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BACKGROUND: Idiopathic pulmonary fibrosis is a progressive lung disease with variable
course. The Gender-Age-Physiology (GAP) Index and staging system uses clinical variables
to stage mortality risk. It is unknown whether clinical staging predicts future decline in
pulmonary function. We assessed whether the GAP stage predicts future pulmonary function
decline and whether interval pulmonary function change predicts mortality after accounting
for stage.

METHODS: Patients with idiopathic pulmonary fibrosis (N ¼ 657) were identified retro-
spectively at three tertiary referral centers, and baseline GAP stages were assessed. Mixed
models were used to describe average trajectories of FVC and diffusing capacity of the lung
for carbon monoxide (DLCO). Multivariable Cox proportional hazards models were used to
assess whether declines in pulmonary function $ 10% in 6 months predict mortality after
accounting for GAP stage.

RESULTS: Over a 2-year period, GAP stage was not associated with differences in yearly lung
function decline. After accounting for stage, a 10% decrease in FVC or DLCO over 6 months
independently predicted death or transplantation (FVC hazard ratio, 1.37; DLCO hazard ratio,
1.30; both, P # .03). Patients with GAP stage 2 with declining pulmonary function experi-
enced a survival profile similar to patients with GAP stage 3, with 1-year event-free survival
of 59.3% (95% CI, 49.4-67.8) vs 56.9% (95% CI, 42.2-69.1).

CONCLUSIONS: Baseline GAP stage predicted death or lung transplantation but not the rate of
future pulmonary function decline. After accounting for GAP stage, a decline of $ 10% over
6 months independently predicted death or lung transplantation.
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Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung
disease of unknown etiology with a prevalence estimated
between 14 and 43 per 100,000 subjects.1 Median
survival from the time of diagnosis is approximately
3 years, but disease course varies, with some subjects
having a slow decline in lung function over time and
others having a course marked by rapid deterioration
and death.2 Many clinical, radiographic, physiologic,
and pathologic predictors are associated with increased
or decreased survival in IPF, some with more consistent
association than others.3 Lower baseline FVC and diffusing
capacity of the lung for carbon monoxide (DLCO), as
well as declining FVC or DLCO during 6 or 12 months
of follow-up, are predictive of worse survival.4-10

In addition to assessment of individual risk factors,
several staging models have been developed to predict
mortality in IPF,9,11,12 including the Gender-Age-
Physiology (GAP) Index.13 The GAP index stratifies
patients into three stages based on clinical (eg, sex, age)
and physiologic (eg, FVC, DLCO) variables. It provides
a 1-, 2-, and 3-year mortality estimate, with patients with
GAP stage 3 experiencing the worst outcomes. A clinical
staging system in IPF could prove useful for additional
applications such as predicting change in pulmonary
function over time and informing physicians regarding
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the best application of other key prognostic factors. The
utility of existing staging models for these applications
is currently unknown, and better knowledge in this area
would be useful for several reasons. First, previous clinical
trials evaluating pharmacologic therapy for IPF have
used decline in pulmonary function as a primary end
point.14-20 Our current inability to predict subsequent
change in lung function has complicated study designs
regarding power calculations and planning for adequate
enrollment. Second, although staging can provide rough
estimates of mortality for groups of patients, knowledge
of how physiologic change over time in an individual
interacts with baseline predictors could be used by
physicians for making therapy decisions.

The present study evaluated whether the GAP stage
provides information on the rate of future pulmonary
function decline and on the predictive value of interval
decline regarding mortality. We hypothesized that
subjects with more advanced disease, as defined
according to higher GAP index stage, would experience
a more rapid decline in pulmonary function with greater
yearly decrements in FVC and DLCO. We further
hypothesized that a relative decline in FVC or
DLCO $ 10% over 6 months would independently
predict mortality after accounting for GAP stage.
Methods
Patients

We identified subjects with IPF (diagnosed according to results of
lung biopsy or CT scan [as previously described])1,21 through
review of interstitial lung disease databases at the Royal Brompton
and Harefield National Health Service Foundation Trust, National
Jewish Health, and the University of Michigan Health System from
1981 to 2008. For each patient, age, sex, and each pulmonary
function test (PFT) were captured, with PFTs performed as
described.22-25 Patients with missing baseline DLCO data were
excluded because this variable is needed to calculate GAP stage,13

and we were not able to distinguish in our database patients with
missing data due to respiratory limitation from those in whom the
test was not ordered. This dataset was also used in a previously
published study26 approved by research oversight committees at
each participating institution (studies HUM00018279, 01-246, and
HS-1603).

Predictor and Outcome Variables

Predictor variables included the baseline GAP stage, calculated as
previously described,13 and 10% relative decline in FVC or DLCO

over 6 months of follow-up. Primary outcomes included average
yearly absolute change and relative change from baseline for percent-
predicted FVC and DLCO, as well as transplantation-free survival
(defined as absence of death or lung transplantation during follow-
up, measured from the date of the initial PFT). Vital status was
confirmed through the Social Security Death Registry Index or the
UK National Health Service censored by 3 months to account for
reporting lag.
Statistical Methods

Demographic characteristics are displayed according to GAP stage
(1, 2, or 3), with means � SDs for continuous variables and
percentages for categorical variables. Statistically significant differences
between GAP stages for continuous and categorical variables were
assessed by using an analysis of variance and Pearson’s c2 methods,
respectively. The Kaplan-Meier method illustrates survival according
to GAP stage, with statistically significant differences in event rates
assessed via the log-rank test.

Mixed models with linear spline components at yearly intervals
describe average trajectories in pulmonary function over time as
measured in absolute and relative change per year for FVC and
DLCO; this method addresses issues with irregularly spaced
measurement times and adjusts for dropout due to attrition or
death. Additional inclusion of linear spline terms allowing trajectory
changes at 6-month intervals were assessed but were not found to
improve model fit. Lower Akaike information criteria were used to
select the best variability terms in the mixed models. This resulted in
the use of random intercept and time terms to account for
variability in the data; in addition, random linear spline terms
allowing variation in individual trajectories at yearly intervals were
included when found to improve model fit via the lower Akaike
information criteria. Notably, because the GAP Index stage
incorporates baseline age, sex, FVC, and DLCO information, we did
not initially adjust our model for these parameters. Adjustments
were added later for baseline percent-predicted FVC, sex, and age.
The adjusted outputs were not significantly different from
unadjusted values and actually resulted in worse model fit; we
therefore cite unadjusted model outputs in the main text. The
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average yearly absolute change was calculated, for example, as
FVCbaseline – FVC12 months or FVC12 months – FVC24 months, and
relative change from baseline as (FVCbaseline – FVC12 months)/
FVCbaseline or (FVCbaseline – FVC24 months)/FVCbaseline, as estimated
by using mixed model methods. The same methods were used for
DLCO. Because of the differences in baseline pulmonary function
when patients were grouped according to GAP stage, we felt that
assessment of both absolute and relative change in lung function was
appropriate, as the magnitude of relative change in pulmonary
function is affected by baseline pulmonary function, whereas the
magnitude of absolute change per year is not. The section on
Statistical Methods in e-Appendix 1 presents greater details on the
use of mixed model methods.

To assess whether decline in pulmonary function over 6 months
predicts mortality when accounting for GAP stage, 6 months of
follow-up data were used to estimate patient-specific FVC and DLCO

trajectories and corresponding 6-month changes. Univariable and
multivariable Cox proportional hazards models were used to assess
whether relative decreases in either FVC or DLCO $ 10% in
TABLE 1 ] Patient Characteristics

Characteristic
All

(N ¼ 657)
GAP Index Stage 1

(n ¼ 306)

Age, y 62.9 � 10.0 59.2 � 9.5

Male sex, % 70 56.2

FVC, % predicted 68.0 � 17.0 75.6 � 16.0

DLCO, % predicted 45.7 � 16.0 54.9 � 14.9

Unless otherwise indicated, data are given as mean � SD. DLCO ¼ diffusing ca
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6 months independently predicts death or lung transplantation after
accounting for GAP stage. For each GAP stage, Kaplan-Meier plots
were used to display survival differences according to whether
patients had a decrease in FVC $ 10% irrespective of DLCO change,
a decrease in DLCO $ 10% irrespective of FVC change, both types of
decline, or neither. For this survival analysis, time zero was
considered as the time of the follow-up PFT in the first 6 months.
The baseline GAP stage was also calculated at the time of the follow-
up PFT (new time zero) for this portion of the analysis.

Because a large number of P values are tabulated throughout this article,
we offer a reminder of how to interpret statistical significance at the
.05 level in the context of multiple comparisons. On average, if there
are no associations of interest, spuriously one of every 20 P values is
likely to be < .05; of 26 P values in the main text of this article, one
to two of the 15 reported P values < .05 are likely spurious associations.

Statistical analyses were performed by using SAS version 9.4 (SAS
Institute, Inc) and R version 3.1.0 (R Foundation for Statistical
Computing) for plots.
Results

Patient Population and Survival Comparisons

From the interstitial lung disease databases, 734 patients
with IPF were identified; 657 had FVC and DLCO data
available at baseline and were included in the present
analysis. Patient characteristics for the included group as
a whole and according to GAP stage are shown in
Table 1. Overall, 70% were men, and the mean age was
62.9 years at the time of the baseline PFT. The mean
� SD percent-predicted baseline FVC was 68.0 � 17.0,
and for DLCO it was 45.7 � 16.0.

For the combined end point of time-to-lung
transplantation or death, 11 patients achieved the end
point via a transplant and 482 separate patients died.
Figure 1 displays the Kaplan-Meier event-free survival
rates according to GAP stage. Higher baseline GAP
stages in our cohort were consistently associated with
higher event rates: 35.9%, 51.7%, and 80.9% by 3 years
and 68.5%, 87.5%, and 95.8% through 8 years for GAP
stages 1, 2, and 3, respectively (P< .0001 for comparisons
across either follow-up period).

Because a number of patients were excluded due to
missing baseline DLCO or FVC data (n ¼ 77 total;
n¼ 2 were missing baseline FVC), baseline characteristics
were evaluated in these patients and compared with
included patients. For patients excluded, the 3-year
transplant-free survival rate was 82.5% vs 53.3% for
patients included (P < .0001), indicating that patients
excluded were relatively healthier than patients included.
The reason for this survival difference is not clear. Age,
sex, and FVC were not significantly different between
patients included and excluded (P > .16). e-Table 1
presents the complete demographic data for patients
excluded because of missing baseline pulmonary
function data.
Pulmonary Function Trajectory

Although FVC and DLCO declined across GAP stages,
the GAP stage was not associated with differences in
yearly lung function decline over 2 years. As shown in
Figure 2, there was no difference in relative decline from
baseline for FVC at year 2 of follow-up (P $ .31).
Patients with GAP stage 2 had the largest relative FVC
decline between baseline and year 1 at –10.95% (95% CI,
–13.31 to –8.59) vs GAP stage 1 at –7.68% (95% CI, –9.80
to –5.56) and GAP stage 3 at –5.05% (95% CI, –10.81
to 0.71) (P ¼ .04 for GAP stage 1 vs GAP stage 2;
GAP Index Stage 2
(n ¼ 288)

GAP Index Stage 3
(n ¼ 63) P Value

65.2 � 9.7 70.6 � 5.0 < .0001

79.9 92.1 < .0001

63.3 � 15.1 52.7 � 11.1 < .0001

39.5 � 11.9 29.1 � 8.2 < .0001

pacity of the lung for CO2; GAP ¼ Gender-Age-Physiology.
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Figure 1 – Kaplan-Meier transplant-free survival
according to GAP stage. Transplant-free survival,
defined as time from first pulmonary function test
to death or lung transplantation, is displayed with
patients grouped according to their GAP Index stage
at the time of the baseline pulmonary function test.
Patients with GAP stage 1 experienced the lowest
event rates, and patients with GAP stage 3 had the
highest event rates; GAP stage 2 was intermediate
over 3 years of follow-up (P < .0001). Figure 1
Table shows the number at risk each year according
to GAP stage. GAP ¼ Gender-Age-Physiology.

Figure 1 Table: No. at risk each year by GAP stage

GAP 1 306 272 227 175 140 109 81 64 52
GAP 2 288 233 164 114 75 54 39 24 17
GAP 3 63 45 21 9 5 4 2 1 1
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other, P $ .06). There was no significant difference
between groups for relative DLCO decline at the first year
of follow-up or after 2 years (Fig 3). For simplicity, only
relative change from baseline for percent-predicted FVC
and DLCO are presented here. Side-by-side comparison
of absolute yearly change and relative change from
baseline are shown in e-Figure 1 and e-Figure 2. As
noted previously, our models were evaluated by using
both yearly and 6-month splines, and we assessed model
fit with and without adjustment for baseline age, sex,
and FVC. Yearly splines in unadjusted models attained
the best model fit and are shown here; the outputs
with 6-month splines (e-Table 2 and e-Table 3 for
FVC and DLCO, respectively), and preadjustment and
postadjustment outputs (e-Table 4 and e-Table 5 for
FVC and DLCO) are shown in the online article.

Predicting Survival: Changes in Pulmonary
Physiology

Using univariable and multivariable Cox proportional
hazards models incorporating each GAP stage, as well
as a 10% decline in FVC or 10% decline in DLCO (with
GAP stage 1 as reference), the multivariable hazard ratio
for a 10% decline in FVC was 1.37 (P ¼ .01); for a
10% decline in DLCO, it was 1.30 (P ¼ .03) (Table 2). We
tested for interactions to determine if these associations
varied according to GAP stage, and the results were
nonsignificant (P > .4). Of the 657 patients in our
cohort with available baseline PFT data, 412 had
6-month follow-up data and participated in this analysis.
e-Figure 3 shows a CONSORT diagram detailing
494 Original Research
reasons for exclusion. To ensure that the results were
not influenced by missing DLCO data (ie, a patient with
available follow-up FVC measurement excluded from
multivariable analysis due to inability to perform DLCO),
the results of a multivariable model incorporating GAP
stages 1 through 3 along with FVC and DLCO declines
separately is shown in e-Table 6.

For GAP stages 1, 2, and 3 (Figs 4A, 4B, and 4C), Kaplan-
Meier transplant-free survival was highest for those not
experiencing a relative decrease $ 10% in either FVC or
DLCO over 6 months and is lowest for those previously
experiencing both types of relative decline in pulmonary
function in patients with GAP stage 1 (log-rank test,
P ¼ .03) and GAP stage 2 (log-rank test, P < .0001). In
GAP stage 3, all but 6 patients experienced a 6-month
FVC or DLCO decline, and the power was low to
differentiate between groups with neither decline and those
with both types of decline (P ¼ .37). Notably, for patients
with GAP stage 2, those with any decline in FVC or DLCO

experienced a survival profile similar to patients with GAP
stage 3 (regardless of decline). Specifically, after 1 year, the
event-free survival for patients with GAP stage 2 with any
decline was 59.3% (95% CI, 49.4 to 67.8) vs 56.9% (95% CI,
42.2 to 69.1) for patients with GAP stage 3.

Discussion
Pulmonary function trajectories were modeled in a
large retrospective cohort of patients with IPF seen at
3 referral centers to determine if the GAP Index stage, a
validated estimate of mortality risk, was also predictive
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aP = .04 for marked comparison.
For all other multiple comparisons, P ≥ .06. 
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Figure 2 – Relative FVC decline according to GAP stage. The percent-
predicted FVC trajectory is assessed by using the mixed models method
with splines at yearly intervals. The relative decline from baseline at
years 1 and 2 is shown with patients stratified according to baseline GAP
stage. The point estimates for relative decline from baseline at years 1
and 2 for each GAP stage group are shown in Figure 2 Table. Although
patients with GAP stage 2 declined significantly more compared with
patients with GAP stage 1 during year 1 (P ¼ .04), no significant dif-
ference was seen between groups by year 2 (P $ .31). See Figure 1 legend
for expansion of abbreviation.
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Figure 3 – Relative DLCO decline according to GAP stage. The percent-
predicted DLCO trajectory was assessed by using the mixed models
method with splines at yearly intervals. The relative decline from
baseline at years 1 and 2 with patients stratified according to baseline
GAP stage is shown. The point estimates for relative decline from
baseline at years 1 and 2 for each GAP stage group are shown in
Figure 3 Table. There is no accelerated decline seen for any GAP stage,
with no significant difference in the relative decline from baseline at year
1 or 2 of follow-up (P $ .07). DLCO ¼ diffusing capacity of the lung for
CO2. See Figure 1 legend for expansion of other abbreviation.
of the future rate of decline in pulmonary function. Our
findings are most notable for the lack of a consistently
larger absolute or relative decline in FVC or DLCO

for a particular GAP stage over 2 years of follow-up.
Several modestly significant P values were reported
in comparing year-to-year differences in relative or
absolute change (see e-Figure 1 and e-Figure 2 for
absolute yearly change); these could be due to a type I
error given the overall large number of comparisons
made in this study. If a Bonferroni correction is applied
to the P values tabulated from the mixed models
yearly PFT change outputs, statistical significance is
lost throughout. Because of the inherent differences in
baseline pulmonary function when a cohort is stratified
according to GAP stage, we assessed absolute yearly
change and relative change from baseline, both of which
are predictive of mortality in IPF.27 We propose that
assessment of relative change is a more relevant marker
journal.publications.chestnet.org
when assessing differences in the rate of change in
our study because it takes into account the baseline
pulmonary function.

Although many studies have assessed for predictors of
mortality in IPF, few have assessed for predictors of
future decline in pulmonary function. Our study is the
only one, to the best of our knowledge, that evaluated
the baseline GAP stage as a predictor of future rate of
pulmonary function change. Schmidt et al26 previously
examined whether future decline in pulmonary function
can be predicted from earlier trends in this variable. They
found that a relative 10% FVC or 15% DLCO decline, while
predictive of greater mortality, was not predictive of
future declines in pulmonary function. Richeldi et al27

assessed baseline pulmonary function as a predictor of
future declines in this variable. They found no significant
relationship between baseline FVC and the prevalence
of a $ 10% absolute or relative decline in FVC over
495
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TABLE 2 ] Univariable and Multivariable Cox Proportional Hazards for the Combined End Point of Death or Lung
Transplantation

Predictor

Univariable Multivariable

HR 95% CI P Value No. HR 95% CI P Value No.

GAP stage 1 Ref 170 Ref 170

GAP stage 2 1.93 1.51-2.46 < .0001 191 1.83 1.43-2.34 < .0001 191

GAP stage 3 3.16 2.23-4.49 < .0001 51 2.49 1.72-3.61 < .0001 51

10% FVC decrease 1.69 1.35-2.13 < .0001 143 1.37 1.07-1.74 .01 137

10% DLCO decrease 1.59 1.27-1.99 < .0001 189 1.30 1.03-1.65 .03 189

HR ¼ hazard ratio. See Table 1 legend for expansion of other abbreviations.
12 months. These findings are compatible with our results
when considering the significant differences in baseline
pulmonary function in our comparison groups. Taken
together, our results and the previously published data
support the idea that although pulmonary function
variables are predictors of subsequent mortality, they do
not significantly predict subsequent pulmonary function
trajectory. Further study is needed to identify factors
predictive of rapid vs slow decline in lung function.
These factors are likely to be biologic in nature rather
than related to demographic characteristics, imaging, or
pulmonary physiology.

An additional important finding in our study is that
a relative decline $ 10% in either FVC or DLCO over
6 months predicted mortality after adjusting for GAP
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stage. Our effect size for the 6-month FVC decline in
multivariable analysis adjusting for GAP stage was
similar to that seen in a recent analysis by Ley et al28

for FVC decline > 10% in 24 weeks after adjusting for
GAP stage. Notably, our analysis reached statistical
significance whereas the previous analysis exhibited
only marginal significance. Various degrees of decline
in FVC and DLCO are well known for predicting greater
mortality in patients with IPF.4-10

Our study highlights that interval changes in pulmonary
function may add clinically useful prognostic
information to the GAP Index stage. For example, a
physician evaluating a patient with IPF classified as
being GAP stage 3 might consider referring the patient
for lung transplantation evaluation based on a predicted
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1-year mortality approaching 40%.13 In our analysis, we
found that patients with GAP stage 2 (predicted 1-year
mortality of 16%) previously experiencing a
$ 10% decline in FVC or DLCO had a 1-year predicted
event rate similar to patients with GAP stage 3
(approximately 41%). Based on the GAP stage alone, a
physician might not refer this patient with GAP stage 2
for lung transplantation. However, given the additional
hazard conveyed by a recent PFT decline, consideration
may be given to a more expeditious transplantation
evaluation in an appropriate patient with GAP stage 2
with declining FVC or DLCO.

Our results are limited primarily by the retrospective
study design. In the originally derived GAP Index
staging system, GAP stage can be calculated in patients
unable to perform DLCO maneuver due to respiratory
limitation. Unfortunately as our data was deidentified,
we could not distinguish between patients missing a
DLCO value due to respiratory limitation vs those in
whom the test was not ordered for an unknown reason,
therefore patients missing baseline DLCO measurement
were excluded. As noted in the Results section, those
subjects excluded due to missing DLCO data had
journal.publications.chestnet.org
significantly better 3-year survival than included patients
(82.5% vs 53.3%). Because the predicted combined event
rate seen in our population is similar to the predicted
mortality in the original GAP cohort,13 we believe this
difference in approach introduced minimal bias. There
may have been referral bias in including only patients
seen at a referral center; it has been previously reported
that patients with IPF experience a steep decline in
pulmonary function around the time of evaluation at a
referral center.29 Given that this effect should be evenly
distributed across comparison groups, it is unlikely to
have influenced our ability to detect a difference in the
rate of pulmonary function decline.

Conclusions
Our findings showed that pulmonary function trajectory
does not vary based on disease severity as defined
according to the GAP Index. We also found that 6-month
declines in pulmonary function may add prognostic
value to the baseline GAP stage. Further validation of
our findings in additional cohorts is warranted, as well as
a search for novel markers of future disease progression
not tied to pulmonary function variables.
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