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Abstract. In Zimbabwe, more than half of malaria cases are concentrated in Manicaland Province, where seasonal
malaria epidemics occur despite intensified control strategies. The objectives of this study were to develop a prediction
model based on environmental risk factors and obtain seasonal malaria risk maps for Mutasa District, one of the worst
affected districts in Manicaland Province. From October 2012 to September 2015, 483 households were surveyed, and
104 individuals residing within 69 households had positive rapid diagnostic test results. Logistic regression was used to
model the probability of household positivity as a function of the environmental covariates extracted from high-resolution
remote sensing data sources. Model predictions and prediction standard errors were generated for the rainy and dry seasons.
The resulting maps predicted elevated risk during the rainy season, particularly in low-lying areas bordering Mozambique. In
contrast, the risk of malaria was low across the study area during the dry season with foci of malaria risk scattered along the
northern and western peripheries of the study area. These findings underscore the need for strong cross-border malaria
control initiatives to complement country-specific interventions.

INTRODUCTION

Since the 1950s, Zimbabwe dramatically reduced the national
burden of malaria, largely through diagnosis and treatment and
indoor residual spraying (IRS), and more recently, the distribu-
tion of insecticide-treated bed nets.1 Despite this, malaria has
reemerged as a public health problem in the past decade and
this resurgence has been attributed to limited funding for con-
trol, drug resistance by Plasmodium parasites, and insecticide
resistance by major Anopheline vectors.2–5 The reemergence
of malaria in areas with previously successful control poses a
challenge to the sustainability of gains made in reducing
malaria and current efforts to reduce the burden of malaria to
achieve elimination. More than half of malaria cases reported
in Zimbabwe in recent years occurred in Manicaland Province,
where malaria transmission continues despite intensified con-
trol strategies.6–8 In 2009, Manicaland Province reported
55,707 confirmed cases of malaria but, by 2013, the number of
reported cases had more than tripled to 192,730, despite a sig-
nificant reduction in the national burden of malaria during the
same period.8,9

Understanding the local epidemiology of malaria, particu-
larly heterogeneity across time and space, is critical to achiev-
ing control and elimination. Remote sensing data and
geographic information systems have been used widely to
describe spatial and temporal variations of malaria at macro
and micro scales.10–14 A national-level malaria risk model
using district-level, monthly reported cases of malaria from
health facilities across Zimbabwe found that annual and sea-
sonal variations in malaria incidence were explained by rain-
fall, vapor pressure, and temperature.15 Malaria risk zones
have also been described in Masvingo Province, Zimbabwe,

on the basis of eight environmental factors affecting vector
reproduction, development, and survival, showing that south-
ern districts in Masvingo Province had the highest risk of
malaria.16 These data, however, rely on passive case finding,
and there is a paucity of malaria risk maps and models
describing the spatial distribution of malaria in Zimbabwe that
are based on active case-finding data.15–18

The aim of this study was to develop a prediction model
based on environmental risk factors and to construct seasonal
malaria risk maps for Mutasa District, one of the districts with
the highest burden of malaria in Zimbabwe. In contrast to
previous malaria risk maps and models,15,16 spatial and sea-
sonal variation of malaria in relation to environmental factors
in Zimbabwe are described at the finer geographic scale of
a district. In addition, malaria prevalence data are based on
active case detection through household surveys, whereas
other risk maps and models in Zimbabwe were based on
reported malaria cases available from health facilities.15,16

Describing the spatial patterns of malaria transmission and
identifying the environmental factors driving spatial and sea-
sonal variation of malaria provide a deeper understanding of
local malaria epidemiology and can inform the planning and
implementation of malaria control strategies at the spatial
scale at which most malaria control programs operate.

METHODS

Study area. This study was conducted in Mutasa District,
Manicaland Province, between October 2012 and September
2015. Mutasa District is situated in the northeast of Zimbabwe,
bordering the Maniça Province of Mozambique (Figure 1).
Mutasa District stretches from 18.20° to 18.58°S latitude and
from 32.71° to 33.06°E longitude, and covers an area of
622 km2, with an estimated population of 170,000, mostly
agricultural laborers. Elevation varies from 600 m in the river
valleys to 2,500 m in the inland mountain areas. The average
daily temperature is 21.5°C, varying from 24.5°C in November
to 16.3°C in July. Transmission of Plasmodium falciparum
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malaria is highly seasonal, with peaks during the rainy sea-
son (November–April).15,19 Anopheles funestus is the major
malaria vector.
Parasitological data. Parasite prevalence was obtained from

ongoing community-based surveys in Mutasa District as part
of the Southern Africa International Centers of Excellence
for Malaria Research (ICEMR). Details of the sampling and
study procedures have been described elsewhere.20 In brief,
a sampling frame was generated using a high-resolution satel-
lite image of the study area obtained from DigitalGlobe Ser-
vices, Inc. (Denver, CO).21 Grids 1 × 1 km comprised the
sampling frame and were purposefully selected to ensure
geographic variation while minimizing logistical challenges.
A random sample of households from each of the selected
grids was generated, and the latitude and longitude of each
selected household were confirmed by trained interviewers
using a handheld Global Positioning System. A household
was defined as a group of people residing together in one or
more domestic structures in the past 2 weeks. All household
members, and caregivers in the case of minors, were informed
of the study purpose and procedures and were invited to par-
ticipate. Demographic and socioeconomic information at the
individual and household level was obtained using question-
naires administered by research staff to household members
and heads of households, respectively. As part of the survey,

participants were asked to provide a fingerprick blood sample
that was tested for histidine-rich protein 2 antigen of
P. falciparum using a rapid diagnostic test (RDT) (SD-Bioline
Malaria Antigen P.f; Standard Diagnostics, Inc., Kyonggi,
Republic of Korea). RDT-positive participants were offered
treatment with artemisinin-based combination therapy in
accordance with national policies. Household RDT status,
defined as positive for any household having at least one
RDT-positive resident, was the outcome of interest.
Environmental data. Using a variety of sources, sets of

environmental variables including elevation, slope, aspect,
vegetation cover, land use, distances to streams of different
categories, distance to the main road, distance to the nearest
health facility, distance to the Mozambique border, and house-
hold density were compiled and linked to household RDT sta-
tus. Elevation was extracted from a 90-m, high-resolution
Shuttle Radar Topography Mission digital elevation model
(DEM).22 DEM-derived raster maps were used to obtain
slope (degree of elevation) and aspect (orientation of slope)
in degrees for each participating household. The normalized
difference vegetation index (NDVI), a proxy for vegetation
cover, was derived from a multispectral Landsat-8™ image
from July 2014 available from the U.S. Geological Survey
Land Processes Distributed Active Archive Center (USGS
Earth Resources Observation and Science [EROS] Center,

FIGURE 1. Map of Mutasa District, Zimbabwe, indicating positive and negative households.
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Sioux Falls, SD). Using bands 4 and 5, corresponding to the
red and near-infrared spectral bands, an NDVI raster layer
was calculated as: NDVI = (Band 5 − Band 4)/(Band 5 +
Band 4). Using the same Landsat-8™ image, a land use ras-
ter layer was created by performing unsupervised land use
classification.23 Land use classes included: water, impervious,
bare land, grass, crop, and forest.
Hydrologic analysis was performed using the DEM to create

a stream-network layer, containing attribute information express-
ing the classifications of streams using Strahler’s method.24

In this classification, a stream of order 2 is formed when two
streams of order 1 join. Stream classifications ranged from 1
indicating low-volume streams typically present only during the
rainy season, to 4 indicating high-volume, year-round streams
usually found at lower elevations. The two major rivers in
Mutasa District, the Pungwe and Honde, had a stream order
of 4. The Euclidean distance from each household to the
nearest stream in each of the four classes was calculated in
ArcGIS 10.2 (ESRI, Redlands, CA). Similar processes were
used to identify the distance from each participating house-
hold to the nearest road, health facility, and the Mozambique
border. Using the geographic coordinates of all enumerated
households in the study area, a measure of household density
was computed as the number of structures within 250 m of a
participating residence. A binary variable denoting the rainy
season (defined as the period between November and April)
versus the dry season, was generated based on rainfall data
from the Southern Africa ICEMR field station in Hauna, a
commercial center in Mutasa District. All images and fea-
tures were projected into Universal Transverse Mercator
zone 36S coordinate system to allow the calculation of dis-
tances in meters.
Statistical analyses. The outcome of interest was whether a

household had at least one member test positive by RDT for
malaria parasites. Exploratory data analysis comparing envi-
ronmental variables between positive and negative house-
holds was conducted using χ2 tests for categorical variables
and t test for continuous variables. Logistic regression was
used to model the probability of household positivity as a
function of the environmental covariates. An initial multivar-
iate logistic regression model included all environmental vari-
ables found to be significant (P < 0.1) in univariate analyses. An
indicator variable for the rainy season (November–April) was
also considered in the model both as a main effect and as an
interaction to allow for effect modification due to season.
A manual stepwise variable selection procedure was used and
overall model fit examined by the Akaike information criterion
(AIC) and Hosmer-Lemeshow goodness of fit test. A P value
greater than 0.05 for the Hosmer-Lemeshow test statistic and
a lower value of AIC indicate a better fitting model.
Semivariograms of the standardized residuals from the final
logistic regression model residuals were used to assess residual
spatial variation.25

Prediction performance of the final multivariate logistic
regression model was evaluated as follows. Internal prediction
performance of the final model was evaluated using Monte
Carlo cross-validation with 1,000 iterations. The total number
of households sampled between October 2012 and September
2015 was randomly split; one-third of sampled households
were assigned to the test set and the remaining to the training
set. The final multivariate logistic regression model was then
fit to the training set and predictions made over the test set.

Sensitivity, specificity, and the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve were used
to assess model performance in both the internal and an
external evaluation. The sensitivity was defined as the propor-
tion of true positives the model predicted as being positive,
while the specificity was defined as the proportion of true
negatives the model classified as being negative. To classify a
household as positive or negative, a cutoff was applied to the
predicted probabilities. The whole range of cutoffs (0–1) was
examined and results were plotted on an ROC curve. A cutoff
was chosen to maximize both sensitivity and specificity. After
implementing 1,000 iterations of this process redefining new
test and training data subsets, the sensitivity and specificity at
the optimal cutoff from each iteration was averaged and the
corresponding 95% prediction intervals were computed.
External evaluation of the model prediction performance

was assessed by fitting the final model to the training set
based on data from October 2012 to September 2014 and
predicting to the test set comprised of the households enrolled
in the most recent 12 months (October 1, 2014 to September
30, 2015). Sensitivity, specificity, and AUC were computed
and reported.
The final multivariate logistic regression model built on data

from October 2012 to September 2015 was then used to pre-
dict and map the probability of household RDT positivity. A
fine grid of 100 × 100 m2 cells covering Mutasa District was
created within ArcGIS 10.2 and values of environmental
determinants were extracted to the centroid of each grid cell.
Model predictions and prediction standard errors were gener-
ated for each grid cell and stratified by season via the rainy/
dry season variable included in the final model.
All spatial data manipulations, processing of environmental

data and distance calculations were performed in ArcGIS 10.2.
All statistical and spatial statistical analyses were carried
out in R statistical software version 3.1.0 (R Core Team,
Vienna, Austria).26

Ethical considerations. The institutional review boards of
the Johns Hopkins Bloomberg School of Public Health, the
Biomedical Research and Training Institute, and the Medical
Research Council of Zimbabwe approved this research. Per-
mission was sought from local chiefs for conduct of the study
in their area of control and written informed consent was
obtained from all adult participants. Consent was obtained
from caregivers or legal guardians of minors, with assent for
those aged 7–16 years.

RESULTS

Household characteristics. A total of 20,247 structures were
identified in Mutasa District from the manual digitization of
households. Between October 2012 and September 2015,
483 households participated in the household surveys. The
total number of individuals per household varied from one
to 25, with the typical family averaging 3.7 household mem-
bers. Of the 1,774 individuals in the sampled households, 299
(17%) were children younger than 5 years and 983 (55%)
were female. One hundred and four individuals representing
69 households tested RDT-positive, giving a malaria preva-
lence of 104/1,774 (6%) for individuals and 69/483 (14%) for
households. Most of the participating households were located
in the Honde Valley running through the center of the district
(Figure 1). The median elevation of participating households
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was 786 m compared with a median elevation of 828 m for all
enumerated households. Overall, households with at least one
RDT-positive resident tended to be located at lower eleva-
tions, further from the main road, closer to the Mozambique
border and in more sparsely populated areas (Table 1).
The final multivariate logistic regression model indicated

that households sampled during the rainy season were three
times more likely to be positive than households sampled in
the dry season (adjusted odds ratio [aOR] = 3.17, 95% confi-
dence interval [CI] = 1.78–5.86). Distance to the Mozambique
border was strongly associated with household RDT status.
Specifically, for every 1,000 m increase in distance from the
Mozambique border, the odds of a household having at least
one RDT-positive resident decreased 12% (aOR = 0.88, 95%
CI = 0.79–0.96). Although the main effect of elevation was
not significant (aOR = 1.02, 95% CI = 0.97–1.06, per 10 m
increase in elevation), the effect of elevation was modified by
season (i.e., significant season by elevation interaction) and
hence elevation was retained as a main effect. In the rainy
season, for every 10 m increase in elevation, there was a 9%
decrease in the household risk of malaria (aOR = 0.91, 95%
CI = 0.84–0.97). Households located on east- or southeast-
facing slopes were 2.4 times more likely to be positive than
households located on other facing slopes (aOR = 2.43, 95%
CI = 1.39–4.26). The risk a household had at least one RDT-
positive resident increased by 19% for every kilometer
increase in distance to the nearest health facility (aOR = 1.19,
95% CI = 1.03–1.37) (Table 2).

The Hosmer-Lemeshow goodness of fit statistic for the
final model was 8.2 with a P value of 0.4, indicating the model
was a good fit for the data. There was little indication of resid-
ual spatial variation (spatial dependence in the regression
model residuals) as evidenced by comparing the estimated
semivariograms of Pearson standardized residuals from the
null model (no included regression covariates) and final
model. AIC results showed that the final model offered a
better fit than the null intercept model (AIC for null model =
398, AIC for full model = 364).
The Monte Carlo prediction performance evaluation ran-

domly assigned 166 (33%) households to a test set and the
remaining 317 (67%) households to a training set. In the
training locations, the model had an overall specificity and
sensitivity of 89% and 49%, respectively. For the rainy sea-
son, the sensitivity and specificity of the model were 61%
and 80%, respectively. The model performance during the
dry season had better specificity (96%) but far worse sensi-
tivity (37%). When the model was evaluated prospectively
by holding out the last 12 months of data (external evalua-
tion), the specificity was higher than the sensitivity overall
and in both seasons.
The risk map for the dry season was characterized by low

risk across the entire study area, with pockets of elevated risk
scattered along the northern, western, and southeastern periph-
eries of the study area (Figure 2A). In contrast, the risk map
for the rainy season depicted relatively increased risk of finding
a positive household (> 50%) in the eastern part of the study

TABLE 1
Characteristics of 483 sampled households by RDT status in Mutasa District, October 2012–September 2015

Variable

All sampled households RDT-positive households RDT-negative households

P value

N = 483 N = 69 N = 414

Median (IQR) Median (IQR) Median (IQR)

Elevation (m) 786 (756–822) 777 (747–802) 787 (757–827) 0.02
Distance to first order streams (m) 618 (398–786) 611 (379–773) 619 (404–786) 0.4
Distance to second order streams (m) 1,281 (922–1,566) 1,439 (1,040–1,704) 1,264 (893–1,548) 0.01
Distance to third order streams (m) 1,703 (623–2,289) 1,637 (637–2,114) 1,727 (623–2,319) 0.6
Distance to fourth order streams (m) 2,088 (1,206–3,783) 2,030 (1,051–3,796) 2,082 (1,365–3,764) 0.6
Distance to nearest health facility (m) 1,617 (581–3,377) 1,891 (889–3,944) 1,600 (571–2,696) 0.1
Distance to main road (m) 1,573 (761–3,098) 1,901 (1,027–4,211) 1,577 (741–3,167) 0.06
Distance to Mozambique border (m) 5,724 (4,457–9,229) 4,852 (2,857–7,102) 6,450 (4,504–9,378) 0.002
NDVI 0.2 (0.2–0.3) 0.2 (0.2–0.3) 0.2 (0.2–0.3) 0.6
Slope of landscape (degree) 1.3 (0.6–2.5) 1.4 (0.7–2.1) 1.3 (0.6–2.5) 0.8
No. of houses within 250-m circular buffer 18 (9–38) 11 (8–25) 19 (9–40) 0.2

IQR = interquartile range; NDVI = normalized difference vegetation index; RDT = rapid diagnostic test.

TABLE 2
Univariate and multivariable logistic regression models of environmental factors associated with household RDT status in Mutasa District,

October 2012–September 2015
Univariate models Multivariable model

OR 95% CI P value aOR 95% CI P value

Rainy season 2.70 1.58–4.75 < 0.001 3.17 1.78–5.86 < 0.001
Distance to Mozambique border (per km) 0.87 0.80–0.95 0.002 0.87 0.79–0.96 0.007
Elevation (per 10 m) 0.97 0.93–1.00 0.06 1.02 0.97–1.06 0.4
Distance to nearest health facility (per km) 1.08 0.96–1.22 0.2 1.19 1.03–1.37 0.02
South- or southeast-facing slope 1.92 1.14–3.21 0.01 2.42 1.38–4.26 0.002
Interaction: elevation (per 10 m) and rainy season 0.91 0.84–0.97 0.006 0.91 0.84–0.97 0.009
Distance to second order stream (per km) 1.70 1.09–2.63 0.02 – – –
Number of houses within 250-m circular buffer 0.98 0.94–1.01 0.2 – – –
Distance to main road (per km) 1.11 0.97–1.25 0.1 – – –

aOR = adjusted odds ratio; CI = confidence interval; OR = odds ratio; RDT = rapid diagnostic test.
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area along the Mozambique border. There was a gradient east
to west with a decline in the predicted risk (Figure 2B).
Importantly, a high predicted risk may not imply a high

probability of finding a positive household, depending on the
precision of the estimate. Examination of the maps of predic-
tion accuracy indicated that the prediction uncertainty was
higher in the dry season than in the rainy season (Figure 2C
and 2D). For the rainy season, the prediction uncertainty
did not exceed 0.1 across most of the study area. However,
there were areas with prediction uncertainty in the range of
0.1–0.2 eastwards along the Mozambique border. For the dry
season, prediction uncertainty ranged as high as 0.6, with
areas scattered along the northern, western, and southeastern
peripheries of the study area having the highest uncertainty.
Comparing the prediction maps to the corresponding maps
of uncertainty for both seasons showed that prediction uncer-
tainty was high at locations where the predictions themselves
were high.

DISCUSSION

The application of high-resolution remote sensing data
and geostatistics to develop seasonal malaria risk maps at a
fine spatial resolution may be crucial to achieving the goal of

malaria elimination. This study used active surveillance data
collected prospectively over a period covering high (rainy sea-
son) and low (dry season) transmission seasons in a region of
resurgent malaria in eastern Zimbabwe. The study revealed
heterogeneity of malaria risk over a small geographic area
and identified important environmental determinants of the
observed spatial pattern of malaria risk. Using a geostatistical
approach, the model predicted household malaria risk and
allowed for the estimation of uncertainty in predictions. The
resulting maps predicted elevated risk during the rainy season,
particularly in low-lying areas bordering with Mozambique. In
contrast, the risk of malaria was low across the study area dur-
ing the dry season with foci of malaria scattered along the
northern, western, and southeastern peripheries of the study
area. The predicted risk maps provide an empirical basis for
identifying priority areas for malaria interventions.
The environmental factors found to be related to malaria

risk are consistent with previous data on the epidemiology of
malaria and vector biology in Zimbabwe. Environmental
factors previously identified as driving malaria transmission
in the country include season, elevation, rainfall, temperature,
and vapor pressure.1,15,17,27 The model predicted higher risk
of malaria among households sampled in the rainy season,
located near the Mozambique border and further from health

FIGURE 2. Categorical maps of predicted household malaria risk and uncertainty by season for Mutasa District, October 2012–September 2015.
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facilities. In addition, elevation limited malaria transmission
during the rainy season. Previous research in Zimbabwe
suggested that malaria transmission does not typically occur
at elevations exceeding 1,200 m.1 Although the range of ele-
vations for enumerated households was between 607 and
1,514 m, for sampled households, the range was limited to
between 639 and 1,234 m. The limited range of elevation in
the sampled households may be a result of logistical chal-
lenges reaching areas at higher elevations. Consequently,
differences in malaria risk during the dry season related to
elevation may have been masked by the underrepresentation
of households at higher elevations.
The study identified proximity to the Mozambique border

as an important driver of malaria transmission, even after
adjustment for elevation. The border areas of countries with
neighbors with a higher burden of malaria often have higher
malaria transmission as a result of cross-border movement.
In Mpumalanga Province, South Africa, which borders more
southerly provinces of Mozambique (Gaza and Maputo), a map
of average malaria incidences showed a greater risk of malaria
among individuals living within 5 km of the Mozambican border
compared with other inhabitants.28 A receptive risk map for
malaria in Namibia found that the highest receptive risks of
malaria transmission were along the borders with Angola and
Zambia.29 In this study, a gradient of malaria risk was identi-
fied during the rainy season: compared with households
closer to the border with Mozambique, households farther
away had a lower risk of malaria. These findings emphasize
the need for regional collaborations to control malaria.
The high-resolution risk maps present a new cartographic

resource describing important seasonal and spatial heteroge-
neities in malaria transmission in Zimbabwe. The predicted
risk map for the rainy season showed that malaria risk
increases from west to east of the study area. In contrast,
during the dry season, much of the study area had a low risk
but there were foci of malaria transmission scattered across
the district. The risk map for the dry season produced a
weaker fitting model than for the rainy season, in part, attrib-
utable to fewer cases identified during the dry season. In
addition, areas predicted to have elevated risk carried higher
levels of prediction uncertainty, underscoring the need to
acknowledge prediction uncertainties when interpreting malaria
risk maps for disease control. Understanding the prediction,
uncertainty may help in the identification of areas in need of
additional sampling to develop a more accurate map of the
seasonal and spatial variation of malaria risk.
This study has several important limitations. First, the

uneven geographical distribution of study household data may
limit the power to identify spatial heterogeneity, particularly
in the peripheries of the study area where prediction uncer-
tainty was highest. Spatial predictions are more precise and
accurate in areas closer to sampled households. Although
there is less confidence about predictions in parts of the
study area, the analytical approach quantified the prediction
uncertainty. The smoothed maps of prediction uncertainty
can be harnessed to prioritize future data collection in parts
of the study area exhibiting higher uncertainty. Second, the
analytical approach included only explanatory variables that
were available or could be computed for any geographic loca-
tion within the study area. Consequently, individual-level data
and household characteristics available through questionnaires
administered during ongoing surveys were not included in the

models. It is likely that other factors related to age, socioeco-
nomic status, occupation, travel history, and use of preventa-
tive measures may influence the observed distribution of
malaria in Mutasa District. Finally, the outcome, household
RDT status fails to account for the frequency or proportion
of RDT-positive residents within a household. For example,
based on the current approach, a household of five with
one RDT-positive resident and a household of five with all
five RDT-positive residents were considered RDT-positive
households. From a programmatic perspective, identifying
any household exposure regardless of intensity is important
as vector control measures such as IRS occur at the house-
hold level.
Characterizing the heterogeneity in the spatial distribution

of malaria in this small geographic area should enhance the
understanding of the local malaria epidemiology and identi-
fied areas of high risk where additional control efforts should
be conducted as a strategic priority to reduce malaria trans-
mission. The models and maps were aimed at local policy and
decision-making and these results will help in the develop-
ment of long-term and sustainable strategies for malaria con-
trol in Mutasa District, Zimbabwe.
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