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SUMMARY

The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies,
somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal,
the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories
generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified func-
tionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and
oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome
inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation.
All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible
from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

INTRODUCTION

Pluripotent stem cells (PSC) have been used to study hu-
man development, model disease, and generate cellular
tools for regenerative medicine. Human embryonic stem
cells (hESC) have been considered the functional, genetic,
and epigenetic gold standard in the field (Thomson et al.,
1998). Methods of somatic cell reprogramming to generate
induced PSC (iPSC) (Takahashi and Yamanaka, 2006) are
continually being improved and have enabled the genera-
tion of iPSC using a variety of somatic cell sources, gene
combinations, and methodologies. However, due to the
intensive resources required for iPSC generation and char-
acterization, direct comparisons of iPSC generated using
a wide range of technologies and cell sources from multi-
ple independent laboratories have rarely been performed,

making it unclear whether all methodologies produce
iPSC with a similar quality and stability.

A variety of studies have compared the expression pro-
files, pluripotentiality, and genetic and epigenetic stability
of hESC and iPSC including lines generated using different
strategies, distinct parental somatic cell types, or reprog-
ramming methods (Bock et al., 2011; International Stem
Cell Initiative et al., 2007; Miiller et al., 2011; Rouhani
et al., 2014; Schlaeger et al., 2015). However, these have
been limited to a few variables, have multiple methods or
laboratories collecting and processing samples, and typi-
cally employ a single genomics platform. “Multi-omics”
analyses have proved to be essential in deciphering com-
plex gene regulatory programs, as demonstrated by ana-
lyses of iPSC reprogramming transitional states (Clancy
et al., 2014; Lee et al., 2014; Tonge et al., 2014).
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The Progenitor Cell Biology Consortium (PCBC) of the
National Heart, Lung and Blood Institute was founded
to study iPSC reprogramming and differentiation and
develop strategies to address the challenges presented by
the transplantation of these cells. These questions include,
but are not limited to: (1) Do iPSC consistently generate all
three germ layers? (2) How prevalent is copy-number
variation (CNV) in iPSC generated using different reprog-
ramming methodologies? (3) Do different reprogramming
methods affect global methylation, gene, splicing and
microRNA (miRNA) expression profiles? (4) Can aberrant
PSC gene regulation be identified on a global basis? (5)
How do variables such as X-chromosome inactivation
(XCI) affect iPSC quality, stability, and differentiation
potential? To advance these goals, the PCBC developed a
Central Cell Characterization Core and Bioinformatics
Coreto perform standardized and comprehensive character-
ization of iPSC generated using different somatic cell sour-
ces, methodologies, and vectors. The characterized iPSC
are being made available through WiCell Research Institute.

Using integrative analyses across genomic analysis plat-
forms, we present comparative results on phenotype, ge-
netics, epigenetics, and gene regulation for a diverse panel
of iPSC and hESC. Standardized methods and strict control
of reagents during cell culture, sample collection, and assay
performance were used to evaluate the innate potential and
limitations of these cells with fewer confounding factors.
Our use of this uniform analytical methodology allowed
us to discover candidate regulators of the fate of reprog-
rammed cells. To maximize the utility of this resource, we
developed an interactive open data portal for access to
the raw data, metadata, results, and protocols from these
experiments for further analysis (https://www.synapse.
org/PCBC).

RESULTS

Study Design and Synapse Analysis Portal

An overview of the study is presented in Figure 1. The
evaluation of iPSC from multiple laboratories and method-
ologies required highly structured cell-line annotations
and well-documented protocols to make comprehensive
comparisons possible. Metadata standards were developed
to capture the origin of each line, starting cell type, donor
demographics, and reprogramming parameters (derivation
method, vector type, reprogramming genes, culture condi-
tions). These metadata were provided by the originating
laboratory and confirmed and augmented with in vitro
genetic and experimental characterization of the line.
RNA sequencing (RNA-seq) was performed at an acceptable
depth to facilitate accurate gene-expression quantification
(Supplemental Experimental Procedures). To facilitate use

of the protocols, genomic analyses, and metadata produced
through this effort, we developed a sophisticated interac-
tive data portal, the interface of which is exemplified in
Figure 1. In addition to integrated provenance annotations
for every raw data file, script, or processed result file, data
can be queried through an interactive heatmap viewer
that displays and inter-relates gene expression, DNA
methylation, and miRNA expression for queried genes,
pathways, and gene signatures produced in the analyses
described here. These signatures have been further propa-
gated into ToppGene (Chen et al.,, 2009) for interactive
queries. Synapse IDs are included to access the resources,
data, metadata, ontologies, and other information through
the Synapse online repository.

Screening of Lines

The data from the first 64 lines (58 iPSC and 6 hESC)
enrolled in the study are presented here with their charac-
teristics outlined in Figure 2A (details in syn2767694). All
lines completed a standardized screen to ensure they met
a basic set of criteria. This included self-renewal in defined
feeder-free conditions, expression of markers of pluripo-
tency and a lack of expression of markers of differentiation,
a normal karyotype, and the ability to grow sufficient
quantities of cells for the analyses (Tables S2 and S3; Fig-
ure S1). Overall, 6 hESC and 35 iPSC (64%) met these
criteria and 23 iPSC did not (36%) (Table S4). Abnormal
karyotypes were observed in seven lines (Table S5), with
karyotypes for all lines available (syn2679104). The most
consistent flow cytometry anomalies were TRA-1-81 and
TRA-1-60 below 90% or an increase in SSEA-1 above 5%
(Figure 2B). Due to contamination, difficulty in expanding
cells, and/or abnormal karyotype, not all lines were
included in functional pluripotency assays.

Pluripotency Analysis

Pluripotency was evaluated in a teratoma assay on 49 lines.
Forty-six of the lines met the screening criteria outlined in
Table S3 and 45 of these lines generated teratomas. Three
lines did not meet the PSC screening criteria with decreased
expression of self-renewal markers and increased differenti-
ation in culture (SC12-021, SC12-023, and SC14-082), and
all three successfully generated teratomas. All teratomas
were scored by a clinical pathologist, and representatives
of all three embryonic germ layers were identified in
all tumors (detailed information is available at Synapse
syn2882785). We performed immunostaining analysis on
teratomas from a subset of lines to confirm pluripotency
(muscle-specific actin [MSA], neurofilament, and o-feto-
protein) and OCT4 to evaluate the presence of undifferen-
tiated PSC (Figure S1). This included two lines that did not
meet the screening criteria and independent iPSC from the
same donor as controls (Table S7), and three teratomas that
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Figure 1. Study Design and Synapse Results Portal

(A) Overview of study design and data deposited online in Synapse. FACS, fluorescence-activated cell sorting; ISA-Tab, investigation/

study/assay tab-delimited format.

(B) Synapse heatmap viewer displaying probes corresponding to EB-induced transcription factors and associated DNA-methylation levels

to visually detected outliers in PSC.

(C) Provenance for the creation of normalized gene-expression values, associated scripts, quality control, metadata, and annotations.
(D) Gene-enrichment analysis in ToppGene displaying top-ranking PCBC stem cell signatures.

had regions histopathologically classified as poorly differ-
entiated as well as independent teratomas generated from
the same lines (Table S8). The immunostaining confirmed
pluripotency in all tumors (Figure S1). OCT4 staining was
observed in one teratoma with a poorly differentiated re-
gion (SC12-034), although other teratomas from this line
were fully differentiated and did not have OCT-4-stained
regions. Two teratomas from other lines (SC11-014 and
SC11-0013) with poorly differentiated regions did not
have OCT4 immunoreactivity, although we did not have
adjacent sections for staining (Table S8).
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Evaluation of CNV Changes in iPSC

Genetic stability was evaluated between independent lines
with common donors by CNV SNP microarrays. Although
two SNP genotyping arrays were used, all lines derived
from a single donor were run on the same platform (see
Experimental Procedures). Variations were observed in all
lines and on all chromosomes (Figure S2). Excluding hu-
man leukocyte antigen-associated regions, 724 non-benign
or clinically significant CNV from 529 unique genomic
loci were identified (syn3105726). Although not signifi-
cant, lines reprogrammed with integrating vectors trended
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Figure 2. iPSC Line Characteristics, Flow
Cytometry Analysis, and CNV Accumu-
lation

(A) Reprogramming variables for: origi-
nating cell type (left), reprogramming vec-
tor (middle), and gene combination (right).
Reprogramming gene combinations: 0SKM
is composed of POU5F1 (also known as
0CT4), SOX2, KLF4, and c-MYC; OSK-L-l-
p53KD includes LIN28A and TP53 knock-
down and [-MYC instead of c-MYC; OSKM-NLT
includes NANOG, LIN28A, and SV40 large T
antigen. ICM, inner cell mass; MSC, mesen-
chymal stem cell.

(B) Flow cytometry analysis classified iPSC
as stable (n=41) orunstable (n=11). Boxes
represent the first and third quartiles,
whiskers show the complete range, and the
horizontal line is the median.

(C) Commonly observed CNV predicted as
non-benign or clinically significant and
observed from at least three independent
genetic donors are listed on the right
and shown as a heatmap (blue). Red cells
indicate that CNV overlaps genes with
concordant expression differences. Concor-
dant genes with known function are labeled
on the left, with previously identified
tumor-suppressor genes in purple and cell-
growth-promoting and oncogenesis-pro-
moting genes in green. Lines from the same
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toward a higher frequency of clinically significant CNV
(58%) compared with non-integrating vectors (41%).

Our study included different iPSC generated from the
same donor sample and reprogramming methods, thereby
enabling the direct evaluation of the CNV present in the
donor versus those induced during reprogramming and
culture. We observed CNV that were specific to the donor,
and others present among multiple genetically distinct
iPSC (Figure S2). We identified lines generated from the
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same donor samples that had variable CNV (Table S6),
with some donors having higher frequencies of CNV
than others (such as D001, 2, 3, 4, and 9).

We discovered 102 non-benign CNV shared by at least
two distinct donors, with 83 of these CNV variably present
in two or more distinct samples from a common donor.
Two donors (D004 and D003) were solely responsible for
46 of these CNV, while 26 were recurrent among multiple
donors (Figure S2C). A more stringent analysis considering
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Figure 3. Global Gene Expression and Methylation Variation between iPSC

(A) Hierarchical clustering of the most variable genes observed among iPSC and hESC (n = 1,031). These genes were chosen by selecting the
reliably expressed genes (n=9,670) that varied at least 2-fold between six or more samples and correlated (p > 0.5) to the expression of at
least ten other genes (AltAnalyze, Predict Groups analysis). Yellow indicates upregulated and blue indicates downregulated genes.

(legend continued on next page)
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CNV shared among at least three donors identified a set
of 31 frequently affected genomic loci, suggesting that
they occurred during iPSC reprogramming or that the start-
ing samples were mosaic (Abyzov et al., 2012; McConnell
et al., 2013; Young et al., 2012) (Figure 2).

Comparison of the CNV and RNA-seq data identified 19
non-benign and clinically significant CNV that overlap
with differentially expressed genes in a manner consistent
with the detected duplication or deletion (syn2731183)
(Figure 2C). This included 88 downregulated genes in
deleted regions, 79 of which correspond to the frequently
observed X-chromosome mosaic monosomy. Among 26
upregulated genes in duplicated regions, a duplication of
20q11.21 corresponded to the upregulation of nine over-
lapping genes, including four (ID1, BCL2L1, HM13, and
TPX2) previously shown to promote hESC survival or
oncogenic potential (Nguyen et al., 2014). We also found
compatible regulation of the cancer susceptibility genes
FYN (6921 duplication), ERCC2 (19q13.32 duplication),
and NIN (14g22.1 duplication), as well as the tumor-sup-
pressor genes FOX04, BEX 1, SRPX, EDA2R, GPC3 (X mono-
somy), ING2 (4q35.1 deletion), and EIF4E3 (3p13 deletion)
(Osborne et al., 2013). These results are consistent with
these CNV conferring a survival or proliferative advantage.

Global Expression and Methylation Analysis of PSC

To understand the molecular determinants of PSC quality
as a function of reprogramming method and somatic cell
origin, we performed mRNA, miRNA, and methylation
profiling on iPSC and hESC with profiles from hESC-
derived embryoid bodies (EB) as a control.

Relative to EB, hESC and iPSC were largely indistin-
guishable from each other at the global gene-expression
level by both hierarchical clustering and principal compo-
nent analysis (PCA) (syn3107554). Greater variability was
observed from analogous DNA methylation and miRNA
profiles (Figure S3). However, restricting the analysis to
genes with varying expression only in PSC identifies
donor, sex, reprogramming technology, and originating
laboratory as the major driving covariates by hierarchical
clustering (Figure 3A). These differences did not clearly
associate with the passage number of the profiled PSC. Of
interest, H9 cells (D025) analyzed greater than ten passages
apart displayed a highly variable signature with the higher
passage more similar to EB. Likewise, one of two mesen-

chymal stem cell-derived iPSC from the same donor and
laboratory (D017) exhibited a similar EB-like signature.
Neither the D017 nor the H9 samples displayed apparent
global DNA methylation differences, demonstrating the
utility of distinct genomic platforms in assessing PSC qual-
ity (Figure S3).

To identify differences associated with major cell-line
variables, we performed all possible pairwise comparisons
from each metadata category for gene expression, splicing,
miRNA, and DNA methylation (syn3094629). We iden-
tified 355 differentially expressed genes from these com-
parisons and 3,451 differential methylated DNA probes.
As expected, laboratory of origin accounted for the largest
number of differences, likely because several iPSC deriva-
tion protocols and cell types of origin were largely unique
to a single laboratory (e.g., RNA-based reprogramming,
stromal priming) and could therefore mask handling
or other technical differences between laboratories. The
major distinguishing reprogramming variables from the
methylation analyses were cell type of origin (1,427
probes), method of reprogramming (1,346 probes), and
sex (520 probes). Clustering of these methylation profiles
readily distinguished lines based on both sex and abnormal
karyotypes (Figure 3B), while PCA segregated samples
based on cell of origin (Figure 3C). Although these samples
consistently segregated by cell of origin independently of
the donor sex, these differences could not be directly attrib-
uted to blood and fibroblast somatic methylation profile
differences (data not shown).

To examine the impact on possible pathways, we looked
at the enrichment of our discovered reprogramming regu-
lated genes among gene ontology (GO) terms for each of
the different measurement platforms (Figure 4A). The
most prominent pathway level effects were found in the
methylation comparisons with hESC for a wide array of
biological comparisons and tested reprogramming vari-
ables. We observed consistent regulation of inflammatory
and immune response, ion homeostasis, and regulation
of cell proliferation gene sets, particularly among all
iPSC compared with hESC, among the different profiling
technologies.

To determine whether differential methylation might
be a source of observed gene-expression differences, we
compared the expression profiles of these differentially
regulated genes and probes, based on common gene

Expression is shown relative to day 17 EB derived from multiple hESC (median-based normalization applied to preferentially identify PSC
variance). Selected metadata associated with each cell line are shown on the right, with identical terms in each column sharing a color.
(B) Expression clustering of all CpG methylation probes on the X chromosome, with blue indicating hypo- and red hypermethylation. Lines

with an abnormal karyotype are indicated.

(C) Principal component analysis of all differentially methylated probes for all evaluated PSC lines, colored according to cell of origin.
BM.mono, bone marrow-derived monocytes; CB, umbilical cord blood; Fib, fibroblasts; Amnio.MSC, amniotic fluid-derived mesenchymal
stem cells; BM.CD34, bone marrow-derived CD-34" cells; p53KD, OSKL-l-p53KD reprogramming vector.
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annotations (e.g., promoter, body, or UTR location of the
probe). This analysis indicates that ~21% of all differen-
tially methylated probes correspond to gene-expression
changes in the PSC, while ~43% of all differentially ex-
pressed genes appear to be due to underlying differential
DNA methylation (Pearson p < —0.5). Only negative cor-
relations were considered from these analyses. Taken
together, these data suggest that while iPSC are largely
similar to hESC at the level of gene expression, observed
differences are frequently correlated with changes in DNA
methylation.

Comparison of hESC and iPSC

Among DNA-methylation profiles, comparison of all
iPSC to hESC yielded 180 differentially methylated sites,
with 52% of these anti-correlated with gene expression
(n =93). A more relaxed analysis (non-adjusted moderated
t test p < 0.05) of unique donor samples indicated that
methylation probes largely segregated by donor and cell
of origin when subjected to hierarchical clustering (Fig-
ure 4B). In agreement with previously published studies,
DPP6, TMEM132C, and PTPRT were among the most
differentially methylated loci between iPSC and hESC
(Figure 4C). In addition, we found that several interesting
gene loci were hypomethylated (FRG1B, SLC6AS) and
hypermethylated (PTPRN2, LINC00939, CBLN4, MC3R,
NFIC, EIF3D, CLSTN2, AX747064, and ORIA2) in iPSC.
Genes hypermethylated in iPSC were associated with
neuronal differentiation and genomic targets of the poly-
comb repressive complex 2 (PRC2) (ToppGene). The most
highly differentially expressed iPSC versus hESC gene,
the paternally imprinted PEG3, was also anti-correlated
with DNA-methylation probes (Pearson p < —0.98)
(Figure 4D).

A close examination of the expression of core pluripo-
tency factors across all PSC identified a large number of
genes correlated and anti-correlated with NANOG and
MYC (Figure 4E). Genes coexpressed with NANOG and

MYC were enriched in negative regulators of differentia-
tion, stem cell maintenance, and positive regulation of
cell proliferation, while anti-correlated genes were en-
riched in experimentally observed ectoderm differentia-
tion upregulated genes (ToppGene). To test whether these
differences could be related to PSC quality and increased
passaging, we compared the expression of these same genes
with hESC from a previously described single-cell RNA-seq
dataset (Figure 4E) (Yan et al., 2013). Clustering of both
early (passage 0) and late (passage 10) single-cell hESC
confirmed that NANOG and MYC high lines were most
similar to early-passage hESC.

Genomic Impact of Reprogramming Technology, Cell
of Origin, and iPSC Stability
Among the 64 lines evaluated, 41 underwent genomics
characterization, with five unstable lines included as con-
trols. These 46 lines comprised five cell-of-origin groups,
five reprogramming vector types, and five distinct gene
combinations. Comprehensive pairwise comparisons of
all metadata categories across each genomics platform
highlighted a large number of genes (syn3106206), splicing
variants (syn3106266), methylation probes (syn3106255),
and miRNAs (syn3106244) strongly associated with one or
more of these variables (Figure 5). To our knowledge, few of
these molecular differences have previously been reported.
Many of the most significant differences were observed
among differentially methylated probes (Figures 5A and
S4A). For example, SOX2 was hypermethylated in retroviral
lines relative to all hESC and nearly all iPSC. Reciprocal
differences in gene expression were frequently observed
for these and many other differentially methylated genes.
For all genomic analyses, the small number of unique
donors available for certain reprogramming methods
limited the power of our analysis. However, the availability
of a small number of iPSC derived from the same donor
with different methods provides additional confirma-
tion of our findings. For example, differentially expressed

Figure 4. Global Reprogramming Impact on Pathways in PSC

(A) Pathway-level impact of reprogramming methodology or initiating cell type as compared with hESC, based on statistically enriched GO
terms for each comparison and profiling technology. Red indicates higher Z scores, corresponding to lower GO-Elite enrichment p values.
Dashed blue lines indicate common regulated pathways in the different applied profiling methods and in the same reprogramming
comparisons.

(B) DNA-methylation profiles for probes significantly differing between hESC and iPSC (non-adjusted p < 0.05). Colored bars below each
cluster indicate cell of origin.

(C) Hierarchically clustered subset of the DNA-methylation probes with the lowest p values (adjusted p < 0.05). Associated genes for each
probe cluster are indicated on the right.

(D) PEG3 expression in hESC and iPSC lines. Box and whiskers plot of unique donor PSC values are represented. Anti-correlated gene
expression and DNA methylation are denoted by a red alpha. A blue asterisk indicates significant differential expression.

(E) Expression clustering (HOPACH) of genes correlated and anti-correlated with NANOG and MYC gene expression in all PSC. To the right of
this cluster, early- (P0) and late-passage (P10) single-cell hESC (Yan et al., 2013) are shown in the same gene order. Genes with red names
are negative regulators of differentiation, stem cell maintenance genes, or positive regulators of cell proliferation, while genes with blue
names are associated with ectoderm differentiation, based on ToppGene-associated annotations from multiple sources.
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Figure 5. Candidate Factors Associated with iPSC Derivation Method

(A-C) The top differentially regulated (A) DNA methylation, (B) mRNA gene expression, and (C) normalized miRNA expression profiles
associated with each indicated comparison. Box and whiskers plot of unique donor PSC values are represented. For TXNRD2, sample
expression values for the same genetic donor (D007) are indicated for the three indicated reprogramming methods in red. Anti-correlated
gene expression and DNA methylation are denoted by a red alpha. Blue asterisks indicate significantly differentially expressed genes
(adjusted p < 0.05) versus hESC or the indicated comparator. Retro, retroviral; Lenti, lentiviral; RPKM, reads per kilobase per million

mapped reads.

(D) Examples of splicing events visualized in the software IGV (Broad Institute), with associated genomic read-alignment depth and

junction read counts indicated for a single representative sample.

retroviral and lentiviral associated genes (e.g., TXNRD2,
JUN, UCP2, and HIST1HZ2BF; Figures 5B and S4B) were
consistently observed from uniquely reprogrammed lines
from a single donor (D007). Notably, these genes are
involved in multiple pathways related to oxidative stress.
Differential expression of multiple genes affecting cell
growth and differentiation (ID2, ID4, JAG1, IGFBPS, and
GLT1D1I) were observed with OSK-L-I-p53KD, relative to
other gene reprogramming combinations or hESC. In
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unstable lines, decreased expression of crucial PSC genes
(ZFP42 and TRIM6) was associated with increased promoter
and gene methylation of these genes. Using a 96-gene
gPCR panel we verified differential expression for multi-
ple genes where corresponding probes were present (e.g.,
ZFP42; Figure S4C).

In total, 41 miRNAs were statistically associated with
at least one reprogramming variable. Among these, we
observed three miRNAs (miR-92b, miR-30c-1, miR-30c-2)
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Figure 6. Impact of X-Chromosome Inactivation and Sex on iPSC

(A) Segregation of PSC based on differentially regulated sex-associated DNA-methylated probes (HOPACH).

(B) Normalized miRNA expression values in male and female lines from distinct donors. Box and whiskers plot of unique donor PSC values
are represented.

(C) XIST expression in independent female hESC and iPSC samples from unique donors.

(D) Heatmaps of all anti-correlated (Pearson p < —0.6) methylation probes (left) and genes (right) on the X chromosome, ordered by
genomic location. XIST expression values are in green and X-to-autosome expression ratios are below the heatmaps.

(E) Comparison of distinct measures of XCI within female PSC as determined by RNA-seq (X-to-autosome ratio, XIST expression) and
DNA-methylation array (% X-chr methylation).

(F) Protein-protein interactions (BioGRID database) between genes anti-correlated with XIST (gray) and core pluripotency factors (black).

with predicted mRNA targets that were differentially ex- miR-660, miR-548f-1), suggesting regulation in part by
pressed in a reciprocal manner (GO-Elite) (Figure 5C). DNA methylation.

Five of the 41 regulated miRNAs were also anti-correlated Alternative splicing and promoter usage was evaluated in
with methylation probes (miR-141, miR-130b, miR-191, our RNA-seq data. Comparison of hESC and hESC-derived
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Figure 7. EB Differentiation Outcomes
Correlate with Differential X-Chromo-
some Inactivation among Female Stem
Cell Lines

(A) Comparison of XIST expression and X-to-
autosome ratios in PSC and EB for the same
lines (PSC line name indicated below the
plots).

(B) HOPACH clustered heatmap of differen-
tially expressed genes in EB differentiated
from female PSC lines. Developmental reg-
ulators are shown on the right of the plot.
PSC X-to-autosome ratio and XIST expres-
sion are displayed above the plot.
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EBs identified 129 alternative exon events with a false
discovery rate p < 0.05 (syn3106284), including many
well-validated events (in MBD2, DNMT3B, SLK, ADD3,
MARK3, FYN, NUMB, NAV2, and NFYA) (Gopalakrishna-
Pillai and Iverson, 2011; Lu et al., 2014; Salomonis et al.,
2009) (Figure S5A), suggesting that these data are reliable
for more in-depth evaluation. A total of 77 alternative
exons were significant in a pairwise comparison of all
major reprogramming or cell-of-origin variables in PSC.
Manual examination of highly differential but non-sig-
nificant splicing events suggest that many are valid, but de-
tected with lower sensitivity due to reduced sequencing
depth (Figures 5D and S5B).

Effect of XCI and Donor Sex

A significant potential confounder in this dataset is donor
sex difference. A total of 520 probes were differentially
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methylated between male and female donors, the majority
of which were localized to allosomes (457 probes) (Fig-
ure 6A). Similarly, most differentially expressed genes be-
tween male and females were also localized to allosomes
(43 out of 60), as were differentially expressed miRNA
(4 out of 7). Predicted mRNA targets (GO-Elite) of one
X-chromosomal miRNA (miR-18b) were enriched among
male versus female RNA upregulated genes (Figure 6B).
This miRNA was also found to be anti-correlated to its
own DNA-methylation probes, suggesting that it is regu-
lated by DNA methylation.

Genes associated with autosomal differential DNA
methylation were enriched for PRC2 factors and targets
of the PRC2 transcription factor Suzl2 (Figures S6B
and S6C). Only one DNA-methylation-regulating gene,
MECP2, was itself differentially methylated between
females and males. This is consistent with prior studies


https://www.synapse.org/#!Synapse:syn3106284

that have identified MECP2 as a target of X inactivation
(Vallot et al., 2015).

In mouse ESC and human somatic cells, aberrant loss
of XIST expression and corresponding breakdown of
normal XCI has been associated with reduced develop-
mental and increased oncogenic potential. In human
PSC, XIST expression is required for the initiation of
XCI but not for XCI maintenance. Multiple classes of
female PSC have been described including those which
only undergo XCI upon differentiation (class I), those
that already have undergone XCI (class II and III), and
PSC that have lost XIST during culture and have under-
gone eroded XCI (class III) (Hall et al., 2008; Silva et al.,
2008; Vallot et al., 2015). Six of ten iPSC from distinct
female donors show little to no XIST expression by
RNA-seq, with no expression in any of the three hESC
(Figure 6C). Restricted analysis of probes on the X chro-
mosome found 1,118 methylation probes anti-correlated
for the same PSC with gene expression (syn3107536).
These largely overlapped with a prior set of described
XCl-associated probes, 619 out of 3,279 (Nazor et al.,
2012) (syn3107535). From these 1,118 probes, we find
that lines without XIST expression have a decrease in
X-chromosome methylation and increased X-to-auto-
some gene-expression ratio (Figures 6D and S6C). Each
of these three measures of XCI were correlated to each
other (p > 0.6 or p < —0.6) (Figure 6E). The observed
continuum of predicted XCI among PSC lines supports
prior proposed models of variable or precocious XCI
among cells within each PSC line, rather than 100% con-
formity (Hall et al., 2008; Silva et al., 2008). Although
spontaneous differentiation in some cultures could
account for the increased XCI, both XIST expression
and X-to-autosome ratios were largely consistent in bio-
logical RNA-seq replicates from the same PSC line (data
not shown). Among 116 genes anti-correlated (Pearson
p < —0.6) with XIST expression, five (RBBP7, CSNK2A1,
PSMD10, GPC4, and TEX10) shared protein interactions
with at least one core pluripotency factor (POUS5FI,
SOX2, or NANOG) (BioGRID database). The X-chromo-
some localized nucleosome remodeling factor RBBP7
was the most anti-correlated with XIST expression and
interacts with all three pluripotency factors at the protein
level (Figure 6F).

In addition to these expression differences, 646 auto-
some and allosome probes were differentially methylated
in XIST-high versus XIST-low female lines (unique donors,
all probes considered). Among the 236 known associated
genes, eight transcription factors were hypermethylated
(Brachyury, ZNF628, CUX1) or hypomethylated (MZFI,
SCRT2, SCML1, TFCP2, ZNF148) with high XIST expres-
sion. Several of these factors have important roles in
lineage differentiation (Brachyury, SCRT2, TFCP2, CUX1)

or proliferation (MZF1, ZNF148, CUX1) (Figure S6D). As
these genes promote distinct differentiation pathways,
we subjected a set of female PSC (n = 16) to short-term
directed differentiation assays for definitive endoderm,
mesoderm, ectoderm, and EB and performed RNA-seq.
Although XIST expression in these lines changed upon
differentiation, high XIST lines generally remained high
(average 2-fold increase versus PSC) and XIST-low re-
mained low (Figure 7A). While most of these lines retained
similar X-to-autosome ratios during differentiation as well,
notable variance among a few lines was observed (SC11-
009, SC14-069, SC14-071) (Figure 7A). Comparison of
the number of passages in these two sets of lines revealed
that low XIST PSC had undergone significantly more pas-
sages in culture (Student’s t test p < 0.05, ~6 passages more
on average). At least one prior study has demonstrated
that failure to induce to XIST expression upon PSC differ-
entiation is a hallmark of XCI erosion (Mekhoubad et al.,
2012). Taken together, the low XIST female PSC in this
study appear to be most consistent with class III or eroded
XCI. An exception to this rule was SC11-009. This line was
found to transition from low to high XIST expression from
the PSC to the EB. This same trend was observed in all
lineage and EB differentiations, suggesting induction of
XCI (class I).

To analyze the differentiation gene-expression results in
the context of XCI, we focused on genes with expression
correlated (p > 0.6 or p < —0.6) to multiple measures of
PSC XCI in each differentiation state (PSC XIST expres-
sion, X-to-autosome ratio, and degree of X-chromosome
methylation). In EB, we found 267 genes correlated to
multiple measures of XCI and only 12 anti-correlated (Fig-
ure 7B). These correlated genes were most enriched (Top-
pGene) in proteins associated with methylation (e.g.,
TRMT11, COMTD1, HENMT1, CAMKMT), neuron-fate
commitment (GATA2 ISL1, FOXA1, SHH), heart develop-
ment (ERBB3, ISL1, SSH), and other broad developmental
processes. Analysis of the early germ-layer differentia-
tions revealed possible precocious induction of genes
anti-correlated with measures of XCI in each of the differ-
entiations, such as myocardin and SMAD3 in definitive
endoderm (Figure S6E, syn5565603). As an improved
means to evaluate the differentiation potential of these
lines, we performed immunohistochemistry on teratoma
sections from female PSC (Figures 7C, 7D, and S6F). On
average, we detected ~18% positive MSA staining and
~4% neurofilament (NF) staining in adjacent histological
sections. Strikingly, both differentiation markers were
correlated to multiple measures of PSC XCI (>0.6), with
MSA most highly correlated to XIST expression (p =
0.71) and NF to X-to-autosome ratio (p = 0.67). These re-
sults are in agreement with prior studies indicating that
PSC with increased XIST and XCI results in improved
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differentiations relative to PSC undergoing XCI erosion
(Mekhoubad et al., 2012).

DISCUSSION

The large-scale profiling of dozens of iPSC and previously
characterized hESC represents an important analytical
reference for the stem cell research community. Evaluating
these lines using the same post-reprogramming culture
conditions and profiling technologies has allowed us to
carefully examine many possible variables. The creation
of metadata standards and associated ontologies was
essential to make informed comparisons and identify
confounders in our study. All metadata, raw genomic files,
protocols, processed results, and analyses are provided in
Synapse (Omberg et al., 2013).

Our studies identified 23 iPSC lines with adverse charac-
teristics such as contamination, karyotypic abnormalities,
flow cytometry, or culture morphology consistent with
differentiation. Surprisingly, teratomas generated from 45
of 46 lines, including three with characteristics of differen-
tiation, were pluripotent as they contained cells from all
three embryonic germ layers. Notably, three pluripotent
teratomas also contained undifferentiated cells identified
by histological or immunostaining analyses, although
independent tumors from the same lines were fully differ-
entiated and did not. Given that the teratoma assay is
commonly used to confirm PSC pluripotency and quality
(Muller et al., 2010), these results suggest that teratoma
analysis should be considered within the context of other
analyses and results to determine the quality of the PSC
line and not as a stand-alone quality measure.

Evaluation of deleterious CNV provided strong evidence
that the same genetic abnormalities can occur in distinct
iPSC lines and that such abnormalities can arise during
the reprogramming process. As described in other studies,
we were unable to exclude the possibility that there was
heterogeneity in the starting cell population (Ma et al.,
2014). CNV that were coincident with differential expres-
sion frequently resulted in the deletion of known tumor
suppressors or duplication of cell growth/oncogenic fac-
tors. Such genetic abnormalities could result in clonal
selection advantages that are undesirable for clinical appli-
cations (Cunningham et al., 2012).

The DNA-methylation, gene-expression, miRNA, and
splicing differences observed in these studies represent
intriguing differences in PSC that could result in differ-
ences in pluripotentiality, cell growth, or potential tumor-
igenicity in vivo. The existence of consistent patterns
between DNA methylation and mRNA or miRNA expres-
sion provides an additional layer of confidence in these
observations. While methylation profiles were highly and
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consistently different among iPSC and hESC, fewer dif-
ferences were observed for mRNA and miRNA. Although
many DNA-methylation probes were identified that
were highly distinct between iPSC and hESC, including a
number of probes anti-correlated with gene expression
(FRG1B, CCL28, CR1L, PEG3), none could perfectly distin-
guish between these cell types.

At a global level, the analysis of DNA-methylation pro-
files provides important insights into molecular and cell
growth characteristics of PSC that would otherwise be diffi-
cult to identify. Reprogramming-associated variations in
X-linked CpG methylation is of particular interest because
of the complex variations in degrees of XCI and X-chromo-
some reactivation between various hierarchical states of
pluripotency. Our analysis highlighted two distinct popu-
lations of XCI female cells, with the most hypermethylated
X-chromosomal PSC split between very high and absent
XIST expression. Interestingly, none of the female hESC
lines in this study expressed XIST, whereas many of the
iPSC do. Our analyses of differentiated female PSC identi-
fied correlates between XCI and pluripotentiality that sub-
stantiate prior proposed models and provide additional
candidate molecular regulators for investigation (Mekhou-
bad et al., 2012; Silva et al., 2008).

Genes anti-correlated with XIST, principally RBBP7,
share protein interactions with core pluripotency regula-
tors, and these differences persist in the EB. This result
is particularly intriguing given that RBBP7, a partner of
PRC2 implicated in nucleosome binding, and SUZ12, a
component of PRC2 required for stability of the complex
and EZH1/2 mediated catalytic activity, were highly en-
riched factors in our analysis of differentially methylated
sex-associated autosomal genes. In addition to RBBP7, pre-
dicted regulation by PRC2 was recurrent in a number of our
covariate analyses, including iPSC versus hESC differen-
tially methylated probes. A growing body of literature
now supports an important role for PRC2 in pluripo-
tency, XCI, and differentiation as a recruitment tool of
PRC1 (Cheng et al., 2014). Although likely not relevant
in vivo, such physical protein and epigenetic interactions
could be undesirable in iPSC for programmed lineage
differentiation.

The resource presented here provides a standardized and
annotated dataset for the characterization of hESC and
iPSC that can be applied to the discovery of molecular
determinants underlying specific biological properties of
iPSC and their use for future clinical applications. It
provides information on the most relevant, informative,
and efficient assays to use for iPSC characterization. Finally,
the new data repository encodes a standard for the bio-
logical, genomic, and epigenomic characteristics of high-
quality, stable iPSC that will serve as a valuable resource
as iPSC technology moves into clinical translation. The



many observed reprogramming and cell-of-origin gene-
expression and splicing differences provide intriguing
starting hypotheses to fuel new research.

We aim to improve the breadth and utility of this new
resource by adding additional pluripotent lines and differ-
entiated products. Integration of previously published
and new datasets will further facilitate advanced cross-com-
parison analyses, many of which can be achieved using the
online data analysis and exploratory tools provided within
the Synapse programmatic and web interface. By providing
consistent cell-line descriptions, protocols, and associated
data in an easy-to-access online repository, we hope that
these observations will fuel future research into the role of
these gene signatures in resulting progenitor populations.

EXPERIMENTAL PROCEDURES

Methods and Data Availability

All data and methods described herein are available at https://
www.synapse.org/PCBC (http://dx.doi.org/10.7303/syn1773109)
and/or Supplemental Experimental Procedures. Accessions for
specific methods are provided in methods sections and Table S9.
For interactive analyses, customized data exploration options
have been integrated into Synapse to facilitate gene-level, cluster,
and ToppGene functional enrichment analyses.

Cell Lines

The lines brought into the study included commonly used but
distinct variables from multiple laboratories (Figure 2A). The line
identifiers, originating laboratory, and key contributing scientists
for each line are provided in Table S1.

Genomic and Epigenetic Molecular Characterization
mRNA-Seq libraries were prepared with the Illumina TruSeq kit
RNA V2. Single-end libraries were sequenced at a depth of between
10 and 30 million 50-nt reads on an Illumina HiSeq 2000. A small
number (n = 3) of ESC and iPSC were also sequenced at a depth
of ~50 million paired-end, stranded reads, for comparison. miRNA
libraries were prepared with the Illumina TruSeq Small RNA kit and
sequenced to 1-4 million reads. Methylation was assessed with
the Illumina HumanMethylation450 BeadChip with annotations
provided by ENCODE (Encode Project Consortium, 2012). Two
different assays were used for CNV analysis. 21 cell lines were as-
sayed with the Illumina CytoSNP-850K BeadChip, and 29 cell lines
with the [llumina HD HumanOMNI-Quad BeadChip platform.
Thirty-seven lines were assayed using a TagMan Low Density Array
(Life Technologies, 4385344) containing a panel of stem cell and
pluripotency marker genes (syn3107327).

Data Processing

FASTQ files were aligned to the human genome build GRCh37 and
University of California Santa Cruz transcriptome reference (Rose-
nbloom et al., 2014) using TopHat 2.0.9 (Kim et al.,, 2013)
(syn1773110). Gene-level RPKM (reads per kilobase per million
mapped reads) and alternative splicing estimates were obtained

from AltAnalyze (Emig et al.,, 2010). miRNA expression was
quantified with mirExpress v2.1.4 (Wang et al., 2009) using the hu-
man miRBase 20.0 reference (syn2247097). Methylation arrays
were normalized with the minfi R package (Aryee et al., 2014)
(syn2677441). Raw data and processing scripts with exact para-
meters used are available and are linked together by provenance
in Synapse (Table S9).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental
Procedures, Supplemental Results, six figures, and nine tables and
can be found with this article online at http://dx.doi.org/10.1016/
j.stemcr.2016.05.006.
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