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Abstract

The disease burden of malaria has decreased as malaria elimination efforts progress. The
mapping approach that uses spatial risk distribution modeling needs some adjustment and
reinvestigation in accordance with situational changes. Here we applied a mathematical
modeling approach for standardized morbidity ratio (SMR) calculated by annual parasite
incidence using routinely aggregated surveillance reports, environmental data such as
remote sensing data, and non-environmental anthropogenic data to create fine-scale spa-
tial risk distribution maps of western Cambodia. Furthermore, we incorporated a combina-
tion of containment status indicators into the model to demonstrate spatial heterogeneities
of the relationship between containment status and risks. The explanatory model was fitted
to estimate the SMR of each area (adjusted Pearson correlation coefficient R? = 0.774;
Akaike information criterion AIC = 149.423). A Bayesian modeling framework was applied
to estimate the uncertainty of the model and cross-scale predictions. Fine-scale maps were
created by the spatial interpolation of estimated SMRs at each village. Compared with geo-
coded case data, corresponding predicted values showed conformity [Spearman’s rank cor-
relation r = 0.662 in the inverse distance weighed interpolation and 0.645 in ordinal kriging
(95% confidence intervals of 0.414-0.827 and 0.368—-0.813, respectively), Welch’s t-test;
Not significant]. The proposed approach successfully explained regional malaria risks and
fine-scale risk maps were created under low-to-moderate malaria transmission settings
where reinvestigations of existing risk modeling approaches were needed. Moreover, differ-
ent representations of simulated outcomes of containment status indicators for respective
areas provided useful insights for tailored interventional planning, considering regional
malaria endemicity.
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Introduction
Remaining issues and emerging challenges toward malaria elimination

Despite the many efforts over many years to contain and then eliminate malaria, Malaria
remains an important global health threat that still causes hundreds of thousands of deaths
every year [1]. Substantial efforts toward malaria containment by many stakeholders have
decreased the burden of this infectious disease in a number of endemic regions. Now, decades
after the global malaria eradication program, malaria elimination again features on the global
health agenda [2]. In recent years, an increasing number of countries with low-to-moderate
transmission areas have implemented actions to eliminate malaria from their entire territories
[3]. In Cambodia, the target is to be malaria free by 2025 [4]. Recent activities have decreased
the incidence of malaria in Cambodia to less than half the incidence in the early 2000s [5]. Cur-
rently, about half the Cambodian population are living in malaria-free or low-transmission set-
tings [6]. However, a number of issues remain and new challenges are emerging in the efforts
to eliminate malaria. The emergence of artemisinin resistance, which has been reported mostly
in the Greater-Mekong subregions, is one of the new challenges [7]. Artemisinin is a potent
and rapidly acting blood schizonticide that is effective for all plasmodium species [8]. No alter-
native effective antimalarial treatment is available at present; therefore, the consequence could
be dire if resistance spreads to wide geographical regions [9]. A number of reports have
emerged of delayed parasite clearance in patients in western Cambodia taking artemisinin [10-
13]. One recent report showed that the artemisinin-resistant malaria parasite had the potential
to infect vectors in other geographical regions [14]. The reported treatment failures in western
Cambodia varied depending on the conditions [11, 15-17]; however, all the reports strongly
emphasized the urgent need to address this issue. Appropriate medication is undoubtedly
important and in areas such as those close to western Cambodian border, this approach occa-
sionally needs intensive care and monitoring of patients. To attain the desired outcomes, sev-
eral studies such as those focused on screening and treatment [18], community-based
surveillance [19], and mass drug administration [20] have been piloted. What is common to
these interventions was the recognition that intensive support and monitoring for local practi-
tioners were critical in obtaining the desired outcomes. Healthcare resources cannot be used
inexhaustibly; therefore, identification of the target hotspots in malaria endemic areas, delivery
of sufficient stockpiles of resources, and intimate support for local healthcare providers are
essential, especially in remote endemic regions where accessibility cannot be retained over a
whole year.

Limitations of malaria risk modeling and mapping approaches

Recent efforts to quantify the risk burden and the creation of spatial prediction maps of malaria
risk have made substantial contributions toward identifying target hotspots [21-22]. A world
map of Plasmodium falciparum malaria endemicity has been published using a parasite rate
surveillance report and a model-based geostatistical approach [23-24]. Remote sensing tech-
niques are powerful tools that can be used to identify hotspots and to investigate malaria epide-
miology [25]. Several environment-related indices calculated from remote sensing data, such
as normalized difference vegetation index, normalized difference water index, and topological
wetness index have been used to predict regional malaria endemicity [26-29]. Climate also is
closely related to the risk of malaria [30-31]. Cohen et al. [32] created fine-scale risk maps of
both high endemic and low endemic seasons in Swaziland from routinely collected individual
case data combined with environment-related indices calculated from remote sensing data.
Despite these advances, the current decrease in the prevalence of malaria causes the changes in
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its data availability and case measurement, which indicates that the risk mapping approach
needs to be adjusted to take this new situation into account. Under low malaria transmission
settings where few infectious cases are reported, the sample size required to both estimate and
spatially predict infection prevalence becomes very large, and such information usually cannot
be obtained on a fine scale. Instead, cross-scale predictions using data collected on a coarser
scale can be performed using a Bayesian modeling framework [33]. To measure the malaria
disease burden when malaria becomes rare, it becomes increasingly difficult to detect ongoing
transmission monitoring by parasite rate [34]. Furthermore, an intensive focused screening
method indicated that, in low-transmission settings, many malaria cases were asymptomatic,
which made it difficult to identify all the cases by passive surveillance systems [18, 35]. Because
situations like this are important steps toward malaria elimination, there is an urgent need to
reinvestigate the modeling method of disease burden under low-to-moderate transmission set-
tings while establishing the strong surveillance system. Under the conditions that are supported
by rigorous surveillance systems, annual parasite incidence (API) can be a reliable measure for
reporting new malaria infections under a low-to-moderate transmission situation [36]. Here,
we applied a mathematical modeling approach for standardized morbidity ratio (SMR) calcu-
lated by API using routinely aggregated surveillance reports and variables related to human
interactions with surrounding environmental conditions to create fine-scale spatial risk distri-
bution maps of two provinces, Pailin and Preah Vihear, in western Cambodia. Under the ever-
changing local endemic conditions, all interventions need be reviewed carefully and tailored
for regional circumstances in an ongoing way to ensure that they remain fully effective. The
progresses of malaria containment actions are expected to affect these conditions. We also
incorporated the combination of two containment status indicators into the model to demon-
strate spatial heterogeneities of the relationship between containment status and risks to sup-
port informed decision-making for more efficient resource allocations and intervention
planning, considering spatial descriptions of regional malaria endemicity.

Materials and Methods
Malaria data collection

Malaria case data were collected from the Cambodia Malaria Bulletin report from 2010 to 2013
[37-38]. This dataset was built from case reports collected through the efforts of the Malaria
Information System and the national facility-based Health Information System using a com-
mon coding system [39]. It contains the API (per 1000 people) in each health operational dis-
trict for two malaria species, P. falciparum and P. vivax, reported by healthcare facilities or
village malaria workers. The SMR, standardized mortality or morbidity ratio, is expressed as a
ratio or percentage of quantifications compared with the general population of interest (Eqs 1
and 2) [40].

SMR =0 , =~ (1)

e, = Z ny Py (2)
k

where, o; is the observed number of cases in i area, e; is the expected number of cases in i area,
n; is the population in k age group in i area, and Py is the incidence of clinical cases in k age
group in the reference population. e; was estimated by multiplying the population and reported
incidence and aggregating them for each age group in 10 provinces in western Cambodia [41].

Since, API was reported incidence per 1,000 people, SMR, 0 ;in i district, was calculated by
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dividing the API by e; per 1,000 people. Assuming small observed case numbers and relatively
large dispersions under the low-to-moderate transmission setting, the observed case count data
0; can be assumed to follow the negative binomial distribution, o; | y;, where y; is the corre-
sponding distribution mean and p is the scale parameter (Eq 3). Then, by transforming Eq 1, y;

can be derived by multiplying e; and the relative malaria risk, 6 , (Eq 4) [42]. Hence, SMR can
be used for estimating the case number of target area, which is also useful for informed deci-
sion-making of healthcare resource allocation.

0, |, ~ NegBin (,, p) (3)

=g 0 i (4)
Considering the small number of observed cases compared with population size under the
low-to-moderate malaria transmission setting and thereby raising a concern for the modifiable
areal unit problem in geographical analysis [43-44], the SMR for each health operational dis-
trict was smoothed using the empirical Bayes method (EBSMR) [45] to adjust the influence of
different population size in area units.

Environmental and non-environmental anthropogenic covariates

The covariates that were incorporated into the modeling framework are described in Table 1.
The normalized difference vegetation index (NDVTI), the normalized difference water index
(NDWI), and the land surface water index (LSWI) were calculated from Terra-MODIS 8-day
composite data (http://LPDAAC.usgs.gov) from 2010 to 2013. Because EBSMR was repre-
sented as yearly average, these environmental variables were averaged to the mean values for
each year.

The digital elevation model at 30-m resolution was extracted from the ASTER GDEM data-
base (http://gdem.ersdac.jspacesystems.or.jp) [46] and used to estimate the altitude. The

Table 1. Variables used to build the modeling framework to estimate EBSMR.

Category Variable Data source Data collection
Vegetation NDVI Terra-MODIS 8-day composite data 2010— | Extracted mean value from 1, 2, 3, 4, and 5 km
2013 surrounding circular buffer from each populated village
Water NDWI Ditto Ditto
LSWI Ditto Ditto
Geography | TWI Digital elevation model at 30 m resolution Ditto
from ASTER GDEM database [46]
Temperature | P. falciparum temperature Malaria Atlas Project database [49] Averaged to mean value for each HOD
suitability index (PfTSI)
Population Population density (/km?) Cambodia Malaria Bulletin report 2010— Population record divided by total areas of each HOD
2013 [37-38]
Vector Sufficient ownership of LLIN® Cambodia Malaria Survey 2010 [41] Used the values reported at each provincial level
control
Treatment Treatment failure rate by National Center for Parasitology, Ditto

artemisinin combination therapy® | Entomology and Malaria Control [52]

@Proportion of household in which distributed mosquito nets cover no more than two persons per net.

PTest positive for P. falciparum on day 28 or day 42.

EBSMR, Standardized morbidity ratio estimated by empirical Bayese method; NDVI, Normalized difference vegetation index; NDWI, Normalized difference
water index; LSWI, Land surface water index; LLIN, Long-lasting insecticide-treated net; TWI, Topographical wetness index; HOD, Health operational
district.

doi:10.1371/journal.pone.0158737.1001
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topographic wetness index (TWI) was calculated using this altitude model and estimated by
the method described previously [47]. Considering the interactions between surrounding envi-
ronment and people in the malaria transmission process, we extracted data from multiple sur-
rounding circular buffers with different radius distances (i.e., for each 1 km from 1-5 km) from
villages. Environmental covariates extracted from each village were aggregated to the district
level to reflect the overall condition of target districts. As the number of villages directly relates
to the aggregated value, they were taken averages by the number of villages in each health opera-
tional district. These data, which could potentially indicate human interactions with the surround-
ing environment, were compared by calculating the correlation and coefficient of determination
for the models. Because temperature can influence the ecology of mosquito breeding habitats, and
therefore malaria transmission [30], we collected the Plasmodium temperature suitability index
[48] from the Malaria Atlas Project database [49]. Rapid urbanization is related to changes in the
risk patterns of malaria transmission compared with sparsely populated rural areas [50-51], and
susceptibility of these two different populations can be influenced by of the types of containment
actions that are implemented. Population density per km” was calculated as a variable reflecting
the extent of urbanization, using records in the Cambodia Malaria Bulletin divided into the areas
of each health operational district. Furthermore, we used the reported proportion of sufficient
ownership of long-lasting insecticide-treated nets (LLIN,¢) [41] and the treatment failure rate of
artemisinin (TF,,.) [52] as containment status indicators. LLIN¢is defined as the proportion of
households in which distributed mosquito nets cover no more than two persons per net. Because
no geographical localities could be obtained for these indicators, they were aggregated to the pro-
vincial level and incorporated into the model.

Spatial risk distribution modeling

The relationship between EBSMR (0) and spatial covariates was modeled using a generalized
linear regression model as a function of the N predictive variables (X,Z), given that the logarith-

mic 0 follows Gaussian distribution.

0=¢ (5)

/1:“+ZBNXN+ZVNZN+8 (6)
N N

Where a is the model intercept, f is the parameter associated with environmental covariates
X and y with non-environmental anthropogenic covariates Z. The maximum likelihood of
observed data provided to the model and the input predictors were calculated based on this
modeling frame (Eqs 5 and 6). Data modeling was conducted at the district level scale. For
model fitting, either maximum likelihood or Markov chain Monte Carlo (MCMC) methods
can be used. We first used the maximum likelihood method to examine the predictor variables
and then, based on the results, we used the MCMC method in the Bayesian modeling frame to
estimate the uncertainty about the relationships represented by ¢, 8, and y (Eq 6) and cross-
scale predictions. The models were fitted using the R software (https://www.r-project.org). Pre-
dictor variables were entered into the initial models in a stepwise manner to identify the vari-
ables to be incorporated into the model, and then both sets of variables were entered into the
model. This approach was repeated until all remaining variables in the final model were signifi-
cant at a = 0.05. An MCMC sampler in the JAGS framework [53] was used for the Bayesian
model fitting. Three MCMC chains with 50,000 iterations as burn-in and 30,000 iterations
thinned every 30 were stored as parameter estimates. Convergence of the model was examined
by Gelman-Rubin diagnostics [54] and by visual assessment of the trace plots of chains.
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Mapping and validations

The fitted model was applied in conjunction with spatial covariates extracted from the location
of each village to estimate the village level SMR. This process can be considered as the disaggre-
gation process of aggregated environmental covariates once used for modeling at the district
level scale. Values of estimated village level SMR were used as skeletons of the spatial interpola-
tion. Realized values calculated by spatial interpolation methods were plotted in each 250 m x
250 m spatial grid. We created maps that visualized the risks of two provinces, Pailin and
Preah Vihear, in western Cambodia by the inverse distance weighed (IDW) method and ordi-
nal kriging interpolation of the estimated SMR at each village. To evaluate the accuracy of the
cross-scale prediction from the model, the predicted SMR was compared with geocoded case
data for Pailin [55] and Preah Vihear [56] collected from the Malaria Atlas Project database
[48] using Spearman’s rank correlation [57] and Welch’s t-tests for unequal variances [58].
The source data of our maps were mostly from the reports from the village malaria workers
and the Health Information System and were based on the rapid diagnostic kit (RDT) and
microscopy detection. These data were selected because of the detection methods (RDT/
microscopy) used and were closest to the reported period from the study period. To exclude
the incidental nature for Spearman’s correlation with this sample data, we resampled the data-
set 2,000 times with replacement to create confidence intervals with the non-parametric bias
corrected and accelerated percentile method [59] to assess the distribution of correlation val-
ues. Since, we aimed to provide useful information to the practitioners, visual representations
of risk distributions in the maps were also validated for their agreement with those in existing
risk maps and utilities of the maps for deciding target areas through interviews with health care
providers in the regional health center and with geographical information system
professionals.

Results

Of the 329,830 malaria cases reported in 2011-2013, 124,888 cases in 18 operational health dis-
tricts in 10 western-Cambodian provinces were included in the analysis. The SMRs in each
health operational district were smoothed using an empirical Bayes method. In contrast to the
decreasing tendency of API in each district, estimated EBSMRs suggested remaining or even
increasing tendencies of API in the endemic areas (Fig 1). Within 5 km of villages, the absolute
correlation values between environmental variables (NDVI, LSWI, and TWI) extracted from
surrounding circular buffers (from 1-5 km) and EBSMR were highest at 5 km and at 1 km for
NDWI (Fig 2). Correspondingly, the Pearson correlation coefficient R” of the model differed at
each distance. Thus, the data collection ranges chosen for the model were 5 km for NDVI,
LSWI, and TWI, and 1 km for NDWI. After selecting of the spatial covariates, the final model
was used to estimate the SMR of each area (adjusted R* = 0.774, Akaike information criterion
AIC = 149.423). This model included NDVI, NDWI, TWI, P. falciparum temperature suitabil-
ity index, LLIN, and TF . The parameter estimates for each variable are shown in Table 2.
The calibration plot of the final model indicated good fitting of the predicted and actual values
(Fig 3A), and the mean absolute error of this final model was 0.499. Fig 3B shows that 55.56%
of predicted values were within the range of absolute error of +0.2, 75% were in the range of
+0.5, and 87.5% were in the range of £1. The estimated SMR for each village was calculated
using the Bayesian modeling framework. Subsequently, fine-scale maps were created by the
IDW method and ordinal kriging interpolation. The maps created from the predictive models
for Pailin and Preah Vihear provinces are shown in Fig 4. Each map represents different risk
representation patterns in accordance with interpolation method used. The map interpolated
using the IDW method showed more spotted risk, which can help in identifying localized risky
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Fig 1. Annual parasite incidence (API) of western-Cambodian health operational districts and empirical Bayese estimated standardized
morbidity ratio (EBSMR) for 6 operational health districts with high EBSMR 2. Bar graph represents API in each health operational district and
dotted line represents EBSMR of 6 provinces with high EBSMR. @ District with higher EBSMR than 1.0.

doi:10.1371/journal.pone.0158737.g001

hotspots, whereas the map interpolated by ordinal kriging showed broader patterns, which
provide a perspective of overall trends for optimizing healthcare resource distributions. Com-
pared with geocoded case data, corresponding predicted values in this map showed conformity
(Spearman’s rank correlation r = 0.662 with IDW and 0.645 with ordinal kriging; Welch’s t-
test; Not significant), which showed that the cross-scale predictions corresponded well with the
actual case reports (Fig 5A). The 95% confidence intervals for the IDW and ordinal kriging
methods were 0.414-0.827 and 0.368-0.813, respectively, showing a steep peak in the kernel
density plot at around 0.65-0.7 (Fig 5B). The visual representations of hotspots in the fine-
scale map created here confirmed that they were aligned with actual areas at high risk, which
were identified by other sources [36, 48, 54], through visual assessments by a number of health-
care providers and experts in the geographic information system. Thus, using this model,
expected outcomes under given conditions of LLIN,s and TF,,. were simulated. The visual
representations demonstrated the different patterns of expected outcomes from the combina-
tion of these two containment status indicators in respective areas (Fig 6).
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Fig 2. Absolute correlation values between environment-related covariates extracted from surrounding circular buffer from populated
villages and EBSMR. Values were extracted from every 1 km distance circular buffer within 5 km (1, 2, 3, 4, and 5 km) from populated villages
and then averaged to mean values. EBSMR, Standardized morbidity ratio estimated by empirical Bayese method; NDVI, Normalized difference
vegetation Index; NDWI, Normalized difference water index; LSWI, Land surface difference index; TWI, Topographical wetness index.

doi:10.1371/journal.pone.0158737.9002

Table 2. Parameter estimates selected for the final generalized linear regression model.

Category Variable Parameter estimate Standard error P-value

Vegetation NDVI (5 km) 7.446 1.947 <0.001
Water NDWI (1 km) -24.330 5.009 <0.001
Geography TWI (5km) -1.707 0.6346 0.009
Temperature P. falciparum Temperature suitability index (PfTSlI) 0.0002681 0.0000403 <0.001
Vector control Sufficient ownership of LLIN 2 -0.06387 0.007157 <0.001
Treatment Treatment failure rate by artemisinin combination Therapy ® 0.03611 0.008309 <0.001

@ Proportion of household in which distributed mosquito net covers 2 persons or less per net.

P Test positive for P. falciparum on day 28 or day 42

NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index; TWI, Topographical wetness index; LLIN, Long lasting insecticide-
treated net

doi:10.1371/journal.pone.0158737.1002
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Fig 3. The calibration plot (A) and proportions of predicted values within the range of absolute error (B) of the final model. The dashed line in (A)
represents 1:1 relationship of actual and predicted values.

doi:10.1371/journal.pone.0158737.9003

Discussions

As the malaria elimination effort progresses, it has become increasingly important to identify
the residual foci of malaria transmission to address the remaining challenges of preventing
residual transmissions and preventing the emerging artemisinin-resistant malaria from spread-
ing to protect immunologically susceptible populations. The fine-scale maps that we have cre-
ated will enable more focused containment actions, such as targeted surveillance, preventive
measures, and monitoring for treatment failure, which require intensive support for local
health practitioners. A previous report suggested that remarkable proportions of patients in
western Cambodia still had malaria parasitemia on day 3 after starting artemisinin combina-
tion therapy, although symptom resolutions were observed within this period [11]. Thus, treat-
ment monitoring is important for preventing patients from discontinuing treatment and
developing drug resistance. Interestingly, the visual representations of our maps were similar
to those of the Malaria Atlas Project; however, our maps displayed a finer level of risk distribu-
tions. Some of the differences between the two sets of maps can be explained partially by spatial
and temporal variations in the source data. The comparison of predicted risk with geocoded
case data confirmed that the areas predicted to be at high risk were likely the areas where the
appropriate level of attentions and support are needed. Areas predicted to be at high risk can
be distinguished easily from other regions at low risk, which will provide information to quan-
tify expected outcomes from a combination of containment status indicators. These results
suggested that these fine-scale maps can play important roles in current situations in
Cambodia.

We also describe an application of SMR using API reported in routine aggregated surveil-
lance data to quantify the spatial distribution of risk by capturing the environmental context
and containment status indicators in the model under low-to-moderate transmission settings.
We found that the remaining or even increasing tendency of SMR reflected the relative risk of
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Fig 4. Representative maps created using the proposed model for Pailin (A, B) and Preah Vihear (C, D) provinces in 2010. Maps (A) and (C) are the
risk maps created by the inverse distance weighed interpolation method (IDW). Maps (B) and (D) are the risk maps created by the ordinary kriging
interpolation method. Maps on the right side of each figure are the risk map created by overlaying the political boundary of target area and the contour of

estimated risk.

doi:10.1371/journal.pone.0158737.9004

malaria in the studied areas during the research period, which can be a useful measure for
deciding the allocations of limited healthcare resources. Sturrock et al. [33] built a prediction
model using routine aggregated case data and created a fine-scale risk map for Swaziland. In
their model, mean temperature and travel time to health facilities were the predictors of both
the pixel scale and the coarser district scale of risks. Lowe et al. [42] reported various kinds of
predictors such as altitude, living conditions, urbanization, precipitation, and temperature. The
variables that we chose for our model were similar in terms of using environmental and human
behavior-related variables for malaria risk predictions. Although altitude may be related to
malaria ecology, we did not incorporate this variable into our model. Nevertheless, the risk was
well explained, probably because of the relatively flat terrain in most of the area that we studied.
Of note, the data collection distances from each village for environment-related covariates
affected the risk predictions made by the model. The distances selected for the model develop-
ment were different for NDVI and NDWI, which partially reflects human interactions with the
living conditions that exist around human communities. The relationships between Anopheles
mosquito numbers that cause malaria transmission and distance from mosquito bleeding sites
have been reported previously [60-62]. According to surveillance reports [41, 63-64], malaria
prevalence decreased by distance from forests. The relationship with the distance from envi-
ronmental features for malaria risk modeling, such as the proximity of water puddles [65] and
health facilities [34], have been considered. The effect of distance for the vegetation and water
indices used in our study indicates such environmental features are interrelated with human
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communities in different ways. Forest workers often work in forests that are several kilometers
away from the communities in which they live, whereas the activity ranges of vectors are lim-
ited to short distances from their breeding habitat. The maps created in this study suggest that
the spatial heterogeneity of disease risk can be explained by such environmental context dispar-
ities. Our approach shows that distance from living communities can be a useful reference in
which to consider environmental context disparities for cross-scale prediction of disease risk
on a fine-scale. The relative risk specified from the surrounding environmental context can be
described over a wide area, while maintaining the uniformity of unknown conditions, using
remote sensing data from space satellites.

It is desirable to use micro data, such as household level data, to build fine-scale risk maps.
However, this kind of micro data is often inaccessible and hence they cannot be used for map-
ping. The encouraging results that we obtained for fine-scale risk prediction in the modeling
framework enabled the size of the effect to be visualized from different combinations of con-
tainment status indicators. The simulation results demonstrated that the predicted outcomes
were different under each environmental context, which provides an opportunity for evaluat-
ing interventions considering environmental situations in target areas. Moreover, expected
interventional outcomes can be mapped, allowing decision-makers to assess different combina-
tions of interventional approaches considering several constraints such as detailed population
characteristics, specific local issues, and resource constraints in a target area. Generally, the reli-
ability of data is a critical factor for creating relevant models to be used in the real world.
Under low transmission settings, passive surveillance systems have difficulty in capturing
enough reliable case numbers to reflect the actual situations [66]. Although variations in the
reliability of data reported from each area are likely to exist, the mapping approach described
here can add more reciprocity among stakeholders than simply recording aggregated case
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(A)

HAS

(B)

Fig 6. Computational simulations of expected the standardized morbidity ratio (SMR) under various conditions of LLIN coverage and treatment
failure rate of artemisinin. (A) Relationship of two containment status indicators with expected SMR in Pailin Province. (B) Different patterns of expected
outcomes from the combination of the two containment status indicators in the two provinces. The green surface corresponds to Pailin Province; the blue

surface corresponds to Preah Vihear Province. LLIN, Long-lasting insecticide-treated net; TF, Treatment failure rate of artemisinin defined as test positive

percentage on day 28 or day 42.

doi:10.1371/journal.pone.0158737.9g006

numbers, which will encourage more effective report-and-utilization cycles and provide an
opportunity for effective data utilization.

While our approach generated several supportive results in terms of fine-scale risk predic-
tions under a low-to-moderate transmission setting, several important limitations and consid-
erations for future work should be considered. First, containment status indicators other than
LLIN,,fand TF,, were not considered in the present model. The expected outcomes of inter-
ventional efforts could be obtained from the results of various activities, which may not be
explained by a simple additive effect, but rather through the interaction of these activities. In
our model, we considered the interaction between LLIN . and TF,,, but the result did not
improve. Therefore, interactions to describe the complex realty should be considered for prac-
tical applications for assessing the effectiveness of interventions. Second, the influence of
migrant populations and time series variations of the risk were not considered in the modeling
framework. The dynamics of human carriers that drive parasite transportation between regions
can be quantified using spatially explicit mobile phone data and malaria prevalence informa-
tion [67]. By incorporating these factors into the modeling framework more useful models
could be developed. Because we used API to calculate the SMR, the environment-related pre-
dictor variables were reduced to yearly average. For the spatial granularity of data, deciding
appropriateness of the time granularity is a perplexing issue because of difficulties in detecting
adequate case numbers for reliable risk modeling from micro data. The appropriateness for
deciding the region of interest for data collection is also difficult to determine because calcula-
tions of the denominator (i.e. prevalence of reference population) of the SMR are influenced by
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this factor. Finally, the treatment seeking behavior varies spatially, which may affect the report-
ing bias of case data. Sturrock et al. addressed this issue in their modeling approach using Swa-
ziland malaria information system [33]. Unfortunately, this kind of information in Cambodia
was not available from publicly available sources. Thus, we need to conduct field survey in the
sampled place of target area if this aspect needs to be incorporated. However, in addition to the
case reported from public facilities, cases reported from village malaria workers providing pri-
mary healthcare services to the community were also counted in the surveillance report we
used. Since the village malaria worker program is active in northwest Cambodia, this structure
can improve the coverage of potentially detectable cases to a certain extent. One of the
strengths of our approach is that the maps were created mostly from public available data.
Therefore, map authors need to collect complementary data from the field if it is necessary con-
sidering the balance of timeliness and reliability of the map.

Like all programs, malaria elimination action programs need specific plans with realistic
time limits and well-defined parasitological and entomological goals [35]. Maps created by the
modeling framework developed here can provide opportunities for establishing realistic goals
using current resources. Furthermore, the maps can provide useful information both quantita-
tively and qualitatively for monitoring and evaluating interventional activities, while providing
decision-makers with a platform for cross-scale wandering to help make decisions for efficient
healthcare resource use. Our approach is simply a quantitative prediction technique for using
existing dataset, and thus can only play a part in the whole healthcare information system for
malaria elimination. Clearly, the divergences of the prediction from a real world situation need
to be considered. Nevertheless, the adjustments in malaria quantification contribute further
steps in a system that is working toward malaria elimination.

Conclusions

Using routine aggregated surveillance reports combined with environmental data and non-
environmental anthropogenic data, regional malaria risks can be well explained with the
approach described here. The modeling framework was used to created fine-scale risk maps
under the low-to-moderate transmission setting where reinvestigations of existing risk model-
ing approaches were needed. We have demonstrated a mathematical modeling approach for
SMR using API from routine aggregated surveillance report and generated cross-scale predic-
tions within a modeling framework that correspond to environmental context disparities to
create malaria risk maps on a fine-scale. Different representations of simulated outcomes from
containment status indicators can provide useful insights for tailored planning of action alter-
natives considering regional malaria endemicity.
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