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Abstract
Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of

extracellular traps (NET). These networks of DNA are triggered by several immune and

microbial factors, representing a defense strategy to prevent microbial spread by trapping/

killing pathogens. This may be important against Entamoeba histolytica, since its large size

hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and
their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome

of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not

fixed trophozoites, induced NET formation in a time and dose dependent manner, starting

at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs

contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only

affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with

NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be

important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG

induce in vitro formation of human NETs, which did not affect the parasite growth unless a

chelating agent was present. These results suggest that NETs may be an important factor

of the innate immune response during infection with E. histolytica.

Introduction
Maternal and child undernutrition, highly prevalent in low- and middle-income countries,
account for about 35% of deaths for children younger than 5 years[1]. The limitation of nutri-
ents negatively impacts the immune response, predisposing to infectious diseases, among them
amoebiasis and other diarrheal infections[2]. Amoebiasis caused by the protozoan parasite Ent-
amoeba histolytica is ranked as the third leading parasite-associated cause of human mortality
worldwide, behind malaria and schistosomiasis[3], and the second leading cause of intestinal

PLOSONE | DOI:10.1371/journal.pone.0158979 July 14, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Ávila EE, Salaiza N, Pulido J, Rodríguez
MC, Díaz-Godínez C, Laclette JP, et al. (2016)
Entamoeba histolytica Trophozoites and
Lipopeptidophosphoglycan Trigger Human Neutrophil
Extracellular Traps. PLoS ONE 11(7): e0158979.
doi:10.1371/journal.pone.0158979

Editor: Nades Palaniyar, The Hospital for Sick
Children and The University of Toronto, CANADA

Received: March 19, 2016

Accepted: June 24, 2016

Published: July 14, 2016

Copyright: © 2016 Ávila et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was funded by 1. CONACYT
grant 167788, granted to JCC (http://www.conacyt.
mx); 2. DGAPA-UNAM-PAPIIT grant IN213611,
granted to JCC (http://dgapa.unam.mx); 3.
CONACYT grant 182671, granted to EEA (http://
www.conacyt.mx); and 4. Universidad de Guanajuato
grant 977/2016, granted to EEA (www.ugto.mx). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158979&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.conacyt.mx
http://www.conacyt.mx
http://dgapa.unam.mx
http://www.conacyt.mx
http://www.conacyt.mx
http://www.ugto.mx


parasitosis behind cryptosporidiosis[4]. Thus, E. histolytica was found responsible for 55,500
deaths worldwide in 2010 and it is estimated to account for 10 million cases of dysentery and
liver abscesses every year. Tissue invasion of the intestine or liver by E. histolytica is associated
with the induction of a strong inflammatory response characterized by the recruitment of a
large number of neutrophils in the early stages[5–8]. Usually, large neutrophil infiltrates can be
found surrounding trophozoites, which show no evidence of apparent damage. Therefore, the
role of neutrophils in amoebiasis has always been controversial, since some groups claim that
these granulocytes participate in the resolution of infection[9–14], whereas other groups sug-
gest that they are involved in tissue damage[15–20]. However, humans with a mutation in the
leptin receptor (Q223R) have increased susceptibility to amoebiasis, likely due to impaired che-
motaxis and reduced gut infiltration of neutrophils, suggesting a contribution of these cells in
eliminating E. histolytica in natural infection[21].

One of the innate immune mechanisms exerted by neutrophils is the formation of extracel-
lular traps of DNA, known as NETs. NETs are complex weblike structures of decondensed
chromatin decorated with granular and cytoplasmic proteins that arise from the release of the
neutrophil nuclear contents under several stimulating conditions[22–25]. Among other pro-
teins, human NETs contain cathelicidin (LL-37), a cationic antimicrobial peptide present in
the specific granules and produced after the C terminal cleavage of the human cationic antimi-
crobial Protein 18 (hCAP-18) by serine proteases[26]. It has been described that NETs are able
to trap both gram positive and negative bacteria, as well as fungi, viruses and parasites, killing
or inhibiting their growth, preventing the spread of infections and thus contributing to the
establishment of a protective immune response against pathogens[27]. However, conflicting
reports have arisen as consequence of using different techniques to assess microbial killing,
such as counting of plated colonies, where NETs are able to clump the microbes without killing
them. Furthermore, the excessive development of NETs has recently begun to be associated
with autoimmune and vasculitic diseases, contributing in general to the pathology of some dis-
eases associated with microbial infections[25].

NET formation has been described to occur in response to several human protozoan parasites.
Thus, these structures were identified in blood smears of children with uncomplicated malaria
infected with Plasmodium falciparum and appeared to correlate with the presence of antinuclear
antibodies, predictive of autoimmunity[28]. On the other hand, NET formation has been
reported in response to ex vivo stimulation with Leishmania amazonensis amastigotes and pro-
mastigotes of L. amazonensis, L.major, L. chagasi and L. donovani promastigotes. As a result of
NET-parasite interaction, L. amazonensis promastigotes were killed, whereas L. donovani sur-
vived, and L.mexicana sequestered by NETs delayed the recruitment other immune cells contrib-
uting to the persistence of skin lesions in mice[29–31]. NETs are also triggered with Toxoplasma
gondii infections, killing approximately 25% of the entangled parasites, which suggests a protec-
tive role to contain the infection[32]. Recently, an in vitro induction of NETs, dependent on the
signaling through toll-like receptors (TLRs), was reported for Trypanosoma cruzi[33]. Although
the NETs were unable to kill the parasite, they did decrease the number of infected cells and the
number of released trypomastigote forms. Taken together, the role of NETs in parasitic infections
remains unclear and further studies are warranted. In this context, the role of NETs in the viabil-
ity of E. histolytica and the pathogenesis of amoebiasis has not been characterized.

Results

E. histolytica trophozoites trigger NET formation in human neutrophils
Incubation of Entamoeba histolytica with human neutrophils (ratio 1:20) trigger their rapid
ejection of 7-aminoactinomycin D (7AAD)-stained thin filaments being ejected from
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neutrophils. These fibers were clearly observed beginning after 5 min of incubation and
increasing in number and density over time, showing a tangle of chunky meshworks that cover
almost the entire field of vision at 60 min post-incubation (Fig 1A). Release of DNA was not
observed in unstimulated neutrophils within the hour of incubation (Fig 1A). Furthermore,
amoeba-induced NET formation was also dose-dependent, since the increase of the trophozo-
ite:neutrophil ratio (1:10) resulted in higher number of NET formations (data not shown).

Fig 1. E. histolytica trophozoites induce the formation of human neutrophil extracellular traps. A)
Human neutrophils isolated by positive selection from peripheral heparinized blood were incubated with E.
histolytica HM1:IMSS trophozoites (ratio 1 amoeba to 20 neutrophils) and the release of NETs monitored with
7AAD stain at 5, 15, 30 and 60 mins. Spider web-like fibers are observed as rapid as 5 min of incubation and
increase in number and density over time. The networks were initially seen projected out of neutrophils toward
amoebas (5 and 15 mins), and later gradually increase in number until completely cover the trophozoites that
seem to be snared in the mesh (30 and 60 mins). Neutrophils in the absence of amoebas and incubated for 60
min are shown stained with Giemsa or 7ADD.B) Incubation of isolated human neutrophils with formaldehyde-
fixed trophozoites did not induce NETs at 15 and 60 min. In A and B, trophozoites location is indicated by
white head-arrows; magnification 40X. C) Incubation of isolated human neutrophils with fresh trophozoites
whole extract induces scarce NETs at 15 and 60 min. B and C were stained with Hoechst.

doi:10.1371/journal.pone.0158979.g001
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NET networks were seen in close contact with trophozoites, surrounding them after 30 min,
suggesting that trophozoites were trapped in these structures (Fig 1A, see arrows at 30 and 60
min). However, amoebic trophozoites showed no apparent morphological or size changes
within the 60 min of their interaction, and additionally retained their ability to phagocytose
PMNs (S1 Fig).

To analyze the role of NETs on trophozoite viability and integrity in NET formation,
human neutrophils were incubated at the same ratio with previously paraformaldehyde-fixed
trophozoites or with fresh whole extracts. It is noteworthy that fixed trophozoites did not trig-
ger NET formation during the hour of their co-incubation, despite that most of the neutrophils
interacted with the surface of the fixed trophozoites (Fig 1B). Whole extracts from trophozoites
at 1 mg/mL triggered scarce NET formation that increased slightly over time (Fig 1C). These
results indicate that E. histolytica induced NET formation seems dependent on the trophozoite
integrity.

Human NETs are unable to kill E. histolytica trophozoites
In order to analyze the role of human NETs on the viability of E. histolytica, trophozoites were
co-incubated with human neutrophils (ratio 1:20) for 5, 15, 30 and 60 min, washed and cul-
tured for additional 72 h in fresh TYI-S-33 medium. Counting of viable trophozoites every 24
h showed that the NET formation from human neutrophils did not affect the viability and
growth of amoebas at any of the co-incubation times tested (Fig 2A). A slight decrease was
observed in the growth curves of trophozoites after 24 and 48 h of their exposure to NETs for
30 min, but the differences were not statistically significant. In fact, trophozoites exposed to
NETs tended to grow better than control trophozoites at 72 h, albeit the differences were not
statistically significant (Fig 2A).

Since cathelicidin LL-37 has previously been shown to affect the integrity of E. histolytica
trophozoites[34], we analyzed whether cathelicidin LL-37 formed part of the antimicrobial
peptide (AMP) in the NETs induced by E. histolytica trophozoites. The immunofluorescence
results show that the NETs induced by E. histolytica contain cathelicidin LL-37, clearly visible
at sites of interaction between neutrophils and amoebas as early as 15 min after the co-incuba-
tion, which increases over time. After 60 min, a network tangle containing cathelicidin LL-37
was found surrounding the trophozoites (Fig 2B, white arrows; Upper and lower panels).
These results suggest that E. histolytica trophozoites could be resistant to the cathelicidin LL-37
and other antimicrobial peptides found within human NETs induced in vitro by the parasite.

Considering the possibility that the NET formed in the presence of E. histolytica trophozo-
ites lacked other AMPs or other granule-derived anti-microbial molecules present in typical
drug-induced NETs, we evaluated the effect of human NETs, formed from human neutrophils
previously induced with phorbol myristate acetate (PMA), on the amoeba viability. As shown
in Fig 3, most of the amoebae were in close contact with the fibers of DNA, either as rosary
beads along the fibers (panels A and B), entirely surrounded by the networks (panels C and D)
or interconnected through spider web-like structures (panels E and F). Trophozoites were
polymorphic and were negative for Sytox Green staining, a DNA dye that does not permeate
live cells, suggesting that most of the trophozoites were viable at 1 h of exposure to PMA-
induced NETs. To confirm their viability, these trophozoites were washed and cultured in fresh
TYI-S-33 medium for additional 72 h. The count of viable E. histolytica trophozoites showed
that trophozoites exposed to PMA-induced human NETs grew less as compared to non-treated
amoebas, however, the difference was not statistically significant (Fig 3, bottom graph). In
order to determine the possible mechanism of resistance of trophozoites to human NETs, the
effect of the protease inhibitor E64 as well as the chelator ethylene glycol tetra-acetic acid
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(EGTA) was analyzed on the viability of amoeba exposed to PMA-induced NETs. Both E64
and EGTA were used in order to inhibit possible E. histolytica secreted/excreted cysteine prote-
ases and DNases, respectively, which could degrade AMPs or DNA that constitute NET. The
results show that E-64 did not affect the growth of trophozoites within NETs, which was simi-
lar to controls. In contrast, the addition of EGTA, a chelator of divalent ions, had a deleterious
effect on the growth of amoeba within the NET, alone or combined with E-64 (p<0.001; Fig 3,
bottom graphic). This result suggests that a trophozoite-associated DNase activity may be
responsible for the resistance of E. histolytica to the deleterious effect of human NETs.

Fig 2. Trophozoites induced NETs are unable to inhibit parasite growth despite containing anti-
microbial cathelicidin LL-37. A) Growth kinetic of trophozoites co-incubated with NETs for the indicated
times (5 to 60 min) and thereafter cultured in fresh TYI-S-33 medium. Live trophozoites were counted every
24 h under light microscope using Trypan blue. Data shown at each time is the mean ± SD of three
independent assays. B) Immunofluorescence assay upon NETs induced by amoebas at 15 and 60 min (left
panels) using anti-LL-37 antibody and an anti-rabbit IgG conjugated to FITC (right panels). Magnification
40X.

doi:10.1371/journal.pone.0158979.g002
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E. histolytica LPPG can trigger NET formation in human neutrophils
In order to identify some of the molecules of amoeba involved in the formation of NETs, we
evaluated whether purified E. histolytica lipopeptidophosphoglycan (EhLPPG) triggered NET
formation in human neutrophils. Results show that isolated EhLPPG at concentrations ranging
from 5 to 15 ng/μL induces the formation of NETs in a dose-dependent manner (Fig 4, panels
D, F, H). Non-treated neutrophils did not change their morphology and did not expulse DNA,
remaining non-stained with Sytox Green during the 2 h incubation (Fig 4, panel B), indicating
a specific induction of NETs by EhLPPG.

Fig 3. Interaction and growth of E. histolytica trophozoites with neutrophil extracellular traps.NETs
induced with PMA were incubated 1 h with amoeba trophozoites. Top: A-D, Sytox Green; E and F, Hoechst
33342. A, B at 10X and C-F at 40X objectives at the fluorescence microscope. A and C, phase contrast fields
corresponding to B and D, respectively. F, florescence; E, merges phase contrast with fluorescence. Arrow
tips, E. histolytica trophozoites. Bottom: after amoeba-NET interaction, trophozoites were growth in TYI-S-33
culture medium during 72 h and cells harvested were counted under a light microscope. Controls,
trophozoites cultured at the same conditions in the absence of NETs. Amoeba growth after interaction with
NETs and EGTA or EGTA + E-64 was significantly different from controls without NETs (p <0.001). No other
significant difference (p <0.05) was observed compared to the control without NETs in the absence of other
compounds.

doi:10.1371/journal.pone.0158979.g003
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It is noteworthy that EhLPPG-induced NET formation initiates as early as 5 min after expo-
sure and increases over time (Fig 5), similarly as observed for trophozoites. At 5 and 15 min of
exposure, most NETs consisted of thin DNA fibers, while after 30 min NETs were observed as
more complex DNA networks. Untreated neutrophils remained without morphological
changes throughout the experiment (panel C).

In addition, immunofluorescence analysis show that neutrophil´s cathelicidin LL-37 (Fig 6E
and 6F) co-localize with the NETs induced by EhLPPG (Fig 6H and 6I), suggesting that this
granule AMP is released bound to the neutrophil DNA ejected upon stimulus with the surface
component of amoeba.

PMA-preformed NETs did not affect the infectivity of E. histolytica
In order to assess whether NETs exert any effect on the infectivity of E. histolytica, we deter-
mined the ability of trophozoites pretreated for 1 h with PMA-induced NETs to develop amoe-
bic liver abscesses (ALA) in hamsters, when compared with trophozoites treated with PBS or
untreated. Massive development of ALA throughout the liver was observed in all 5 animals of
the untreatred group and 4 out 5 animals of the PBS and NETs-treated groups (Fig 7A and
7B). Although one animal did not develop ALA in the group pretreated with NETs, this effect

Fig 4. Induction of neutrophil extracellular traps by different concentrations of
lipopeptidophosphoglycan from E. histolytica. Human neutrophils were incubated for 2 h at 37°C with 0 to
15 ng/μL of purified EhLPPG. A, C, E and G, phase contrast fields of B, D, F, and H, respectively. Sytox
Green observed at 40X objective in the fluorescence microscope.

doi:10.1371/journal.pone.0158979.g004
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appears to be due to the incubation of amoeba with PBS for 1 h, since one animal of that group
did not either develop ALA. The hepatomegaly mesured as the average weight of livers, an indi-
rect indication of ALA extent, was also similar between groups when compared only animals
that developed ALA (Fig 7A). A comparative macroscopic description of infected livers showed
similar grades of ALA development in the three groups, with many abscessses of variable size
distributed in all lobes (Fig 7B). Similar results were also observed when ALA were analyzed in
histological sections. Thus, large abscesses formed by coalescence of many small were observed
throughout the liver tissue, containing well-preserved amebas close to the edges of lesions,
abundant PMN cell infiltration and necrosis (Fig 7C). No clear differences in the the extent of
injuries, population of immune cells recruited to the ALA and number and integrity of amoe-
bas were observed between groups. Overall our results suggest that in vitro obtained human
NETs did not affect the pathogenicity of E. histolytica evaluated in the model of ALA in
hamsters.

Discussion
Neutrophils are the first polymorphonuclear cells recruited to infection sites and are among
the first line of defense of the cellular innate immunity[35]. Over a decade ago, networks of
extracellular DNA containing granule proteins and histones, known as NETs, were described.
NET formation can occur under multiple stimuli including reactive oxygen species[36], anti-
bodies and antigen–antibody complexes[37,38], TLR4-activated platelets[39] and microbes
such as many bacteria and some virus, fungi and protozoa[40]. NET formation in response to
protozoan parasites has been reported for L. amazonensis amastigotes and L. amazonensis, L.
major, L. chagasi, L. donovani and L.mexicana promastigotes[29–31], Toxoplasma gondii
tachyzoites[32], Trypanosoma cruzi trypomastigotes[33] and Eimeria arloingi sporozoites and
oocysts [41]. However, characterization of NETs induced by the protozoan parasite E. histoly-
tica causing amoebiasis in humans has not been previously described. We here demonstrate
that human neutrophils release NETs upon exposure to amoebic trophozoites as well as to its
surface molecule EhLPPG. In accordance with other reports on NET formation in the presence
of microbes, the trophozoites of E. histolytica trigger NET formation rapidly (starting at 5 min)

Fig 5. Kinetics of NET induction by lipopeptidophosphoglycan isolated from E. histolytica. Induction of
neutrophil extracellular traps by 10 ng/μL of EhLPPG during the times indicated. Control, neutrophils
incubated at the same conditions for 2 h in the absence of EhLPPG. Hoechst 33342 stain and confocal
microscope observation, bars 10 μm.

doi:10.1371/journal.pone.0158979.g005
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in a dose and time dependent manner. This effect seemed dependent on amoeba viability, since
fixed trophozoites were unable to elicit them. It is noteworthy however that slight and retarded
NET formation was induced by total E. histolytica extracts as well as by conditioned medium
(not shown), suggesting that microbial components present in both preparations can also trig-
ger NET formation.

Among the microbial molecular triggers of NETs are the LPS of gram negative bacteria[23]
and the LPG of Leishmania amazonensis promastigotes[29], the most prominent negatively
charged surface components involved in the activation of the host innate immune response
trough TLR 2 and TLR 4[42,43]. In this study, we showed that purified EhLPPG, a surface mol-
ecule structurally similar to Leishmania LPG, was also able to elicit NET formation in a similar
manner to viable trophozoites, suggesting that EhLPPG is one of the main parasite molecules
triggering traps in human neutrophils. This GPI-anchored proteophosphoglycan[44] is a
highly immunogenic molecule directly exposed to the host’s immune system, recognized by
the sera from patients with amoebic liver abscess[45]. The mechanism by which EhLPPG is

Fig 6. Localization of LL-37 in NET induced by LPPG from E. histolytica. Neutrophils or NET induced by EhLPPGwere stained by an anti-LL-37 antibody
and an anti-rabbit IgG conjugated to Alexa594 (red). Control PMN, polymorphonuclear leucocytes with only the secondary antibody. PMN, PMN stained with
anti-LL-37 and the anti-rabbit IgG conjugated to Alexa594. NET, PMN incubated with LPPG showing the release of NET and colocalization with LL-37.
Hoechst 33342 stain and confocal microscope observation, bars 10 μm.

doi:10.1371/journal.pone.0158979.g006
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able to activate the release of NETs was not addressed in this manuscript and remains
unknown. However, since it was described that EhLPPG is a molecular pattern that triggers the
host immune response by signaling through TLR2/TLR4[43], it is conceivable that those pat-
tern recognition receptors and the same pathway are responsible for the NET release by
EhLPPG. Interestingly, other studies using genetically engineered L. donovani showed that
NET induction by promastigotes is independent of the parasite surface LPG, suggesting that
other parasite molecules are responsible for NET triggering in these species[30]. Studies are
underway in our laboratory in order to identify other molecules, in addition to the EhLPPG,
that are possibly involved in NET formation.

Amoebic viability assays by growth in fresh medium demonstrated that E. histolytica tro-
phozoites were not significantly affected after co-incubation with the NETs, induced by the
amoeba itself or by classical stimuli such as PMA. In some cases, trophozoites grew equally

Fig 7. Development of amoebic liver abscesses (ALA) on hamsters by amoebas pre-treated with NETs. Virulent E. histolytica trophozoited
(1x106) were incubated with 500 μg DNA NET solution (PMA-preformed) or PBS for 1 h at 37°C, and then injected in the portal vein of hamsters.
Untreated trophozoites were used as control of infectivity. Seven days post-challenge, animals were sacrificed, livers escinded and analyzed. A)
Table showing the infection rate and weight average of infected livers. B) Upper: Distribution and magnitud of ALA on the liver of the 5 animals of
each group. Uninfected livers of groups PBS and NETs are inside ovals. Bottom: Representative histological analysis of ALA from each group
stained with PAS. Magnification 20X. Arrows: trophozoites; N: necrosis; Ii: Inflammatory infiltrate, mainly neutrophils.

doi:10.1371/journal.pone.0158979.g007

NETs Induced by E. histolytica Trophozoites and LPPG

PLOSONE | DOI:10.1371/journal.pone.0158979 July 14, 2016 10 / 18



well or even better than untreated cultures, indicating that at least under the conditions tested
in vitro, amoebas were able to evade the microbicidal effect of human NETs. Similar findings
of resistance to NETs were seen in viability or infectivity studies of other parasites such as L.
major[29], L. donovani[30], and L.mexicana[31], as well as in the infectivity on T. cruzi[33]. In
the latter case, although the NET did not cause the parasite death, it interfered with the ability
of T. cruzi to infect LLC-MK2 cells, suggesting a protective role independent of a direct NET
trypanocide effect. A similar effect of human NETs on the infectivity of E. histolytica cannot be
ruled out and is currently being studied by our group. One possible explanation for the inability
of amoeba-induced NETs to kill the trophozoites in vitro was attributed to the fact that these
NETs were atypical and thereafter possibly lacked anti-microbial molecules derived from the
granules of neutrophils, including cathelicidin LL-37, an AMP that had previously been shown
to decrease the growth of E. histolytica trophozoites[34]. Yet this possibility was ruled out since
immunofluorescence studies using an antibody against LL-37 showed that this AMP was pres-
ent in the E. histolytica- and EhLPPG-induced NETs, and increased with time of exposure.
Since treated trophozoites grew well in culture medium we speculate that E. histolytica pos-
sesses evasion mechanisms for NETs, which was also observed when the amoebas were
exposed to NETs obtained through other stimuli, such as PMA.

Our study additionally showed that the viability of amoeba showed a slight but significant
decrease when treated with EGTA, a chelator used to inhibit some enzymes including DNases.
In contrast, the viability was not affected after incubation with E-64, a potent cysteine protease
inhibitor, suggesting E. histolytica possibly secreted/excreted DNases could be involved in the
evasion mechanisms of amoeba against human NETs in vitro. The role of DNases in protection
against NETs has been reported for many bacteria such as group A Streptococcus[46], Staphylo-
coccus aureus[47,48], Streptococcus agalactiae[49], S. pneumoniae[50], Vibrio cholera[51], S.
sanguinis[52], Neisseria gonorrhoeae[53] and S. suis[54]. Recently, a 3’-nucleotidase/nuclease
enzyme that allows Leishmania infantum to survive after interaction with NET was reported
[55]. In this regard, a restriction enzyme-like endonuclease activity was shown in E. histolytica
trophozoites[56], yet it is not clear whether this or any other DNase that degrades NETs is
secreted by the parasite, allowing it to escape and survive.

In addition to the killing of pathogens, NETs are able to trap microorganisms and to
degrade virulence factors[23]. We show here that amoeba trophozoites are sequestered by
NETs in vitro; if this occur in the gut infection, parasite elimination may be easier by peristalsis,
decreasing amoebic colonization. Another possible effect of traps on trophozoites is the degra-
dation of amoeba virulence factors. On the other hand, as NET formation involves oxygen
reactive species, the excessive formation of tramps by neutrophils may also contribute to tissue
injury. In this regard, studies have shown the inability of amoeba to induce amoebic liver
abscesses in neutropenic animals by treatment with immunosuppressors[20, 57]. These results
together with our observation in this study showing the inability of NETs to inhibit in vitro via-
bility and the infectivity of the amoeba in the ALA model in hamsters, suggests that if NETs
are formed in vivo during infection with the amoeba, they could be contributing to tissue dam-
age more than to protection against the parasite. Further studies are required to address these
points.

In conclusion, our study shows that both E. histolytica trophozoites as well as the isolated
lipopeptidophosphoglycan (EhLPPG) triggers NET formation by human neutrophils in a
dose- and time-dependent manner. Furthermore, we show the presence of the granule protein
cathelicidin LL-37 among the components of the DNA trap, yet it appears not affect the viabil-
ity of E. histolytica trophozoites. Therefore, this study suggests that human NET formation par-
ticipates in the early innate immune response against E. histolytica. However, it remains to be
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established whether NETs protect against natural amoebiasis in vivo, and if they contribute to
the tissue damage associated with the infection.

Material and Methods

Ethics Statement
The study was reviewed and approved by the Ethics and Research Committees of the Faculty
of Medicine of UNAM (Universidad Nacional Autonoma de Mexico) (FMED/CI/RGG/ 013/
01/2008) and guidelines established by the Mexican Health Authorities were strictly followed.
All patients and controls were informed and signed a written consent to participate in the
study.

Culture of Entamoeba histolytica trophozoites
E. histolytica trophozoites strain HM1: IMSS were cultured axenically at 37°C in screw-capped
glass tubes containing TYI-S-33 medium[58], supplemented with 15% heat-inactivated bovine
serum, 100 U/mL penicillin, 100 μg/mL streptomycin sulfate, and 1.5% Diamond vitamin mix.
At the end of their logarithmic growth phase (72 h), the trophozoites were chilled on ice for 5
min and harvested by centrifugation at 150 ×g for 7 min at 4°C, washed three times with PBS,
and suspended in RPMI-1640 with 2% human serum albumin (RPMI-HSA).

Lipopeptidophosphoglycan isolation from Entamoeba histolytica
trophozoites
Lipopeptidophosphoglycan was isolated from Entamoeba histolytica trophozoites (EhLPPG) as
reported elsewhere[59]. All the glassware was heated at 250°C for one hour before use; sterile
plastic material and pyrogen free water were used throughout the process. At the end of purifi-
cation, EhLPPG was concentrated by lyophilization and total carbohydrates were determined
by Fenol-H2SO4 method[60]. EhLPP was analyzed[61] in 12% SDS-PAGE and gels stained
with Coomassie blue (negative stain), silver stain and periodic acid Schiff (PAS) reagent (not
shown). The potential contamination of EhLPPG with bacterial lipopolysaccharide was ruled
out by the analysis of chromogenic limulus amebocyte lysate (Lonza Mexico, catalog 27A-50-
647U), according to the supplier's instructions. The LPS content in EhLPPG preparations used
at 10 ng/μL was at or below 0.07 endotoxin units/mL.

Human neutrophil isolation
Neutrophils were isolated from peripheral heparinized blood, obtained from human healthy
volunteer donors using Histopaque 1119 and 1077 (Sigma-Aldrich), according to the manufac-
turer instructions. The granulocyte layer was collected and after washing with cold PBS, eryth-
rocytes were lysed by incubation in lysis buffer (155 mMNH4Cl, 10 mM KHCO3, 0.1 mM
EDTA) for 10 min on ice, followed by washings with cold PBS and centrifugation at 300 xg for
10 min at 4°C. Neutrophils were highly purified from this preparation by positive selection.
Briefly, 5x107 cells were suspended in 50 μl of cold PBS and 50 μl of CD16 micro beads (Milte-
nyi, Biotec, Bergisch Gladbach, Germany), incubated for 30 min at 4°C, washed with PBS, cen-
trifuged at 300 xg for 10 min and passed through a magnetic separation LS column (Miltenyi
Biotec, Bergisch Gladbach, Germany). Finally, purified human neutrophils were placed in
RPMI-1640 (Gibco) with 2% human serum albumin (CSL Behring) and seeded at 1-2x105 cells
on sterile 8-well Cover Chamber Slides (Thermo), and incubated at 37°C under 5% CO2 atmo-
sphere during 1 or 2 h with the different stimuli to induce NET formation as mentioned below.
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Induction of neutrophil extracellular traps
NET formation was induced with live or 4% paraformaldehyde fixed E. histolytica trophozoites
(ratios 1:20 and 1:10 of amoeba:neutrophil), 1μg of trophozoites fresh whole extract/1 x 105

neutrophils or 5, 10 and 15 ng/μL of lipopeptidophosphoglycan isolated from E. histolytica tro-
phozoites (EhLPPG). Culture plates were incubated at 37°C under 5% CO2 atmosphere for var-
iable times, beginning at 5 min to a maximum of 2 h, as indicated on each experiment. For
NET staining and microscopy observation, samples were fixed with 2 to 4% paraformaldehyde
(Sigma-Aldrich) for 15 min, air dried and stained with 50 μg/mL 7-ADD, 10 μg/mL Hoechst
33342 (Invitrogen) or 0.2 μM Sytox Green (Life Technologies). The coverslips were mounted
with Prolong Gold (Invitrogen) before observation at the confocal (Carl Zeiss, LSM700) or
fluorescence (Carl Zeiss, AxiosKop40) microscopes.

Detection of cathelicidin LL-37 in neutrophil extracellular traps
For detection of LL-37, the neutrophils were seeded and NETs were induced as stated
above, with the exception that coverslips were treated with poly-L-lysine before use. Sam-
ples were fixed with 4% paraformaldehyde or acetone for 10 min, air dried and washed with
Tris HCl 0.1 M pH 7.4. Unspecific protein binding was blocked with a solution of 10%
human plasma, 0.1% gelatin and 0.1% Tween 20 in PBS for 1 h at room temperature. The
slides were incubated with a polyclonal anti-human cathelicidin LL-37 antibody (Santa
Cruz Biotechnology) at 1:200 dilution over night at 4°C, washed with Tris-HCl buffer and
incubated with a secondary antibody for 1 h at room temperature, either 1:250 diluted goat
anti-rabbit IgG conjugated to Alexa594 (Life technologies) or 1:100 diluted goat anti-rabbit
IgG conjugated to biotin (Zymed). In the last case, Steptavidin AP 1:100 (KPL) was added
and incubated for 30 min, washed and developed with AP RED Kit (Zymed), counter-
stained with hematoxylin and mounted with Aqua Monter (Bio SB). Controls without first
antibody were included and nuclei were stained with Hoechst 33342. All the samples with
fluorescence and immunocytochemistry were analyzed with a Carl Zeiss microscope (Axio
Imager M1) and the microphotographs were taken with the AxioCam MRc5 digital camera
(Carl Zeiss).

Interaction of E. histolytica with PMA-preformed neutrophil extracellular
traps
NET formation was induced for 2 h with 25 nM PMA as described elsewhere[23]. A total
number of 20,000 or 40,000 trophozoites per well were added to achieve a ratio of one
amoeba to 20 neutrophils (1:20). Final volume was 1 mL of RPMI-HSA with or without cys-
teine-HCl (1 g/L), ascorbic acid (0.2 g/L) and ferric ammonium citrate (0.0236 g/L) at pH
7.0. These compounds were used in some experiments at the final concentrations found in
the culture media of Entamoeba, in order to maintain trophozoites in good conditions and
assure that any change in amoeba viability was due to the presence of NETs. Some experi-
ments were performed in the presence of 0.5 mM EGTA, 10 μM E-64 or both to inhibit Ent-
amoeba histolytica enzymes potentially present (proteases and DNases). Appropriate
controls were included such as seeding the same number of trophozoites in wells without
NETs. Plates were incubated for 1 h at 37°C under a microaerophilic atmosphere (most of
the oxygen was consumed by a burning candle in a closed anaerobic jar), and samples were
treated for microscopic observation or to determine the amoeba growth.
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E. histolytica growth assays
Trophozoites that induced NETs at 5, 15, 30 or 60 min, as well as trophozoites exposed to
PMA-preformed NETs during 2 h, were harvested and transferred to screw-capped tubes with
5 mL TYI-S-33 medium, and cultured for 72 h in habitual culture conditions for amoeba. Tro-
phozoites were harvested at the indicated times and counted in a Neubauer chamber using the
vital stain Trypan blue. Data were analyzed by Kruskal-Wallis test, considered statistically sig-
nificant a p<0.05.

Induction of amoebic liver abscesses in hamsters
E. histolytica trophozoites from 72 h cultures, harvested by ice-chilling during 5 min and
washed three times with PBS pH 7.2, were treated with NETs obtained by treatment of human
neutrophils with 25 nM PMA for 2 h as described above. Briefly, batches of 1x106 parasites
were incubated with 500 μg DNA NET solution or PBS for 1 h at 37°C. Each million of treated
trophozoites were collected by centrifugation at 150 ×g for 7 min at 4°C, washed three times
with PBS, suspended in 100 μl PBS and used for infection of hamsters as described before[20].
Male Syrian golden hamsters (Mesocricetus auratus) 4 to 6 weeks of age were maintained free
of pathogens with water and food ad libitum. Following a protocol approved by the Institu-
tional Animal Care Committee, animals were divided in 2 groups of 5 hamsters each
(Untreated and treated groups). The animals were anaesthetized with anesthesal (60 mg⁄ kg)
and the portal vein was exposed by laparatomy under aseptic conditions. Untreated or NETs-
treated trophozoites (1x106/hamster) processed as above were directly inoculated into the por-
tal vein using a tuberculin syringe, followed by the immediate application of a gel-foam pad at
the site of inoculation in order to avoid bleeding and loss of amoebas.

Histological analysis
Hamsters were sacrificed after 7 days and the livers removed and weighed. Abscess were
exscinded from the liver tissue and also weighed. Liver samples containing abscesses were fixed
in 4% paraformaldehyde in PBS for 1 h, embedded in paraffin and processed for histology by
standard techniques. In brief, serial sections of 20 μm thicknesses were obtained in a micro-
tome, placed on slides coated with poly-L-lysine (Sigma, St Louis, MO, USA), deparaffined,
and finally stained with haematoxylin/eosin or Periodic acid–Schiff for light microscopy
analysis.

Supporting Information
S1 Fig. Phagocytosis of human neutrophils by NETs-treated E. histolytica trophozoites.
Trophozoites were exposed for 1 h to PMA-preformed NETs (25 nM) and then incubated with
neutrophils previously fixed with paraformaldehyde 4% and stained with DAPI for 10 min (A).
Aliquots were taken at 15 min (B) and 30 min (C) and observed in a fluorescence microscope.
Upper: light microscopy; middle: UV microscopy; bottom: simultaneous light and UV micros-
copy. All images were taken at 40X.
(TIF)
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