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Among non-small cell lung cancer (NSCLC), adenocarcinoma (AC), and squamous cell carcinoma (SCC) are two major histology
subtypes, accounting for roughly 40% and 30% of all lung cancer cases, respectively. Since AC and SCC differ in their cell of
origin, location within the lung, and growth pattern, they are considered as distinct diseases. Gene expression signatures have been
demonstrated to be an effective tool for distinguishing AC and SCC. Gene set analysis is regarded as irrelevant to the identification of
gene expression signatures. Nevertheless, we found that one specific gene set analysis method, significance analysis of microarray-
gene set reduction (SAMGSR), can be adopted directly to select relevant features and to construct gene expression signatures.
In this study, we applied SAMGSR to a NSCLC gene expression dataset. When compared with several novel feature selection
algorithms, for example, LASSO, SAMGSR has equivalent or better performance in terms of predictive ability and model parsimony.
Therefore, SAMGSR is a feature selection algorithm, indeed. Additionally, we applied SAMGSR to AC and SCC subtypes separately
to discriminate their respective stages, that is, stage II versus stage I. Few overlaps between these two resulting gene signatures
illustrate that AC and SCC are technically distinct diseases. Therefore, stratified analyses on subtypes are recommended when

diagnostic or prognostic signatures of these two NSCLC subtypes are constructed.

1. Introduction

Lung cancer (LC) is one of the leading causes of death
worldwide, with approximately 85% of LC cases being non-
small cell lung cancer (NSCLC) [1]. NSCLC can be further
divided into three major subtypes, among which adenocar-
cinoma (AC) and squamous cell carcinoma (SCC) account
for roughly 40% and 30% of all LC cases, respectively [2].
Since AC and SCC differ in their cell of origin, location within
the lung, and growth pattern, they are considered as distinct
diseases [3].

Gene expression signatures have been demonstrated to
be capable of distinguishing AC and SCC apart [3-6]. When
building up such a signature, a feature selection algorithm is
usually implemented to deal with the high dimensionality of
gene expression profiles [7]. Among a variety of feature selec-
tion algorithms, many incorporate coexpressed/coregulated

information contained within pathways to facilitate the selec-
tion of relevant features. Applications of those algorithms to
real-world microarray data have shown that accounting for
such information can always improve predictive power and
biological interpretation of a classifier [8-10].

Gene set analysis is regarded as irrelevant to the identi-
fication of individual gene expression signatures because it
considers a whole gene set’s concordant association with a
phenotype. However, it is found that some gene set analysis
algorithms can be utilized directly for selecting relevant genes
and obtaining a diagnostic or prognostic gene signature
[11]. Significance analysis of microarray- gene set reduction
(SAMGSR) [12] is one of such algorithms. It extends signifi-
cance analysis of microarray-gene set method (SAMGS) [13],
which accumulates the squared SAM statistics over all genes
inside a gene set to determine this gene sets significance,
with one reduction step. SAMGSR aims to further downsize
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the selected gene sets into their respective core subsets. This
reduction step essentially carries out feature selection.

In previous work [11], we applied SAMGS to a real-
world microarray dataset and identified the gene signatures
discriminating multiple sclerosis (MS) patients from their
controls. Although the resulting signatures perform well,
the application of SAMGS to MS data encounters one big
disadvantage; MS is one disease under less investigation
compared to cancers and thus its associated gene sets are
far from being comprehensively annotated by those major
databases such as KEGG [14] and GO [15]. This drawback
might conceal the actual capability of feature selection held
by SAMGSR.

While microarray technology remains popular, RNA-
sequencing (RNA-seq) has evolved quickly and become a
competitive choice to profile genes expression values [16].
With the aid of a recently proposed R Bioconductor function
called Voom [17], the application of statistical methods
originally proposed for microarray data to RNA-seq read
count data becomes feasible. It facilitates integrated analysis
of data from these two technologies. For example, previous
studies have justified that KRT5 plays a critical role in the
segmentation of AC and SCC using both microarray and
RNA-seq platforms [5].

NSCLC is a multistage progression process resulting
from genetic sequences mutations; thus genes associated
with NSCLC patients at histology stage I and with those at
stage II might differ potentially. Nevertheless, none of recent
efforts by the industrial methodology for process verification
in research (IMPROVER), diagnostic signature challenge
(DSC) [18], and ours [4, 5,19] had achieved successful stage I
versus stage II segregations for AC or SCC.

In this study, we aim to address several issues by applying
SAMGSR to NSCLC microarray and RNA-seq data. First,
taking advantage of the fact that the gene sets associated
with NSCLC are well annotated in major canonical databases,
SAMGSR will be further explored on its use as a feature
selection method. Second, by incorporating extra pathway
knowledge contained in lung cancer relevant gene sets, we
intend to obtain gene signatures capable of discriminating
different stages within each subtype apart. Finally, we aim to
test the generalization of resulting gene signatures on a larger
cohort even collected from a different platform.

2. Materials and Methods

2.1. Experimental Data. Microarray data are available in
the Gene Expression Omnibus (GEO) repository (Accession
number: GSE50081) and RNA-seq data are in The Can-
cer Genome Atlas (https://tcga-data.nci.nih.gov/tcga/). Since
both datasets were utilized by us previously for constructing
prognostic gene signatures of NSCLC, we refer to that work
[20] for the details and skip the descriptions on them here.

2.2. Preprocessing Procedures. For the RNA-seq data, counts-
per-million (CPM) values were calculated and log, trans-
formed by Voom function [17] in R limma package [21]. For
the microarray data, expression values were obtained using
the GCRMA algorithm [22], and quantile normalization
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was carried out and then the expression values were log,
transformed. These two datasets were preprocessed and
normalized separately.

There are 16,363 unique genes annotated by both hgul33
plus2 and RNA-seq platforms. Given the differences between
these two datasets, for example, different platforms used and
personal characteristics, we performed an integrative corre-
lation (IC) [23] analysis to exclude genes with inconsistent
expression patterns across studies. Then, SAMGSR analysis
was carried out using the 7,286 genes that passed the IC
filtering.

2.3. Statistical Methods

2.31. SAMGSR. As an extension of SAMGS, SAMGSR
reduces the number of genes contained in the pathways
selected by SAMGS up to 90% [12]. It consists of two major
steps. First, SAMGS is used to select relevant pathways.
Subsequently, each selected pathway is refined to a concise
subset. In SAMGS step, the following statistic is defined for
gene set j:

i (%, (i) - %, (i)
_ 2 _ d c
SAMGS; = izzldi’ d; = GO

where d; is SAM statistic [24] and x,;(i) and X_.(i) are the
sample averages of gene i for the diseased group and the
control group, respectively. s(i) is a pooled standard deviation
and estimated by pooling samples over two groups and s, is
a small positive constant used to offset the small variability
in microarray measurements. The size of gene set j, that is,
the number of genes contained in gene set j, is denoted as | j.
Technically, SAMGS statistic is the L, norm of SAM statistics
for all genes within the gene set.

For a significant gene set identified by SAMGS, where
its statistical significance is determined using permutation
tests by permuting phenotype-labels for several hundred
times, SAMGSR gradually partitions the entire set S into two
subsets: the reduced subset R, including the first k genes and
its complement set R, for k = 1,...,]j| after the genes in
the gene set are ordered decreasingly based on the absolute
values of their SAM statistics. Let ¢, be the p value of SAMGS
statistic for R,; the final size of R, corresponds to the smallest
k when ¢, is larger than a threshold c.

)

2.3.2. Implementation of SAMGSR for Feature Selection. As
mentioned above, SAMGSR extends SAMGS by adding an
extra step of reducing the selected gene sets to their respective
core subsets. We note that this additional reduction step is a
process of feature selection in nature. There are two cutoffs in
SAMGSR. One is the significance level « in SAMGS, which
determines the number of gene sets selected by SAMGS.
The other is ¢, which determines the size of reduced core
subsets. Both of them are considered as tuning parameters
in a supervised learning process and determine jointly the
sparseness of the final model.

To determine the optimal values of those two parameters,
we conducted a grid search by varying their values over two
sets of values (i.e., 0.01 and then 0.05 to 0.3 with an increment
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FIGURE I: Study schema. Graphical illustration on the applications of SAMGSR to the stage segmentations of early-stage NSCLC.

0f0.05 for cand 0.01, 0.05, 0.1, 0.15, and 0.2 for the significance
level in SAMGS) and using 5-fold cross-validations. The
set of ¢ and « achieving the best performance in terms of
discriminative ability on the cross-validated data was chosen.
Then, with these two parameters being fixed at their optimal
values, SAMGSR was applied again on the training data set
to select potentially relevant genes. Furthermore, a support
vector machine (SVM) [25] model using those genes selected
by SAMGSR was fitted to calculate the performance statistics.

2.4. Integrative Correlation Analysis. The integrative correla-
tion (IC) analysis was used to filter out the genes exhibiting
incoherent behavior across studies. As discussed in its orig-
inal paper [23] and by us [26], those incoherent genes are
highly likely to be noises. Here, we give a brief introduction
to IC.

For the specific study s, let x, represent the expression
profile for a gene g; then p; = corr(x,,x,) is the
Pearson correlation coefficient between the pair of genes
p = (g5, g,). The IC score for gene k, defined as I(s',s*) =

corr(p;l,p;:), P = (gr-g;)> i # k, quantifies the coherence

between the studies s' and s*. In this study, an IC score was
calculated for each gene and the genes with IC scores smaller
than the median of those IC scores were filtered out.

2.5. Statistical Metrics. As in the previous study [5], we
used four metrics, Belief Confusion Metric (BCM), Area
Under the Precision-Recall Curve (AUPR), Generalized Brier
Score (GBS), and misclassified error rate, to evaluate the
performance of a classifier. The references therein described
those metrics in detail. Briefly, they all range from 0 to 1.

For the first two metrics, the closer to 1 the better classifier,
whereas the direction is opposite for the last two metrics.

2.6. Statistical Language and Packages. Statistical analysis was
carried out in the R language version 3.1 (https://www.r-
project.org/), and R codes for SAMGSR were downloaded
from Dr. Yasui’s homepage (http://www.ualberta.ca/~yyasui/
homepage.html).

3. Results

3.1. Application of SAMGSR. We analyzed the NSCLC
data using SAMGSR. We first used the microarray data
(GSE50081) as the training set and the RNA-seq data as the
test set. Then, we swapped them and applied SAMGSR again.
Figure 1 illustrates how the analyses were carried out, and
Table 1 presents the calculated performance statistics.

In Table 1, several patterns are apparent. First, IC filtering
tends to improve the performance of resulting classifiers by
eliminating those genes with inconsistent expression pat-
terns. For example, for the stage segmentation when trained
on the RNA-seq data, AUPR increases from 0.529 before
IC filtering to 0.623 after IC filtering while BCM increases
from 0.523 to 0.569. Additionally, the model parsimony after
IC filtering improves in most of these segmentations. For
instance, for the same stage segmentation, the size of the final
model decreases from 52 to 24 after implementing IC fil-
tering. This observation indicates that prefiltering before the
implementation of a more complicated algorithm facilitates
the process of feature selection, by the means of screening
those genes more likely to be irrelevant out.
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TABLE 1: Performance of SAMGSR on NSCLC data for stage segmentations.

Training set Test set”
Error (%) GBS BCM AUPR Error (%) GBS BCM AUPR
(A) Trained on the microarray data (GSE50081)
No IC filtering, on stage (115) 118 0.050 0.809 0.976 32 0.318 0.51 0.612
No IC filtering, for AC (83) 0 0.039 0.825 0.996 35.7 0.357 0.5 0.627
No IC filtering, for SCC (14) 714 0.082 0.758 0.957 43.6 0.308 0.511 0.513
With IC filtering, on stage (75) 5.92 0.067 0.784 0.964 36 0.344 0.56 0.535
With IC filtering, for AC (119) 0 0.043 0.810 0.996 42.9 0.350 0.609 0.630
With IC filtering, for SCC (26) 2.36 0.062 0.802 0.992 32.7 0.256 0.589 0.583
(B) Trained on the RNA-seq data

No IC filtering, on stage (52) 0 0.028 0.871 0.997 30.8 0.270 0.523 0.529
No IC filtering, for AC (14) 11.43 0.087 0.779 0.961 58.4 0.454 0.533 0.536
No IC filtering, for SCC (28) 0 0.035 0.842 0.991 45.2 0.278 0.532 0.563
With IC filtering, on stage (24) 12.8 0.110 0.725 0.873 38.6 0.272 0.569 0.623
With IC filtering, for AC (31) 0 0.033 0.848 0.995 30.7 0.258 0.533 0.576
With IC filtering, for SCC (10) 9.09 0.101 0.712 0.905 33.3 0.279 0.556 0.641

Note: “the test set is RNA-seq data in part (A) and GSE50081 microarray data in part (B).

Second, to evaluate a classifier’s performance on the
basis of several statistical metrics, we have demonstrated
that different metrics may focus on different aspects of a
classifier, and the superiority of an algorithm drawn based
on only one or two statistics might not be solid. Additionally,
it is observed that no algorithm can outperform the other
methods in terms of all performance metrics. Instead, one
algorithm is more likely to be superior in some metrics but
inferior in others. Thus, a more thorough evaluation using
different performance statistics might help to characterize an
algorithm better and is highly recommended.

Third, all stage segmentations for the SCC subtype at least
perform comparable to those for the AC subtype but the
number of genes being selected in the SCC segmentations
is less, which deviates from the results from our previous
study [5]. Nevertheless, this is in accordance with the fact
that AC is divided into more molecular subtypes and is
more heterogeneous than SCC [3]. We note that there exist
two major differences between this study and the previous
study. In that study, a regularization method called threshold
gradient descent regularization (TGDR) [27] was used to
carry out feature selection, and a different data set whose
ratio of stage II samples to stage I samples is also away from
one was chosen as the training set. Therefore, we conjecture
that TGDR algorithm, which might be very sensitive to
the imbalance of sample size between two groups, and the
different characteristics in two study populations contribute
to this inconsistence. Further study is warranted.

Finally, stage segmentations for either AC or SCC spe-
cific have better performance compared to those without
stratifying on the histology subtypes. Although this pattern
does not hold uniformly for all comparisons, it still suggests

that diagnostic gene signatures for these two subtypes might
differ.

3.2. Comparison with Other Algorithms. Here, we compared
SAMGSR with several novel feature selection algorithms to

show that the reduction step of SAMGSR can be considered
as a process of feature selection. The feature selection algo-
rithms under consideration include least absolute shrinkage
and selection operator (LASSO) [28], penalized SVM [29],
moderated t-test to identify differentially expressed genes
(DEGs) [21], and Radviz [30].

The first three algorithms have been widely used for
variable selection. LASSO was implemented using the glmnet
package [31] in R. The tuning parameter A in LASSO controls
the amount of regularization. In general, a lower A value leads
to less regularization, corresponding to an increased number
of nonzero coefficients while a higher A value corresponds
to a sparser model. With 100 different A values, 5-fold cross-
validations were performed. The A value that minimized the
classification error was chosen.

The penalized SVM algorithm was implemented using R
penalized SVM package [29]. In penalized SVM, we chose to
use a Smoothly Clipped Absolute Deviation (SCAD) penalty
[32] which has two tuning parameters « and A. o was set at
its default value of 3.7. Then, for the grid of 27%,277,27°, ...
and, 2", A was optimized using 5-fold cross-validations (CV),
that is, its optimal value corresponding to the one with the
smallest 5-fold CV classification error.

The moderated ¢-tests were implemented using R limma
package [33]. The Benjamini and Hochberg procedure [34]
was used to adjust for multiple comparisons. In this study,
we consider the significance level in a moderated t-test as a
tuning parameter. Namely, for the grid of 0.01, 0.05, 0.1, 0.15,
... and, 0.3, the cutoff of adjusted p value was set as the one
with the smallest 5-fold CV error.

Radviz, a visualization tool, may be also utilized to carry
out feature selection as shown by us [5]. In that study, we
had also described how Radviz selects relevant genes. Briefly,
setting the maximum number of features under consideration
from 3 to 10, the VizRank approach [35] was used to search
for a combination of genes with the largest degree of class
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TaBLE 2: Comparison of SAMGSR with other feature selection algorithms.
Method Subtype Training set TCGA RNA-seq
Error (%) GBS BCM  AUPR  Error (%) GBS BCM  AUPR
SAMGSR + SVM AC (119) 0 0.043 0.810 0.996 42.9 0.350 0.609 0.630
SCC (26) 2.36 0.062 0.802 0.992 32.7 0.256 0.589 0.583
Lasso AC (81) 0 114 x 107* 0.990 0.996 35.7 0.357 0.5 0.624
SCC (33) 0 <107 0.993 0.992 29.1 0.291 0.5 0.565
Penalized AC (528) 0 0.003 0.951 0.996 371 0.318 0.524 0.615
SVM (SCAD) SCC (63) 0 <10™* 0.999 0.959 27.3 0.273 0.531 0.654
DEGs + SVM AC (145) 0 0.042 0.810 0.996 51.9 0.465 0.562 0.638
SCC (46) 0 0.046 0.803 0.992 29.1 0.287 0.501 0.632
Radviz + SVM AC(9) 22.83 0.166 0.559 0.734 371 0.363 0.493 0.541
SCC (8) 4.76 0.076 0.774 0.934 30.9 0.293 0.493 0.536

separation. Furthermore, since for the last two methods the
classifiers are not automatically produced along with the
process of feature selection, we fitted SVM models to estimate
corresponding coeflicients before the selected genes.

The performance statistics are presented in Table 2.
Overall, SAMGSR performs comparable to these four feature
selection algorithms. For example, for the AC-specific stage
segmentation SAMGSR has a BCM score of 0.609 and an
AUPR score of 0.63, ranking at the first and the second places,
respectively, among the five methods.

3.3. Biological Interpretation of SAMGSR Results. Upon the
signatures obtained from the microarray data, we further
explored on the biological meaning of those selected gene sets
and genes. We first focused on those selected gene sets by
SAMGS. Subsequently, we moved to those individual genes
selected by the reduction step. Roughly 90% of genes involved
in those selected gene sets were screened out in this step; some
of the selected gene sets by SAMGS might consequently lose
their significance. Therefore, we returned to the gene set level
again by carrying out KEGG pathway enrichment analysis
upon the 119 genes and 26 genes for AC and SCC, respectively.
The pathway enrichment analysis was conducted using the
STRING software (http://string-db.org/). Venn diagrams in
Figure 2 illustrate how those gene sets and individual genes
identified by SAMGSR and those enriched KEGG pathways
for AC and SCC overlap.

On all levels, the size of overlaps between SCC-specific
and AC-specific stage segmentations is small. This justifies
partially that SCC and AC are distinct diseases, indeed.
Nevertheless, the proportion of overlaps on either gene set or
enriched KEGG pathway level is several times larger than that
on individual gene level, which is in accordance with the fact
that the consistency/stability of selected gene sets/pathways
from different studies is better than that of selected individual
genes [36]. To conclude, we suggest that stratified analysis
on each specific subtype should be conducted. Alternatively,
one may resort to more complicated statistical methods
targeting at subtype specific genes, for example, [20, 37]
when constructing diagnostic or prognostic gene signatures
of these two subtypes.

We searched on the GeneCards database (http://www
.genecards.org/) and found that, among 26 genes identified
by SAMGSR for SCC subtype, there are 8 genes directly
related to SCC, 4 to NSCLC, and 10 to LC, respectively. The
overlapped genes that are directly related to NSCLC, LC,
and SCC include IVL, TGM1, NEUI, and SEN. Furthermore,
the remaining genes are all indirectly related to either SCC
or NSCLC/LC. Since we compare stage II with stage I of
SCC, we remark that these genes are not only differentially
expressed between SCC cases and controls, but also differ
quantitatively between these two stages of SCC. Those four
common genes with literature-supported association with
SCC and NSCLC/LC might be the “driving” genes capable
of distinguishing SCC-I from SCC-II. Their potential as
biomarkers deserves further investigation.

Similarly, among the selected 119 genes for AC subtype,
there are 43 genes directly associated with AC, 28 with
NSCLC, and 42 with LC, respectively. And there are 22
overlapped genes including POLB, FGFR4, TGFBR2, HPGD,
STCI1, SLC3A2, AGER, GDFIO, POLI, NTRK2, PTGER4,
PIK3RI1, EDNI, IL6R, AQP4, SFTPD, IDI, TIMPI, MMP?7,
ILI2RB2, ERBB3, and SLC7A5. Except those directly related
genes, the rest of genes are indicated as indirectly related ones.
Thus, the genes selected by SAMGSR have some biologically
meaningful implications. Nevertheless, we remark that those
resulting signatures by SAMGSR cannot be used in the
clinical setting right away since the pathway databases are
incomplete and subject to changes. Further investigations are
demanded.

4. Conclusions and Discussion

When SAMGSR was applied to identify genes capable of
discriminating AC and SCC apart, it selected more than one
hundred genes besides KRT5 (data not shown). In contrast,
Ben-Hamo et al. [38] used only KRT5 to separate AC and
SCC apart with an accuracy of around 85% in the sbv
Improver challenge [39]. This indicates that the final models
by SAMGSR might include many irrelevant genes. Since
SAMGSR may be classified as a filter-typed feature selection
algorithm, it inherits the inferiority of a filter model in
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FIGURE 2: Venn diagrams show how the selected gene sets and genes for SCC and AC stage segmentations overlap. (a) On the level of gene
sets selected by SAMGS. (b) On the level of genes selected by SAMGSR. (¢) On the level of enriched KEGG pathways. There are 5 overlapped
gene sets, 3 overlapped genes, and 12 overlapped KEGG pathways, respectively.

terms of model parsimony. Special care to eliminate the false
positives by SAMGSR is needed.

Besides its inferiority in terms of model parsimony, the
SAMGSR algorithm has two more drawbacks. First, if the
true markers are not involved in any annotated gene sets, it
is impossible for SAMGSR to identify them. Furthermore,
the number of gene sets inside which a gene is contained
has impact on its chance of being selected. If the true
markers are just involved in few gene sets, SAMGSR has high
likelihood to miss them given that the gene sets containing
these markers might be even ruled out by SAMGS at the
first place. Second, the SAMGSR algorithm does not take the
pathway topology knowledge into consideration. SAMGSR
only assumes that genes inside the “core” subsets function
together to produce influence on biological processes and
weighs all genes in those “core” subsets equally. Currently, we
are working on an extension to SAMGSR, in which the genes
with subtle changes but high connectivity with other genes
are considered to be of more importance and thus endowed
with larger weights. The weighted version of SAMGSR will be
present in another paper.

To the best of our knowledge, however, no research except
our previous work [11] has explored the feature selection trait

possessed by some gene set analysis algorithms and adopted
them directly for feature selection. Because the pathways in
those canonical databases had been usually coined based on
diseases under extensive investigation such as cancers, the
multiple sclerosis dataset we used in the previous study might
be less suitable to justify that SAMGSR is a feature selection
algorithm. Here, the application of SAMGSR to NSCLC
data provides more evidence on the fact that SAMGSR can
conduct feature selection, given that SAMGSR performs
comparable to several novel feature selection algorithms.
Besides SAMGSR, we note that other gene set analysis
methods such as [40] can be adopted directly or modified
correspondingly to carry out feature selection. Therefore, the
work here will boost the real-world applications of those gene
set analysis methods and propel the development of pathway-
based feature selection algorithms.
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