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Abstract

Identification of disease-causing genes is a fundamental challenge for human health stud-
ies. The phenotypic similarity among diseases may reflect the interactions at the molecular
level, and phenotype comparison can be used to predict disease candidate genes. Online
Mendelian Inheritance in Man (OMIM) is a database of human genetic diseases and related
genes that has become an authoritative source of disease phenotypes. However, disease
phenotypes have been described by free text; thus, standardization of phenotypic descrip-
tions is needed before diseases can be compared. Several disease phenotype networks
have been established in OMIM using different standardization methods. Two of these net-
works are important for phenotypic similarity analysis: the first and most commonly used
network (mimMiner) is standardized by medical subject heading, and the other network
(resnikHPO) is the first to be standardized by human phenotype ontology. This paper com-
prehensively evaluates for the first time the accuracy of these two networks in gene prioriti-
zation based on protein—protein interactions using large-scale, leave-one-out cross-
validation experiments. The results show that both networks can effectively prioritize dis-
ease-causing genes, and the approach that relates two diseases using a logistic function
improves prioritization performance. Tanimoto, one of four methods for normalizing
resnikHPO, generates a symmetric network and it performs similarly to mimMiner. Further-
more, an integration of these two networks outperforms either network alone in gene prioriti-
zation, indicating that these two disease networks are complementary.

Introduction

The identification of disease-causing genes is important to researchers and clinicians for diag-
nosing and treating diseases. However, identifying these genes is time consuming and costly. A
common practice is identifying and prioritizing candidate genes in silico and then validating
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these genes in vivo. Some diseases with overlapping phenotypes may be caused by different
genes that belong to the same functional module. Many genes exert their functions as compo-
nents of protein complexes. It has been observed that direct and indirect protein-protein inter-
actions often lead to similar phenotypes.

Online Mendelian Inheritance in Man (OMIM) [1] is a comprehensive database for human
genetic diseases and related genes that has become an authoritative source of disease pheno-
types. Text mining of OMIM can be used to analyze human disease phenotypes. Computa-
tional approaches integrating phenotype similarity data with protein-protein interactions data
have been developed to prioritize candidate genes [2-4]. However, OMIM is manually curated
by disease experts, and phenotypic descriptions are found in free text. Therefore, standard
vocabulary for phenotypic annotation is necessary for extracting clinical manifestations from
OMIM records. Currently, three standard vocabularies are used for human phenotypic annota-
tion in text mining of OMIM, i.e., Medical Subject Headings (MeSH) [5-7], Unified Medical
Language System (UMLS) [8-12] and Human Phenotype Ontology (HPO) [13-15]. Similarity
scores are calculated between disease phenotype pairs, and then disease phenotype networks
(DPN) are created. Two DPNs based on MeSH and HPO are publicly available on the Internet.
The former, called mimMiner [5], is the most widely-used for identifying disease genes, and
the latter, called resnikHPO in this paper, is the first DPN annotated by HPO—a structured,
comprehensive and well-defined set of terms dedicated to describing human phenotypic
abnormalities [14].

The influence of resnikHPO is far less than that of mimMiner, mainly because resnikHPO
is a text file that includes similarity scores between disease pairs from OMIM, Orphanet and
DECIPHER, which is not convenient to use directly in programming. By contrast, mimMiner
is a numerical matrix of similarity scores between human diseases from OMIM and is easy to
use. However, OMIM has adopted HPO to annotate disease phenotypes; therefore, resnikHPO
has potential applications in the future.

Which DPN is a better phenotype similarity network for prioritizing candidate genes? In
this study, we aim to comprehensively compare the performance of mimMiner and resnikHPO
on the same dataset, which, to our knowledge, has not been performed before.

Materials and Methods
Evaluation dataset

MimMiner was derived from the work of van Driel et al, who thought that the full text and
clinical synopsis fields of OMIM records describe genetic disorders and used the anatomy and
the disease sections of MeSH to automatically extract terms from the OMIM records. Thus,
every record generated a feature vector. The similarity between the OMIM records was quanti-
fied by calculating the cosine of the angle between normalized vector pairs (Eq 1). By perform-
ing pairwise comparison of OMIM records, a disease phenotype network containing 5080
diseases was obtained, called mimMiner, whose arcs were weighted with a value in the range
[0, 1]. mimMiner is a symmetric matrix in mathematics and can be found on http://www.cmbi.
ru.nl/MimMiner/suppl.html.

zl:A,. X B,

i=1
XI:A,? X z’:Bi2
i1 i=1

ResnikHPO is based on HPO, which is constructed by using ontological concepts to

Sim(A,B) =
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represent clinical attributes of human diseases in the form of a directed acyclic graph. A pre-
computed matrix containing pairwise similarity scores between 7477 human diseases was
freely downloaded on September 1, 2014 from http://compbio.charite.de/hudson/job/hpo.
diseasesimilarity/lastStableBuild/. The similarity between diseases pairs was calculated using
Eq 2.

Sim(A — B) = avg max IC(MICA(t,,t,)) (2)
hea 2B
Here, MICA is the most informative common ancestor of two terms #; and £, in ontologies.
IC denotes the information content, which is defined as the negative natural logarithm of the
frequency of a term used to annotate diseases.
Sim(A— B) is asymmetric with respect to A and B; therefore, the symmetric similarity mea-
sure is defined by

_ Sim(A — B) + Sim(B — A)

Simsymmemc (A7 B) - 92 (3)

Normalization and regression

The values ranges of Sim(A— B) and Simn,y,merric(A, B) are not limited to [0, 1]. To compare
resnikHPO with mimMiner, four methods were adopted to normalize the ranges, i.e., Lin, Sqrt,
Maxmin and Tanimoto methods [16,17]. Let Sim(A, B) denote the similarity of disease pheno-
type sets A and B. Sitn, and Sirny, .y are the minimum and maximum value in a phenotype
similarity matrix. The normalization is implemented using the following formulae:

Lin Method:
2 x Sim(A, B)
Sim,. (A,B) = 4
iy, (AsB) = G A &) + Sim(B.B) )
Sqrt Method:
Sim,_ (A, B) Sim(A, B) (5)
im ,B) =
a \/Sim(A, A) * Sim(B, B)
Maxmin Method:
] Sim(A,B) — Sim_,
Slmmaxmin (A) B) = Slm _ Slm ] (6)
Tanimoto Method:

Sim(A, B)

Si imoto Ay B) =
lmTamrmoto( ’ ) Slm(AaA) + Slm(B,B) — Slm(A7B)
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It should be noted that Sim(A,B) can be calculated using Sim(A—B), Sim(B—A) or
Simgymmerric(A, B). Two suffixes -R and -C were used to distinguish row and column vectors
of the asymmetric matrix of resnikHPO. The suffix -R corresponds to Sim(A—B), and -C
corresponds to Sim(B—A). For example, after Lin normalization, three forms are available,
i.e, Lin-R, Lin-C and Lin. The former two forms mean that the disease phenotype similarity
data are extracted from the row and column vectors of the asymmetric matrix of resnikHPO,
and the last form means that the disease phenotype similarity data are extracted from the
symmetric matrix (i.e., Simgymmerric(A, B)).

As reported in an earlier study [2], logistic regression can strengthen the correlation
between the similarity of two diseases and their causal genes. For a similarity value x of two dis-
eases, the logistic function is defined by:

1

L(x) = 1+ elex+d)

(8)

Where d = log (9999) and ¢ is determined by leave-one-out cross-validation (LOOCV).

Disease-gene validation

To access the performance of different DPNs, a large scale LOOCV experiments was adopted.
Known associations between diseases and genes were extracted from the OMIM database. For
each disease gene, the following experiment was conducted.

A gene was removed from the set of genes causing the disease. This removed gene was called
the target gene, and the remaining genes in the set of genes composed the seed set. The target
gene was predicted by prioritizing candidate genes. Because same gene or correlated genes
could lead to overlapping disease phenotypes, protein—protein interactions (PPI) can be used
to discover new genes [18]. All protein-coding genes in the PPI were also selected as candidate
genes for prioritization, and the target gene was predicted according to the ranking.

For a polygenic disease, the seed set and phenotypic similarity data were used together to
recover the association between the target gene and the disease. For a monogenic disease, there
was no seed set after the unique gene was removed. As a result, the reconstruction of disease-
gene relationship is mainly based on phenotypic similarity.

The disease-gene associations were extracted from the OMIM database, while the protein
(gene) networks were obtained from Human Protein Reference Database (HPRD) [19], which
contains 64662 unique interactions between 8919 proteins. According to a recent study [20],
these datasets are available from http://genome2.ugr.es/prophnet/.

Gene prioritization algorithm

Recently, a number of gene prioritization methods have been proposed, and the predictive per-
formances were accessed. The network-based prioritization approaches, including Random
Walk with Restarts (RWR) [21] and PRINCE [2], have shown more superior performances
than the clustering and neighborhood methods [22]. Essentially, PRINCE is one type of Ran-
dom-Walk based algorithm that has a slight advantage over RWR [2]. In this paper, the
PRINCE algorithm was exploited to validate and predict disease genes.

PRINCE, as an iterative algorithm, can be defined as follows:

F=axW, xF'+(1-a)xY 9)

norm

where W, is a normalized form of the PPI network, a is a weight parameter and F' = Y. In
this study, the PPI consists of 8919 proteins. Y represents a prior knowledge function. If a pro-
tein is related to a considered disease, then Y assigns positive values to it and zero otherwise.
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Disease similarity information is incorporated into Y in proportion. The iteration continues
until the difference between F' and F'™! falls below 10~° or the maximum number of iterations
(100) is reached.

Evaluation criteria

To systematically compare the performance of different DPNSs, the following evaluation criteria
were used.

Mean rank ratio. The mean rank ratio (MRR) is defined as the average rank of the target
genes among all candidate genes in LOOCV [20,23,24]. The MRR gives a comprehensive view
of different DPNSs for prioritizing candidate genes. A lower number for MRR indicates better
performance.

Number of the top-ranking genes. In LOOCYV, the proportion of true disease genes
ranked at the top (with rank 1) is defined as the precision of prioritizing candidate genes
[23,24]. A high precision means that the DPN has a high prediction power. However, the dif-
ference between different DPN forms is often minimal; therefore, the number of true disease
genes ranked at the top is presented to accurately describe the prioritization performance.

True Positive Rate (TPR) in the top 5, 10 and 30 ranked genes. In a real situation, com-
puter-aided gene screening usually gives a certain number of candidate genes. However,
because validating disease-causing genes in vivo is expensive and time consuming, the number
of candidate genes should be limited. The genes ranked within the top 5, 10 and 30 are suffi-
cient for discovering the vast majority of genes; therefore, the TPRs in the top 5, 10 and 30
were selected as performance measures to estimate the efficiencies of the DPNs. These three
thresholds represent reasonable biological hypotheses in a genetic screen [25], and they were
adopted to evaluate gene prioritization tools or algorithms in previous studies [26]. The corre-
sponding TPRs are the ratios of the number of true disease genes ranked in the top 5, 10 and
30 to the number of all validated disease-causing genes.

Experimental procedure

The entire procedure consisted of the following four steps.

Step 1. Data extraction. The common disease records were extracted from the two DPN's
to ensure that the diseases in the two datasets were consistent. There were 6485 OMIM disease
records left in the resnikHPO after removing the Orphanet and DECIPHER-based diseases
from all 7477 diseases. The mimMiner consisted of 5080 OMIM diseases. Consequently, 4366
diseases with same OMIM number were extracted from the two DPNs. For the resnikHPO,
symmetric and asymmetric phenotypic similarity matrices with a size of 4366x4366 were
created.

Step 2. Data normalization and regression. For the mimMiner, the extracted 4366x4366
matrix contained the values between 0 and 1. For the asymmetry and symmetry matrices
extracted from resnikHPO, four methods, i.e., Lin, Maxmin, Sqrt and Tanimoto, were applied
for normalization. Then, these data were processed with a logistic regression function.

Step 3. Validation and Evaluation. Together with a disease-genes network consisting of
4366 diseases and 8919 genes and a PPI network with a size of 8919x8919, the LOOCV was
performed based on the PRINCE algorithm. In each run of LOOCYV, the candidate genes were
ranked, and the results were compared according to the evaluation criteria.

Step 4. Case studies. Two cases, i.e., OMIM 102200 and OMIM 114480 (Breast cancer),
were provided to demonstrate the power of different DPNs in identifying new disease genes.
The genes of OMIM 102200 were predicted without any available seed genes, and for the
OMIM 114480, 18 new genes were prioritized with 4 seed genes.
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An overview of the evaluation procedure is presented in Fig 1.

Results and Discussion

We first compared the performance of mimMiner and resnikHPO using a large-scale, LOOCV
experiment and then evaluated the performance of their integration network. For a fair com-
parison, the shared 4366 diseases were extracted from the two disease phenotype networks.
The 8919 protein-coding genes in the PPI network and the 4366 diseases formed a disease-
gene network, containing 1340 associations between 1078 diseases and 897 genes. The 1078
diseases consist of 913 monogenic diseases and 165 polygenic diseases. Therefore, the LOOCV
experiments were performed on monogenic and polygenic diseases. Then, different DPNs were
statistically compared, and the C value in the logistic regression function was analyzed. Finally,
two real examples demonstrate the ability of mimMiner, resnikHPO and their integration net-
work for gene prioritization.

Gene prioritization for monogenic diseases based on disease phenotype
similarity

For each of the 913 diseases that were associated with only one gene, the disease-gene associa-
tion was removed before the LOOCV. Then, the target gene was predicted using the previously
known disease phenotype similarity information.

First, the original data, untreated by logistic regression, was validated. For the resnikHPO,
each of the four transformations was validated individually, and each transformation included
three different forms. The experimental results are listed in Table 1. The results show that for
each transformation, the performance of the -C form was better than the corresponding -R and
the symmetric form. Additionally, the symmetric form is a little better than the -R form
because it is the average of these two asymmetric forms. It is notable that the Tanimoto-C cor-
rectly ranked 20 target genes at the top, and it is far superior to the other transformations.

Second, the logistic regression was exploited to improve the performance of prioritization.
Unexpectedly, the advantage of the -C forms disappeared and was even inferior to the -R
forms. For example, Tanimoto-R restored 91 disease-gene associations among all 913 monoge-
netic diseases, while Tanimoto-C only recovered 73 disease-gene associations. In Table 2, these
two Tanimoto forms are listed because they outperformed the others (for more details see S1
Table). The different values of C in logistic function were tested, and the best result based on
the number of top-ranking genes was obtained when C was set to -13. Further studies showed
that the symmetric forms of the DPNs were better than all asymmetric forms. As listed in
Table 3, the symmetric forms of Tanimoto and mimMiner were better than the other three,
especially when ranking the genes at the top and in the top 5. However, the overall perfor-
mance of Tanimoto and mimMiner are quite close to each other. The parameter C varied with
the distribution of DPNs and will be analyzed in the following section.

Gene prioritization for polygenic diseases based on seed genes and
disease phenotype similarity

In the common 4366 OMIM records, there were 165 diseases with more than one associated
gene. The number of genes associated with each of these diseases ranged from 2 to 5. A total of
427 disease-gene associations were extracted.

Unlike gene prioritization for monogenic diseases, the gene prioritization for polygenic dis-
eases could take advantage of seed genes. In each run of LOOCYV, the association of the dis-
ease-target gene was removed, and then using the known disease phenotype similarity, the
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Fig 1. Flow-chart depicting the four steps of evaluating disease phenotype networks for gene prioritization. The first step
consists of extracting the common disease records from mimMiner and resnikHPO to construct the corresponding subnetworks
for comparative analysis. The resnikHPO has asymmetric and symmetric versions so that two subnetworks are extracted. Every
subnetwork can be represented by an adjacency matrix. Step 2 consists of normalization and logistic regression. The
asymmetric and symmetric subnetworks of resnikHPO need normalization to adjust all values into the range [0, 1]. Four methods
shown in italics are adopted to process the corresponding adjacency matrix. lllustrated by the example of Lin method, the
normalized asymmetric matrix is named Lin-R and Lin-C, while the normalized symmetric matrix is named Lin. In essence, Lin-R
and Lin-C is the same matrix, but the difference is that the similarity scores between a given disease and the others are drawn
from the row and column vectors of the matrix, respectively. In addition, mimMiner and resnikHPO can be integrated herein and
the combination of mimMiner and Tanimoto outperforms each network alone (see the main text). Logistic regression is an
optional process, but it substantially improves performance of the networks. Step 3 consists of validation and evaluation.
Together with disease similarity as prior knowledge, 913 monogenetic diseases and 165 polygenetic diseases are input for gene
prioritization in leave-one-out cross-validation (LOOCV) based on PRINCE algorithm using PPI network. Step 4 consists of case
studies, involving gene prioritization for OMIM 102200 without seed genes and OMIM 114480 (Breast Cancer) with seed genes.

doi:10.1371/journal.pone.0159457.g001
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Table 1. LOOCYV results for 913 monogenic diseases, based on original disease phenotype networks.

Disease Phenotype Networks MRR, % |Top-ranking genes?® TPRin the top 5, % TPRin the top 10, % TPR in the top 30, %
Lin-R 20.94 0 0.44 2.63 17.09
Lin 20.35 0 2.41 5.91 23.55
Lin-C 19.89 8 6.35 12.38 25.52
Sart-R 20.94 0 0.44 2.63 16.98
Sqrt 20.36 0 2.41 5.91 23.33
Sqrt-C 19.90 8 6.35 12.49 25.52
Maxmin-R 20.87 1 0.77 3.07 18.62
Maxmin 20.33 2 2.30 7.01 24.42
Maxmin-C 19.91 12 6.46 13.47 25.74
Tanimoto-R 20.66 4 2.74 6.35 23.00
Tanimoto 19.99 4 4.49 10.84 28.81
Tanimoto-C 19.53 20 9.97 18.40 29.24
mimMiner 20.96 1 3.40 6.24 20.92

MRR, mean rank ratio; TPR, true positive rate
2 It signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 913 target genes in LOOCYV for monogenic diseases.

doi:10.1371/journal.pone.0159457.t001

remaining genes (namely seed genes) were used to identify the target gene. The performance
differences of the three forms of resnikHPO are analogous to those in the LOOCYV for mono-
genic diseases. For example, the -C forms were better than the corresponding -R and symmet-
ric forms in prioritization performance when the original data were used, but the symmetric
forms showed the best performance of the three when the similarity data were processed with
the logistic regression function (for detailed data, see S2 and S3 Tables). The seed genes signifi-
cantly improved the prioritization performance because of the so-called guilt-by-association
principle. The validation results of the four symmetric forms of resnikHPO and mimMiner are
listed in Table 4, in which the TPR in the top 5, top 10 and top 30 increases approximately 40%
over their corresponding values in Table 3, while the MRR decreases approximately 50%. The
overall performances of these five DPNs were similar to each other, but mimMiner performed
slightly better than others. The remainder of this paper will focus on mimMiner and the sym-
metric forms of resnikHPO.

Gene prioritization with integration of different disease phenotype
networks

The mimMiner and resnikHPO differ in vocabulary standardization and diseases similarity
measures; therefore, it is possible that their integration could further improve the prioritization
performance. Because its performance is the best of all normalized networks of resnikHPO,

Table 2. LOOCYV results for 913 monogenic diseases, based on asymmetric Tanimoto disease phenotype networks processed with the logistic
regression function.

Disease Phenotype Networks |BestC value® |MRR, % |Top-ranking genes® |TPRinthetop5,% |TPRinthetop10,% |TPRin the top 30,%

Tanimoto-R -13 19.95 |91 20.04 25.96 35.16
Tanimoto-C -13 19.00 |73 19.17 26.62 35.60

MRR, mean rank ratio; TPR, true positive rate
& the best C value will be obtained when maximum number of top-ranking genes is reached.
b it signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 913 target genes in LOOCV for monogenic diseases.

doi:10.1371/journal.pone.0159457.t1002
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Table 3. LOOCYV results for 913 monogenic diseases, based on symmetric disease phenotype networks processed with the logistic regression
function.

Disease Phenotype Networks |BestC value® |MRR,% |Top-ranking genesb TPRin thetop 5,% |TPRinthetop 10,% |TPR in the top 30, %

Lin -12 17.92 | 124 27.38 35.82 46.00
Sart -13 17.81 |[120 27.60 35.16 46.22
Maxmin -22 17.93 | 117 26.83 34.72 45.35
Tanimoto -17 17.90 |134 28.15 35.93 46.22
mimMiner -14 17.62 | 133 28.48 35.38 46.99

MRR, mean rank ratio; TPR, true positive rate
@ the best C value will be obtained when maximum number of top-ranking genes is reached.
® it signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 913 target genes in LOOCV for monogenic diseases.

doi:10.1371/journal.pone.0159457.t003

Tanimoto was selected to combine resnikHPO with mimMiner. Different component ratios
affected the performance of the integrated network (Table 5). Clearly, the ratio of 0.5 led to the
best result, which suggests that the combinational DPN is the arithmetic average of Tanimoto
and mimMiner. In contrast to the best result of 134 genes in Table 3, the combinational DPN
successfully identified 160 genes at the top with an increase of 19%. As shown in Fig 2, the
combinational network has an obvious advantage over the individual Tanimoto or mimMiner.
The results of gene prioritization for polygenic diseases are listed in Table 6. The maximum
number of top-ranking genes was 96 with the combinational ratio of 0.5. In contrast to the
results of Tamimoto and mimMiner in Table 4, the corresponding MRR, numbers of top-

Table 4. LOOCV results for 165 polygenic diseases, based on seed genes and different disease phenotype networks processed with the logistic
regression function.

Disease Phenotype Networks |BestC value® |MRR, % |Top-ranking genes® |TPRinthetop5,% |TPRinthetop10,% |TPRinthe top 30,%

Lin -12 7.89 |80 39.34 47.78 62.06
Sqrt -12 7.90 |81 39.11 48.01 61.83
Maxmin -18 7.96 |81 36.77 46.37 61.12
Tanimoto -18 7.91 83 38.88 48.48 61.59
mimMiner -14 7.96 |82 42.39 50.59 64.17

MRR, mean rank ratio; TPR, true positive rate
& the best C value will be obtained when maximum number of top-ranking genes is reached.
P it signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 427 target genes in LOOCV for polygenic diseases.

doi:10.1371/journal.pone.0159457.t004

Table 5. LOOCYV results for 913 monogenic diseases, based on the combination of Tanimoto and mimMiner in different proportions.

Proportion of Tanimoto® |Best C value® MRR, % |Top-ranking genes® |TPRinthetop5,% |TPRinthetop10,% |TPRin the top 30,%

0.3 -15 17.40 | 150 32.75 39.54 49.62
0.4 -16 17.27 | 155 33.52 40.42 49.95
0.5 -17 17.20 | 160 33.52 40.64 49.95
0.6 -17 17.29 | 159 33.52 40.85 49.18
0.7 -20 17.17 | 155 33.08 40.64 49.18

MRR, mean rank ratio; TPR, true positive rate

& proportion of mimMiner = 1.0—proportion of Tanimoto.

® the best C value will be obtained when maximum number of top-ranking genes is reached.

¢ it signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 913 target genes in LOOCV for monogenic diseases.

doi:10.1371/journal.pone.0159457 1005
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Fig 2. Comparison of the LOOCYV best results for 913 monogenic diseases, based on Tanimoto,
mimMiner and their combination. The prioritization performance of Tanimoto, mimMiner and their
combination is compared based on the evaluation criteria including mean rank ratio (MRR), number of the

top-ranking genes, and True Positive Rate (TPR) in the top 5, 10 and 30 ranked genes. For the number of
top-ranking genes shown in this figure, its percentage in 913 genes (i.e. TPR in the top 1) was calculated.

doi:10.1371/journal.pone.0159457.g002

ranking genes and all TPR were better in Table 6. As a whole, the MRR decreased 2 ~ 3% in the
list of 8919 candidate genes, the number of genes at the top increased 16%, and the TPR in the
top 5, 10 and 30 rose 11%, 10% and 3%, respectively. As shown in Fig 3, the combinational net-
work was superior to the individual Tanimoto or mimMiner, especially for the numbers of
top-ranking genes.

Furthermore, the comparison of the mimMiner and Tanimoto with their combination was
analyzed and listed in Table 7. For the monogenic diseases, there were 736 genes among all 913
genes that were not identified by mimMiner and the combination. The mimMiner successfully
ranked 133 genes at the top of candidate list, including 116 genes that were also identified by
the combination and 17 genes were only identified by mimMiner. When the combination was
used, 44 top-ranking genes were identified only by the combination and 160 genes were totally
ranked at the top. For the polygenic diseases, 7 genes were identified only by mimMiner, and
21 genes were identified only by the combination. As a result, the ratios of the gene numbers
between the combination and mimMiner are 44/17 and 21/7, respectively. Similarly, as listed
in Table 8, the ratios of the gene numbers between the combination and Tanimoto are 51/25
and 20/7, respectively. A common conclusion can be drawn: for monogenic diseases, the

Table 6. LOOCYV results for 165 polygenic disease, based on the combination of Tanimoto and mimMiner in different proportions.

Proportion of Tanimoto® |BestC value® |MRR,% |Top-ranking genes® |TPRinthetop5,% |TPRinthetop10,% |TPRinthetop 30,%
0.3 -17 7.78 93 45.20 54.80 66.74
0.4 -17 7.76 94 44.50 54.80 66.28
0.5 -16 7.75 96 43.09 51.99 64.87
0.6 -16 7.75 94 42.62 51.99 64.40
0.7 -16 7.75 93 41.22 51.05 65.34

MRR, mean rank ratio; TPR, true positive rate

& proportion of mimMiner = 1.0—proportion of Tanimoto.

® the best C value will be obtained when maximum number of top-ranking genes is reached.

¢ it signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 427 target genes in LOOCYV for polygenic diseases.

doi:10.1371/journal.pone.0159457.1006
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Fig 3. Comparison of the LOOCYV best results for 165 polygenic diseases, based on Tanimoto,
mimMiner and their combination. The prioritization performance of Tanimoto, mimMiner and their
combination is compared based on the evaluation criteria including mean rank ratio (MRR), number of the
top-ranking genes, and True Positive Rate (TPR) in the top 5, 10 and 30 ranked genes. Totally, there were
427 disease-gene pairs in the 165 polygenic diseases. For the number of top-ranking genes shown in this

figure, its percentage in 427 genes (i.e. TPR in the top 1) was calculated.

doi:10.1371/journal.pone.0159457.g003

combination can correctly identify target genes approximately twice as well as Tanimoto or
mimMiner alone, and for polygenic diseases, the corresponding ratio is approximately three-
fold. Undoubtedly, the performance of the combination is superior to those of mimMiner or

Tanimoto alone.

Table 7. Comparison of the mimMiner with the combination of mimMiner and Tanimoto in LOOCV.

Validated by mimMiner or not (Y/ |Validated by combination or not (Y/N) | 913 genes of monogenic 427 genes of 165 polygenic
N) 2 a diseases diseases

N N 736 324

Y Y 116 75

Y N 17 7

N Y 44 21

Y, yes; N, not

@ the target gene is successfully validated if it is ranked on top of the candidate list.

doi:10.1371/journal.pone.0159457.t007

Table 8. Comparison of Tanimoto with the combination of mimMiner and Tanimoto in LOOCV.

Validated by Tanimoto or not (Y/ | Validated by combination or not (Y/N) | 913 genes of monogenic 427 genes of 165 polygenic
N) 2 a diseases diseases

N N 728 324

Y Y 109 76

Y N 25 7

N Y 51 20

Y, yes; N, not

& the target gene is successfully validated if it is ranked on top of the candidate list.

doi:10.1371/journal.pone.0159457.1008
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Parameter sensitivity

The PRINCE (Eq 9) is not sensitive to parameter o when « is above 0.5 [2]; therefore, & was set
to 0.9 in this study. However, the logistic regression function is crucial in the PRINCE algo-
rithm; especially, the parameter C has a significant effect on the performance of the prioritiza-
tion of candidate genes for a disease of interest. To comprehensively evaluate the performance,
the maximum number of top-ranking genes in LOOCYV for all 1340 disease-gene associations
was selected as the evaluation criteria. The algorithm was tested on different values of parame-
ter C, and then the best results for different DPNs were obtained. The relation between the dis-
tribution of DPNs and parameter C was studied. The total similarity of a disease with others
was defined as the sum of its corresponding row in the matrix of DPNs. The ratio of total simi-
larity of each disease in a DPN and its corresponding value in mimMiner was calculated. The
ratios were summed and then averaged over all diseases, which was defined as the relative net-
work mean. In general, the best parameter C and the relative network mean share the same
changing trend in all six DPNs (Table 9).

Furthermore, different C parameters were tested with the steps 1 and 0.1. As shown in Fig 4,
there is a slow peak value in performance on parameter C. With step 0.1, parameter C had a
slight effect on the results (S4 and S5 Tables); therefore, it is reasonable that parameter Cis
assigned an integer value in practice. Additionally, it should be noted that the best parameter C
was -15 in a previous report [2]. In fact, in contrast to the number 215 in Table 9, the total
number of top-ranking genes was 213 when C was -15; thus, the difference was not very
significant.

Case studies

To evaluate the precision of different DPN's on real case studies, Tanimoto, mimMiner and
their combination were used to predict the newly discovered genes in the OMIM database. In
the experiment, the parameters were set to those that yielded better results. For the combined
networks, the ratio of both Tanimoto and mimMiner was 0.5. Tanimoto, mimMiner and the
combination were all symmetric networks that were processed with the logistic regression
function with parameter C assigned -17, -14 and -17, respectively. The experiment included
the prediction of new disease-gene associations with and without seed genes. In each case, the
similarity scores of the query disease q with the others were obtained from mimMiner, Tono-
moto or the combination. The prior knowledge Y (i.e., the possible relationship between g and
each gene) was calculated based on the similarity scores and the disease-gene network. Using
Eq 9, the prioritized genes of g were listed in F upon termination of the algorithm. The genes
only in top 30 were considered.

For the gene predictions without seed genes, OMIM 102200 (pituitary adenoma, growth
hormone-secreting, 1; PAGH1) was randomly selected from the diseases whose genes have all

Table 9. Best C values in different DPNs.

Sqrt Lin mimMiner Combination Tanimoto Maxmin
Relative Network Mean 1.3097 1.2694 1 0.8660 0.7319 0.6588
Best C value® -12 -12 -14 -17 -17 -18
top-ranking genes® 201 204 215 254 215 196

& the best C value will be obtained when maximum number of top-ranking genes is reached.
b it signifies the maximum number of target genes ranked on top of the candidate list. Totally, there are 1340 target genes in LOOCV for monogenic and
polygenic diseases.

doi:10.1371/journal.pone.0159457.1009
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Fig 4. Correlation between parameter C of the logistic function and the number of top-ranking genes. Correlation curve of parameter C of the
logistic function and the number of top-ranking genes is plotted, and the slow peak value is presented for each of the six disease phenotype
networks. The combination is an integration of mimMiner and Tanimoto in the respective proportion of 50%.

doi:10.1371/journal.pone.0159457.9004

been recently discovered. There are two genes responsible for OMIM 102200, i.e., GNAS and
AIP. The three DPNs were evaluated on how highly these genes were ranked. The results
showed that all three DPNs ranked the two genes very lowly among 8919 genes. A method was
adopted that only prioritizes all of the candidate genes contained in the linkage interval [14].
The candidate genes are the target gene and its neighborhood genes. In the experiment, 30 can-
didate genes were selected. However, some candidate genes were not included in the gene net-
work (i.e., PPI network); therefore, only some of the candidate genes could be prioritized using
the PRINCE algorithm. The results of gene prediction are presented in Table 10. As is listed in

Table 10. Comparison of ranking for 2 genes of OMIM 102200, based on mimMiner, Tanimoto and their combination.

Target gene Candidate genes in the linkage interval Candidate genes in the gene network MimMiner Tanimoto Combination
GNAS 30 15 1/152 1/15 1/15
AIP 30 26 20/26 16/26 19/26

& m/n signifies that the corresponding gene was ranked No. m in all n candidate genes.

doi:10.1371/journal.pone.0159457.t010
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Table 10, the performance of mimMiner and that of the combination were similar, but Tani-
moto exhibited the best performance because it yielded the highest ranks for the two new
genes.

For the gene prediction with seed genes, breast cancer (OMIM 114480) was studied. In the
dataset of disease-gene associations used in this paper, breast cancer was related to 5 genes, i.e.,
BRCAI, RAD51, BRCA2, NBN and PIK3CA. However, the new dataset, which was downloaded
from ftp://ftp.ncbi.nih.gov/gene/DATA/ on Jan. 19, 2015, showed that there were 24 genes in
total responsible for breast cancer. Nevertheless, the NBN is no longer included; thus, there
were 20 new genes. Furthermore, among these 20 genes, SLC22A 18 and PALB2 were absent in
the gene network used. As a result, in the prediction experiment, 4 genes of breast cancer were
used as seed genes to predict the 18 newly discovered genes. All 8919 genes were prioritized
using the PRINCE algorithm, and the genes in the top 30 are only worth testing further in the
lab because of financial and time constraints. In other word, if any one of these 18 genes is
ranked in top 30, it will be considered as a successfully predicted gene. For comparison, the
best C (-14 for mimMiner, -18 for Tanimoto and -16 for the combination) obtained in
LOOCY for polygenic diseases was also tested on each DPN. All three DPNs could rank 4 seed
genes in the top 4 and 3 newly discovered genes ATM, TP53 and RAD54L in the top 30 (S6
Table), but the combination always gave the lowest MRR of these three genes. The best result
for each network was listed in Table 11. After the seed genes were removed from the list of pri-
oritized genes, the MRR of the three genes for mimMiner, Tanimoto and the combination was

Table 11. Comparison of ranking for 22 breast cancer genes, based on mimMiner, Tanimoto and their combination.

No. Gene mimMiner® Tanimoto °© Combination °©
1 RAD512 1 1 1

2 BRCA2? 2 2 2

3 BRCAT1?2 3 3 3

4 PIK3CA? 4 4 4

5 TP53° 13 5 5

6 RAD54L" 9 13 10

7 ATMP 15 22 17

8 BRIP1 47 63 38

9 CHEK2 66 41 62
10 ESR1 72 73 70

11 AKT1 96 109 102
12 BARD1 128 64 108
13 XRCC3 199 271 205
14 CASPS8 315 344 318
15 PHB 650 417 479
16 TSG101 657 476 511
17 KRAS 635 726 629
18 CDH1 688 701 674
19 HMMR 3661 3362 3337
20 PPM1D 5644 4328 4920
21 RB1CC1 5889 5619 5697
22 NQO2 6492 6168 6151

@ as seed genes.

® three successfully predicted genes.

°the C = -14 for mimMiner, -17 for Tanimoto and -16 for Combination.

doi:10.1371/journal.pone.0159457.t011
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8.3,9.3 and 6.7, respectively. Relatively, the combination reports a better result than the mim-
Miner or Tanimoto alone. As a whole, the performances of the three DPNs were similar in this
experiment.

Conclusions

The purpose of this paper was to evaluate the DPNs and their application to gene prioritization.
A comparative analysis of two classical DPNs, mimMiner and resnikHPO, was performed. The
LOOCYV was carried out to compare these two networks. Several conclusions can be made
from the experimental results. The shared 4366 diseases, as a majority in the two DPNS, are
analyzed and summarized in this study. Though the entire networks have not been evaluated
because of incomplete data, the main research conclusions may be easily extended to the
respective entire network.

First, the normalization of diseases phenotype similarity is often necessary when diseases
are compared with each other, but different methods can lead to different results of gene priori-
tization. For the resnikHPO, all 12 normalization forms without logistic regression vary greatly
on performance. For example, in Table 1 the TPR in the top 5 spans from 0.44% to 9.97%, and
the difference is nearly 20-fold. The -C form of each asymmetric network (or matrix) yielded
better results than the corresponding -R form and symmetric form. Among the 12 forms of
resnikHPO, the performance of Tanimoto-C was the best in terms of the evaluation criteria.
Tanimoto-C also performed better than mimMiner. For example, the ratio of the number of
top-ranking genes is 20:1.

Second, logistic regression can significantly improve the performance of resnikHPO and
mimMiner. In a sense, logistic regression suppresses the data noise in the DPN for gene priori-
tization. Under these circumstances, the symmetric form of resnikHPO has an advantage over
the asymmetric form because of information fusion and noise suppression. Among of the four
symmetric forms of resnikHPO, Tanimoto performed better than the others and performed
similarly to mimMiner. To some extent, resnikHPO and mimMiner are complementary. The
experimental results revealed that the best results were obtained when these two networks were
integrated in the respective proportion of 50%. Relative network mean is proposed to describe
the distribution of disease similarity relative to mimMiner. The optimal parameter C of logistic
regression changes with respect to relative network mean and therefore parameter C can be
roughly estimated when a new DPN is constructed.

Third, the development of a DPN based on the HPO is worthy of sustained attention,
though there are no significant differences in gene prioritization between resnikHPO and mim-
Miner, the HPO is an ontological description of human phenotypic abnormality. The HPO has
distinct advantages in the computational analysis of human phenotypes over MeSH terms and
UMLS concepts when they are used in automated text-mining approaches. A main reason for
this advantage is that the terms and structure of the HPO are manually curated according to
medical knowledge. In addition, as far as resnikHPO is considered, the HPO contains 6485
OMIM diseases and 992 diseases from ORPHANET and DECIPHER databases, which is more
than the 5080 OMIM diseases in mimMiner.

Finally, it is important to notice that gene prioritization tools failed to give high rank to
causal genes for a lot of diseases whether a single or the combined DPN is used. The lack of
necessary biomedical data, especially PPIs and disease-gene associations, may lead to low
accuracy of prioritization. Phenotypically similar diseases often are related to common
molecular mechanisms; therefore genes associated with similar diseases tend to encode
proteins that are close in PPI networks [27,28]. Newly added proteins and interactions
in PPI networks can change network topological features (i.e., betweenness centrality,
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closeness centrality, clustering coefficient and so on) and information propagation. As a
result, the genes ranked low previously may be ranked near the top. In practice, multiply
PPIs are integrated to improve the performance of prioritizing genes [29]. Computationally,
the increase of number of similar diseases, accurate of diseases similarity and number of
disease-gene associations can enhance the prior knowledge of specific disease, e.g. Y value in
Eq 9. Thus, construction and analysis of human disease network have received sustained
attention [30,31]. Unfortunately, research has shown that, by using only PPIs, essential
genes in metabolic networks or transcriptional regulatory networks are unable to be pre-
dicted [32]. Obviously, the direction for future research in gene prioritization is to integrate
different data sources and improve methodologies. The integration of various biomedical
data (e.g., sequence similarity, functional annotation, microarray expression, protein
domains, pathway membership and so on) and the combination of different methodologies
(i.e., random walk, network flow and label propagation and so on) [28] should be more pow-
erful and will lead to more accurate prediction [22]. However, in this study we aimed to esti-
mate the usefulness of two DPNs. Therefore, the widely-used random-walk based algorithm
and the PPI data were utilized for gene prioritization. Disease similarity analysis can also be
used to predict the associations of disease-microRNAs [33,34] and calculate drug reposition-
ing [35,36]; thus, the evaluation presented here and its applications have uses beyond gene
prioritization.
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