplasmic fluorescence in situ hybridization (FISH) was per-
formed as described previously [38]. The full-length coding region of mouse Fgf5 was amplified
by PCR from EpiSC cDNA using following primers: mFgf5 fwd, 5-ATGAGCCTGTCCTTGC
TCTTCCTC-3’ and mFgf5 rev, 5>-TCATCCAAAGCGAAACTTCAGTCTG-3’. Digoxigenin
(DIG)-11-UTP (Cat# 11209256910, Roche) -labeled antisense RNA probes were generated by
T7 RNA polymerase using SP6/T7 transcription kit (Cat# 10999644001, Roche). Hybridization
with DIG-labeled probes was performed overnight at 65°C. The embryos were then incubated
with a peroxidase conjugated anti-DIG antibody (Cat# 11207733910, Roche, Basel, Switzer-
land) for 1 h at room temperature. Fluorescent staining was carried out with a Tyramide signal
amplification cyanine 3 system (TSA-Cy3) kit (Code# NEL704A, Perkin-Elmer, Waltham,
MA, USA) according to the manufacturer’s recommendations. To amplify the fluorescence sig-
nal, a TSA-biotin amplification kit (Code# NEL700A, Perkin-Elmer) was used.

Establishment of Fgf5-P2A-Venus BAC Tg mEpiSCs

Fgf5-P2A-Venus BAC Tg mEpiSCs were derived from E6.5 embryos (Fgf5-P2A-Venus BAC Tg
male line #571 x ICR female) as described [8] with a minor modification in culture medium.
We used NDiff227 (StemCells Inc., Newark, CA, USA) medium containing human Activin A
(20 ng/ml; R&D Systems) and bFGF (12 ng/ml; Wako Pure Chemical Industries, Osaka,

Japan).

Cell culture

mESCs were maintained in ESC medium (DMEM supplemented with 10% fetal bovine serum
(FBS), 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 1X nonessential amino acids, 1
mM L-glutamine, 100 u/ml penicillin/streptomycin and 1000 U LIF per ml (prepared in
house) on 0.1% gelatin-coated dishes and passaged every two days using 0.25% trypsin-EDTA
as previously described [39].

Cellular Reprogramming

To overexpress Nanog or KIf5 in Fgf5-P2A-Venus BAC Tg mEpiSCs, we used piggyBac trans-
poson and a transposase system. The pPB-CAG-Flox-Nanog/KIf5-dsRedT4-iresHygroR plas-
mid was generated by combination of the PB-CAG backbone and pPyCAG-Flox-Nanog/KIf5-
dsRedT4-iresHygroR, both of which were kindly provided by Dr. Hitoshi Niwa (Kumamoto
University, Japan). Plasmids were then co-transfected with piggyBac transposase into the Tg
mEpiSCs as previously described [16]. After 7 days of selection with 250 pug/ml Hygromycin B
(InvivoGen, San Diego, CA, USA), colonies were picked for stable KIf5 and Nanog-overexpres-
sing Tg mEpiSC lines.

For reprogramming experiments, 2-4 x 10* cells were seeded onto fibronectin-coated
6-well plates in EpiSC culture conditions. After 24 h, the medium was switched to 2i/LIF condi-
tions; the 2i inhibitors included 1 uM Mek inhibitor PD0325901 (Wako Pure Chemical Indus-
tries) and 3 uM Gsk3 inhibitor CHIR99021 (Wako Pure Chemical Industries). After 7 days,
immunofluorescence analysis was performed. To check the characteristics of the resulting
miPSCs, several miPSC colonies were picked up, expanded, and then cultured in 2i/LIF condi-
tions for further experiments.
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Reverse transcription (RT)-quantitative (q) PCR analysis

Total RNAs were extracted using the RNeasy Micro Kit (Qiagen, Hilden, Germany), followed
by cDNA synthesis using the ReverTra Ace (TOYOBO CO., LTD, Osaka, Japan) according to
the manufacturer’s instructions. Real-time PCR was performed with the Thermal Cycler Dice
Real Time System (Takara Bio Inc., Otsu, Shiga, Japan) and SYBR Premix EX Taq II (Takara
Bio Inc.). Data were normalized against the expression of S-actin gene. Primer sequences are
listed in S1 Table.

Cell sorting

Cells were dissociated by 0.25% trypsin-EDTA and resuspended in DMEM supplemented with
10% FBS. To exclude dead cells, the single cell suspension was incubated with propidium
iodide (Cat #P3566, Molecular Probes Inc.) for 10 min on ice. Flow cytometry analysis was per-
formed with FACSCalibur (Becton Dickinson Biosciences, San Jose, CA, USA). Cell sorting
was performed with a FACSAria Fusion (Becton Dickinson Biosciences).

Statistical analysis

Student’s t-test was applied for statistical analysis. Data are presented as means and standard
errors. Statistical significance was determined at P < 0.05.

Results
Generation of Fgf5-P2A-Venus BAC Tg mice

To generate transgenic (Tg) mice recapitulating endogenous Fgf5 expression, we took advan-
tage of the enhanced yellow fluorescence protein Venus, which possesses valuable features for
visualization, such as quick maturation and resistance to acidosis [40]. As the first trial, a BAC
clone was used to cover the entire genomic region of Fgf5 with a modification at the first exon
in which an in-frame fusion Venus was implemented right after the start codon (S1 Fig).
Although we obtained six Tg lines, Venus expression was not found in the epiblast of E6.5 and
7.5 embryos (data not shown). Because we anticipated that the reporter cassette perturbed
potential regulatory regions located around the first exon and intron, we inserted the P2A (por-
cine teschovirus-1 self-cleaving peptide)-Venus reporter cassette into the third exon of Fgf5 in
the BAC clone (Fig 1A), and generated six lines of Fgf5-P2A-Venus BAC Tg mice. To check
Venus expression, we dissected embryos at E6.5 and 7.5 from 6 Tg lines, and found strong
Venus expression in the epiblast of all Tg lines (Fig 1B and 1C, data not shown), indicating that
Fgf5-P2A-Venus BAC Tg construct can efficiently direct expression in the epiblast.

Venus expression in Fgf5-P2A-Venus BAC Tg embryos

The observation that Venus expression was detectable in the postimplantation epiblast of Tg
embryos prompted us to examine detailed expression of Venus directed by the Tg. Embryos
collected at E6.5 and E7.5 were stained for the epiblast marker Oct3/4 and endodermal marker
Gata4 or mesodermal marker T (Figs 2 and 3). We found uniform expression of Venus in the
epiblast of the Tg embryo at E6.5 (Fig 2A), consistent with previous reports [27-30]. Venus
was also weakly seen in the visceral endodermal layer, in accordance with previous observa-
tions [27,28,30]. Higher magnification confirmed our observation that Venus and Oct3/4
expression were expressed uniformly throughout the epiblast, whereas Gata4 protein was only
discernible in the visceral endoderm (Fig 2A). Importantly, fluorescent mRNA labeling by
cytoplasmic FISH revealed the presence of endogenous Fgf5 mRNA signals in the epiblast and
visceral endodermal layer of Tg embryos at E6.5 (Fig 2B). These results indicated that the
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Fig 1. Generation of Fgf5-P2A-Venus BAC Tg mice. (A) Construction of the Fgf5-P2A-Venus BAC Tg. The Fgf5 BAC clone (RP23-153124)
covering 72 kb upstream and 112 kb downstream of Fgf5 gene was used. Note that the PGK-gb2-neo cassette was removed from the BAC construct
prior to generation of Tg mice. P2A: porcine teschovirus-1 self-cleaving peptide; ipac: ires (internal ribosome entry site)-puromycin resistant gene. (B,
C) Venus expression in WT and Tg embryos at E6.5 (line #2 and #571). Ex: extraembryonic region; Em: embryonic region. Scale bar: 100 um.

doi:10.1371/journal.pone.0159246.9001

Fgf5-P2A-Venus BAC Tg construct recapitulated endogenous Fgf5 expression in Tg embryos at
E6.5.In Tg embryo at E7.5, Venus and Oct3/4 expression was found to be overlapping in the epi-
blast regions while Venus was also detected abundantly in the anterior visceral endoderm layer
(Fig 3A), consistent with previous reports [28,41]. We also confirmed endogenous Fgf5 mRNA
expression in the epiblast and visceral endodermal layer of Tg embryos at E7.5 (Fig 3B). Collec-
tively, these results demonstrated that Fgf5-P2A-Venus BAC Tg is capable of recapitulating
endogenous Fgf5 expression in the postimplantation epiblast and visceral endodermal layer.

While epiblast cells that ingress through the primitive streak can form the mesoderm and
endoderm, epiblast cells that do not traverse the primitive streak can give rise to the ectoderm
[42,43]. It is of note that at E8.25, we observed Venus expression in the neuroepithelium of the
forebrain (S2 Fig), consistent with Venus expression in the anterior epiblast at E7.5.

Derivation and characterization of Fgf5-P2A-Venus BAC Tg mEpiSCs

mEpiSCs represent a primed pluripotent state that can be utilized as a useful model for study-
ing biological events that take place during the transition from the primed to naive state and
vice versa. To confirm the Fgf5-P2A-Venus BAC Tg expression in vitro, we established
mEpiSCs, by culturing the epiblast of E6.5 Fgf5-P2A-Venus BAC Tg embryos in NDiff227
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Fig 2. Venus expression in Fgf5-P2A-Venus BAC Tg embryo at E6.5. (A) Immunofluorescence analysis
of the Tg embryo at E6.5 for Oct3/4 (red), Venus (anti-GFP, green), Gata4 (purple) and Nuclei
(Hoechst33342, blue). Higher magnification of optical sections is shown in panels X and Y. Note that Oct3/4
and Venus were co-expressed in the epiblast of the Tg embryo, while Gata4 expression was specifically
observed in the endoderm regions of the Tg embryo. Venus expression was also seen in visceral endodermal
layer. Open and closed arrowheads indicate endodermal and epiblast cells, respectively. Ex: extraembryonic
region; Em: embryonic region; Epi: epiblast; En: endoderm. Scale bar: 50 ym. All images were captured by a
Leica TCS-SP8 confocal microscope using a 40x/1.25 oil objective lens. (B) Whole-mount fluorescence in
situ hybridization of Fgf5 in the Tg embryo at E6.5. Open arrowheads indicate cytoplasmic localization of
endogenous Fgf5 mRNA. Scale bar: 20 ym. Images were captured by a Leica TCS-SP8 confocal microscope
using a 40x/1.25 oil objective lens.

doi:10.1371/journal.pone.0159246.9002

medium supplemented with bFGF and Activin. Immunofluorescence analysis revealed that the
Tg mEpiSCs expressed pluripotency markers Oct3/4 and Nanog (Fig 4A). RT-qPCR analysis
showed that Oct3/4 expression is significantly higher in the Tg mEpiSCs than in mESCs, while
expression levels of Nanog and Sox2 were lower in the Tg mEpiSCs than in mESCs. Notably,
Fgf5 and Sox1 expression were detected at much higher levels in the Tg mEpiSCs than in
mESCs (Fig 4B). Flow cytometric analysis showed that most Tg mEpiSCs, if not all, expressed
Venus, consistent with uniform Venus expression in the epiblast of the E6.5 Tg embryo (Fig
4C). Taken together, these results indicated that Fgf5-P2A-Venus BAC Tg mEpiSCs have simi-
lar properties to bona fide mEpiSCs.
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Fig 3. Venus expression in Fgf5-P2A-Venus BAC Tg embryo at E7.5. (A) Immunofluorescence images of
the Tg embryo at E7.5 for Oct3/4 (red), Venus (anti-GFP, green), T (purple) and Nuclei (Hoechst33342, blue).
Higher magnification of optical sections is shown in panels X and Y. Note that Oct3/4 and Venus were co-
expressed in the epiblast of the Tg embryo, while T expression was observed in the mesodermal layer of the
Tg embryo. Venus expression was also seen in visceral endodermal layer. Open and closed arrowheads
indicate mesodermal and epiblast cells, respectively. Ex: extraembryonic region; Em: embryonic region; Epi:
epiblast; Me: mesoderm; T: Brachyury/T. Scale bar: 50 um. All images were captured by a Leica TCS-SP8
confocal microscope using a 20x/0.7 dry objective lens (projection images) and 40x/1.25 oil objective lens
(section, X and Y images). (B) Whole-mount fluorescence in situ hybridization of Fgf5 in the Tg embryo at
E7.5. Open arrowheads indicate cytoplasmic localization of endogenous Fgf5 mRNA. Scale bar: 50 pm.

doi:10.1371/journal.pone.0159246.g003

Reprogramming of Fgf5-P2A-Venus BAC Tg mEpiSCs into miPSCs

Reprogramming of mEpiSCs into miPSCs can be accomplished by ectopic expression of
Nanog, Esrrb, Kif2, Kif4 or KIf5 cultured in the presence of 2i/LIF. [12-16]. The reprogramming
process upregulates many naive state-associated markers containing Nanog, Esrrb, Tfcp2l1,
Cd31, Rex1, Stella, NrOb1, Prdm14, Nr5a2, Tbx3, KIf2, KIf4 and KIf5, with a parallel rapid reduc-
tion in the expression of primed state-associated markers such as Fgf5. Next, we asked whether
Venus fluorescence is suppressed during the reprogramming process toward miPSC state.
After ectopic expression of Nanog or KIf5 in the Tg mEpiSCs, the culture medium was changed
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Fig 4. Derivation and characterization of Fgf5-P2A-Venus BAC Tg mEpiSCs. (A) Immunofluorescence analysis of
the Tg mEpiSCs for Venus (anti-GFP, green), Oct3/4 (purple), Nanog (red) and Nuclei (Hoechst33342, blue). Scale bar:
20 um. Allimages were captured by a Leica TCS-SP8 confocal microscope using a 63x/1.4 oil objective lens. (B) RT-
gPCR analysis of genes associated with pluripotency and lineage commitment in the Tg mEpiSCs and mESCs. -actin
was used as endogenous control for normalization. The mean and SD of three independent experiments are shown.

*P < 0.05. (C) Venus expression in control and the Tg mEpiSCs was analyzed by flow cytometry.

doi:10.1371/journal.pone.0159246.9004

from bFGF and Activin to 2i/LIF (Fig 5A). We found that ES-like colonies emerged in the Kif5-
and Nanog-overexpressing Tg mEpiSCs within 5-7 days after addition of reprogramming
medium. Immunofluorescence analysis revealed that overexpression of Kif5 or Nanog could
reactivate the expression of CD31 (also known as PECAM-1: platelet endothelial cell adhesion
molecule-1), a useful marker of inner cell mass cells, and increase Nanog expression in the
miPSCs (Fig 5B). Importantly, Venus expression in the Tg mEpiSCs was markedly reduced in
the miPSCs (Fig 5B). To further validate the characteristics of the miPSCs, several miPSC colo-
nies were randomly picked to generate miPSC lines. These miPSC lines were maintained in 2i/
LIF conditions and used for further experiments. RT-qPCR analysis showed upregulation of
pluripotency factors Nanog, Rexl, Esrrb, Tfcp2l1, KIf2, KIf4, and KIf5, and downregulation of
lineage commitment factor Fgf5 in miPSCs (Fig 5C). Taken together, these results demon-
strated that Venus expression can be used as an indicator when the Tg mEpiSCs are forced to
reprogram into miPSCs.

Dynamic heterogeneity of Fgf5 expression in Fgf5-P2A-Venus BAC Tg
mEpiSCs

mEpiSCs consist of several subpopulations: T-positive and -negative populations, and also
Sox1-positive and -negative populations; these positive/negative populations are interconverted
[21]. Although we found that Fgf5-P2A-Venus BAC Tg embryo showed uniform Venus expres-
sion in the epiblast and most Tg mEpiSCs expressed Venus abundantly, we investigated
whether the Tg mEpiSCs contained a Venus-negative population. Careful examination of flow
cytometry revealed that a minor fraction of the Tg mEpiSCs was Venus-negative (about 4%)
(Fig 4C). To further explore this phenomenon, we purified Venus-positive and -negative
mEpiSCs by cell sorting (Fig 6A) and cultured each cell fraction in mEpiSC growth conditions
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gPCR analysis of Tg mEpiSCs and miPSCs. The mean and SD of two independent experiments are shown. *P < 0.05.

doi:10.1371/journal.pone.0159246.9005

to investigate the ability to re-establish heterogeneity from each subpopulation. Interestingly,
Venus-positive cells quickly emerged from the sorted Venus-negative cells, and the sorted
Venus-negative cells could re-establish the original cell state within 4 days in culture (Fig 6A).
Similarly, the purified Venus-positive cells also generated Venus-negative cells, although the
re-establishment of heterogeneity from Venus-positive cells occurred more slowly compared
with that from Venus-negative cells (Fig 6A). These results indicated that the Tg mEpiSCs con-
tain at least two subpopulations that can be interconverted. We also examined gene expression
patterns in Venus-positive and -negative mEpiSCs by RT-qPCR analysis (Fig 6B). We
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confirmed that Fgf5 mRNA expression was enriched in Venus-positive cells (Fig 6Ba). Impor-
tantly, we found that the expression levels of other epiblast markers, Oct3/4, Nanog, and Sox2,
were predominantly detectable in Venus-positive cells (Fig 6Ba). Furthermore, both subpopu-
lations expressed very low levels of naive pluripotency markers RexI, Esrrb, Tfcp2l1, and KIf2
compared with mESCs (Fig 6Bd). Interestingly, we found that mesendodermal markers T,
Sox17 and Foxa2 were expressed at significantly higher levels in Venus-positive cells than in
Venus-negative cells (Fig 6Bb). On the other hand, among the tested ectodermal markers, only
Sox1 expression was enriched in Venus-negative cells relative to Venus-positive cells (Fig 6Bc).
Taken together, while it was thought that Fgf5 marks mEpiSCs uniformly, our experiments
clearly demonstrated that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs.

Discussion

In this study, we demonstrated that Fgf5-P2A-Venus BAC Tg mice can recapitulate endoge-
nous Fgf5 expression in the postimplantation epiblast and visceral endoderm. To the best of
our knowledge, this is the first Tg mouse model allowing for the visualization of endogenous
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Fgf5 expression during early embryonic development. Initial Tg lines carrying Venus at the
first exon failed to drive epiblast Venus expression while Tg lines carrying P2A-Venus in the
place of the stop codon drove strong Venus expression in the epiblast of all Tg lines. The exact
reason underlying these observations is currently not clear. Because many genes harbor impor-
tant regulatory elements around the first intron, the insertion of the Venus-pA reporter cas-
sette into the first exon could have potentially abolished transcription by perturbing the
epiblast promoter/enhancer elements.

Previous studies showed that primitive streak formation in the posterior portion of epiblast
is a crucial event through which the body plan is established during the gastrulation process
[44]. More specifically, while epiblast cells that ingress through the primitive streak can form
the mesoderm and endoderm, epiblast cells that do not traverse the primitive streak can give
rise to the ectoderm [42,43]. Future work will delineate the actual cell fates of Fgf5-positive epi-
blast cells, which would provide important insights into how the ectoderm lineage is estab-
lished and regulated in the gastrulating mouse embryo.

Gastrulation begins when a population of epiblast cells is triggered to move to the primitive
streak located in the posterior epiblast while the other cells remain in the epiblast. This cell
movement leads to the formation of the primary germ layers, namely the ectoderm, mesoderm,
and endoderm [43,44]. However, how epiblast cell movement is regulated and which factors
stimulate and determine the fates of cell populations at the onset of gastrulation is not fully
understood. Therefore, a detailed analysis of Fgf5 and T expression pattern will be required to
understand the molecular basis of epiblast cell behavior during gastrulation.

mESCs consist of several subpopulations; the subpopulations expressing either PECAMI,
Rex1 or Stella efficiently form chimeric animals when injected into blastocysts. mEpiSCs are
also heterogeneous in terms of gene expression: T-positive cells are primed to differentiate into
mesoderm and endoderm lineages, while T-negative cells are primed to ectoderm [21]. Our
data showed that Fgf5 overall uniformly marks mEpiSCs, consistent with the previous report
[21]. However, surprisingly, there is a small subpopulation of Fgf5-negative cells in mEpiSCs.
Our gene expression analysis revealed that, while Fgf5-positive cells predominantly expressed
important mesendodermal markers such as T, Sox17 and Foxa2, Fgf5-negative cells exhibited a
high expression level of the ectodermal marker SoxI. Currently, the actual cell type of Fgf5-
Venus-negative cells is unknown, but these results suggest the possibility that the heteroge-
neous expression of Fgf5 observed in our study may be the foundation for the distinct differen-
tiation biases of subpopulations in mEpiSCs. Thus, investigation of the differentiation
propensity of Fgf5-negative and -positive mEpiSCs in response to differentiation stimuli will be
of a great interest in future studies.

Previous studies indicated potential roles of Fgf5 in the progression of hepatic fibrosis [45],
the process of gastrulation [27,28] and hair growth cycle [46], but the molecular basis of how
Fgf5 manifests its functions has not been clearly understood. In addition, the impact of biologi-
cal events on lineage commitment initiated by mEpiSCs is not known. Taken together,
Fgf5-P2A-Venus BAC Tg mice and mEpiSCs established in our study may be used to investi-
gate novel functions of Fgf5 as well as to unravel molecular mechanisms underlying lineage
specification in vivo and in vitro.

Supporting Information

S1 Fig. Construction of the first exon Fgf5-Venus BAC Tg. The Fgf5 BAC clone (RP23-
153124) covering 72 kb upstream and 112 kb downstream of Fgf5 gene was used. Note that
Venus was fused in frame after the start codon.
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S2 Fig. Venus expression in Fgf5-P2A-Venus BAC Tg embryos at E8.25. Immunofluores-
cence staining of the Tg embryo at E8.25 for Venus (green). Note that Venus was expressed in
the neuroepithelium of the Tg embryo. Ne: neuroepithelium. Scale bar: 100 pm.

(TTF)

S1 Table. Primers used for RT-qPCR analysis.
(TIF)
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