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One relatively unexplored aspect of
membranes, dating back to the Singer
Nicolson Fluid-Mosaic model (1), is
the lateral heterogeneity that exists in
the plane of the membrane. This is an
intrinsic feature of membranes and
therefore must be a key to function-
ality. Indeed, the plasma membrane is
generally accepted as being compart-
mentalized, permitting lipids and pro-
teins to be organized in specific
domains whose size and composition
vary (2,3). Such compartmentalization
may rely predominantly on the mem-
brane-apposed cytoskeleton, termed
the ‘‘membrane skeleton fence model’’
(4). Another prominent type of com-
partmentalization is the lipid raft (5),
in which certain types of lipids are
associated with compatible proteins.
However, in general, such domains
must be small and transient, consid-
ering the amount of protein in the
membrane (6), and the results of super-
resolution fluorescence correlation
spectroscopy (FCS) studies show that
raft lipids are confined on short spatial
and temporal scales (7). What is sur-
prising is that a number of recent
studies have shown that at least a
portion of many mammalian plasma
membrane proteins exist in nanoclus-
Submitted May 11, 2016, and accepted for

publication May 31, 2016.

*Correspondence: frap@med.unc.edu

Editor: Anne Kenworthy.

http://dx.doi.org/10.1016/j.bpj.2016.05.045

� 2016 Biophysical Society.
ters, and that these clusters may be
organized into larger domains that sup-
port a number of functions including
cell adhesion, pathogen binding, and
immune cell recognition (8).

In this issue of Biophysical Journal,
Mocsár et al. (9) performed a needed
study on how the clustering behavior
for one particular protein and its part-
ners depends on its expression level.
They accomplished a comprehensive
study of coclusters of MHC-1 and
interleukin receptors (IL-2, IL-15) in
T lymphoma cells in which the level
of MHC-1 was diminished by siRNA
treatment. A battery of techniques
was employed, including FCS, to study
the lateral diffusion of the mobile frac-
tion of membrane proteins, flow
cytometric- and image-based Förster
resonance energy transfer for molecu-
lar scale interactions, and stimulated
emission depletion superresolution mi-
croscopy for superclustering behavior.
A large portion of MHC-1 proteins
and the interleukin receptors were
found to be organized into overlapping
superclusters of dimension ~500 nm,
with the remainder of these molecules
residing outside of these domains.
Within superclusters, nanoclusters
containing both MHC-1 and the inter-
leukin receptors, exist as inferred
from heterogeneity evident in the
superresolution images and from the
FCS data, which suggest a number
(on the order of 10) of small aggregates
within the supercluster. All superclu-
Bio
sters colocalized appreciably with the
ganglioside, GM1, a classical lipid
raft marker. The authors find that
cluster properties (i.e., size, lateral
mobility, number of molecular entities
in a cluster, intermolecular associa-
tions) are dependent on the level of
membrane protein expression (i.e.,
MHC-1). Specifically, MHC-1 knock-
down markedly reduced the number
of MHC-1 proteins per supercluster
and substantially decreased their size
(but not that of the interleukin receptor
superclusters). This suggests that the
law of mass action and apparent ther-
modynamic equilibrium were in effect
in contrast to the nonequilibrium
behavior of nanoclusters of lipid-
linked GPIAPs (10) and the Ras
proteins (11) in which the ratio of
nanoclusters to monomers/dimers was
independent of expression levels. In
addition, the lateral diffusion of the
small aggregates of proteins within
the superclusters and those outside
the domains, was increased and the
close association of MHC-1 with the
interleukin receptors in coclusters
was diminished when MHC-1 expres-
sion level was decreased.

Hierarchical organization of plasma
membrane components appears to be
an emerging organizational theme (8)
for which the full functional conse-
quences must be determined. Mocsár
et al. (9) provide an example of how
the properties of an array of apparent
nanoclusters arranged as superclusters
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can be modulated by expression levels.
This study will undoubtedly have gen-
eral implications for how diverse spe-
cies of nano- and superclusters are
both assembled and maintained. The
precise mix of intrinsic membrane pro-
tein, cytoskeletal, and pericellular
matrix factors needed for clustering
behavior on all levels remains to be
elucidated.

Moreover, the impact of clustering
behavior on signal transduction and
related plasma membrane functions is
an open challenge. For example, Han-
cock and co-workers (11,12) have
hypothesized that short-lived, switch-
like plasma membrane nanoclusters
may proportionally digitize input
analog signals by increasing the num-
ber of nanoclusters, the signals from
which can then be integrated into the
cytoplasm to provide a high-fidelity
response. As another example, the
dendritic cell pathogen receptor, DC-
SIGN, exists in single nanoclusters
capable of binding the tiny dengue vi-
rus (13) before internalization, and in
superclusters (8) composed of nano-
clusters that can bind pathogens as
large as yeasts (14) and presumably
direct signal transduction at the phago-
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cytic synapse. Overall, the studies of
Mocsár et al. (9) both raise significant
scientific questions and provide a
paradigm, including the attendant
interpretational limitations, for further
investigation of lateral heterogeneity
in the plane of the plasma membrane.
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