Skip to main content
. 2016 Jun 30;2016:2491671. doi: 10.1155/2016/2491671

Table 2.

Comparison of SAMGSR with other feature selection algorithms.

Method Subtype Training set TCGA RNA-seq
Error (%) GBS BCM AUPR Error (%) GBS BCM AUPR
SAMGSR + SVM AC (119) 0 0.043 0.810 0.996 42.9 0.350 0.609 0.630
SCC (26) 2.36 0.062 0.802 0.992 32.7 0.256 0.589 0.583

Lasso AC (81) 0 1.14 × 10−4 0.990 0.996 35.7 0.357 0.5 0.624
SCC (33) 0 <10−4 0.993 0.992 29.1 0.291 0.5 0.565

Penalized AC (528) 0 0.003 0.951 0.996 37.1 0.318 0.524 0.615
SVM (SCAD) SCC (63) 0 <10−4 0.999 0.959 27.3 0.273 0.531 0.654

DEGs + SVM AC (145) 0 0.042 0.810 0.996 51.9 0.465 0.562 0.638
SCC (46) 0 0.046 0.803 0.992 29.1 0.287 0.501 0.632

Radviz + SVM AC (9) 22.83 0.166 0.559 0.734 37.1 0.363 0.493 0.541
SCC (8) 4.76 0.076 0.774 0.934 30.9 0.293 0.493 0.536