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Abstract

Background

Coats' disease is an uncommon form of retinal telangiectasis, and the identification of novel
proteins that contribute to the development of Coats' disease is useful for improving treat-
ment efficacy. Proteomic techniques have been used to study many eye diseases; how-
ever, few studies have used proteomics to study the development of Coats' disease.

Methods

Isobaric tagging for relative and absolute protein quantification (iTRAQ) was employed to
screen differentially expressed proteins (DEPs) in the aqueous humor (AH) between stage
3A patients (n = 8), stage 3B patients (n = 14), stage 4 patients (n = 2) and control patients
(n =20). Differentially co-expressed proteins (DCPs) were present in all three stages of
Coats' disease and were considered disease-specific proteins. These proteins were further
analyzed using Gene Ontology (GO) functional annotations.

Results

A total of 819 proteins were identified in the AH, 222 of which were significantly differentially
expressed (fold change > 2 and P < 0.05) in the samples from at least one stage of Coats'
disease. Of the DEPs, 46 were found among all three stages of Coats' disease and the con-
trols; therefore, they were considered Coats' disease-specific proteins (DCPs). A GO classi-
fication analysis indicated that the DCPs were closely related to structural molecule activity,
cell adhesion molecule binding and receptor binding. Western blotting confirmed the
expression levels of haptoglobin and apolipoprotein C-l were significantly up-regulated in
Coats’ disease.

Conclusions

The 46 Coats' disease-specific proteins may provide additional insights into the mechanism of
Coats' disease and represent potential biomarkers for identifying individuals with Coats' disease.
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Introduction

Coats' disease is a form of abnormal telangiectasia that is primarily characterized by aneurysms
of retinal vessels and excessive production of yellowish intraretinal and subretinal exudates.
Coats’ disease predominantly affects boys or young men [1], can cause retinal detachment and
severe visual loss, and has been classified into five stages: stage 1, stage 2, stage 3, stage 4 and
stage 5 [2]. Presently, the main therapeutic strategy for Coats' disease is direct coagulation of
the abnormal vessels using techniques such as laser photocoagulation [3, 4]. However, direct
coagulation eventually increases the subretinal exudates, which promotes secondary retinal
detachment [1] as well as complications related to exudative retinal detachment [5]. Thus, this
technique is not effective for cases with severe exudative changes [6].

In recent decades, significant efforts have been devoted to investigating the pathogenesis of
Coats' disease; however, the cause remains largely unknown. Recently, proteomics have been
widely used to obtain abundant information on individual proteins in various ocular diseases,
including cataracts and retinopathy [7-10]. In combination with mass spectrometry, isobaric
tagging for relative and absolute protein quantification (iTRAQ) has recently been demon-
strated to be a sensitive quantitative proteomic method for high-throughput protein identifica-
tion and quantification [11]. The AH is an intraocular fluid that plays an important role in
supplying nutrients and removing metabolic waste from the avascular tissues of the eye [12].
Accumulating evidence suggests that certain proteins in the AH are closely correlated with the
mechanisms underlying many eye disorders [13-15]. Studies have shown that vascular endo-
thelial growth factor (VEGF), an important intraocular cytokine, is significantly up-regulated
in AH samples from patients with increasingly severe Coats' disease [16-18]. In addition, the
levels of nitric oxide in the AH of patients with Coats' disease are elevated, indicating proteins
involve in nitric oxide metabolism may affect Coats’ disease development [19]. These proteins,
which include antioxidant and immunoregulatory proteins, are essential for regulating homeo-
stasis and may play a crucial role in the pathogenesis of Coats' disease [20].

In this study, we used iTRAQ to conduct comparative proteome profiling of the AH sam-
ples between patients with three different stages of Coats’ disease and control patients to iden-
tify disease-specific proteins in the AH. Our findings identified potential AH biomarkers that
could be used to predict the development of Coats' disease. In addition, our findings may con-
tribute to a better understanding of the molecular events involved in the pathogenesis of Coats'
disease.

Materials and Methods
Ethics statement

All patients provided written informed consent prior to participation, and the clinical study
was approved by the Medical Ethics Committee of Capital Medical University.

Patient eligibility and recruitment

A total of 44 participants that included 20 controls (CK, senile cataract patients) and 24
patients with Coats' disease were recruited through the medical ethics committee of Capital
Medical University in Beijing, China from 2014 to 2015. The participants provided written
consent for the donation and use of their aqueous humor samples. All subjects met the inclu-
sion criteria, which included the absence of ocular disease other than Coats' disease and a lack
of systemic antimetabolite or immunosuppressant usage. Samples from patients with Coats'
disease were classified as stage 3A (n = 8), 3B (n = 14) and 4 (n = 2) according to previously
reported classification standards [1]. Unfortunately, no stage 5 patient was found during the
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Table 1. Summary of the human AH samples from the patients with Coats' disease and the controls without Coats' disease.

Group/Stage
control
3A
3B
4

doi:10.1371/journal.pone.0158611.t001

Specimen Average age (year) Gender (F: female, M: male)
20 68.15+10.27 9F, 11 M
8 7.38+3.11 1F,7M
14 6.93+3.17 1F,13M
2 11.5+2.12 2M

sample collection procedure of our investigation. Relative information on the participants,
including their gender and age, are listed in Table 1.

AH collection and processing

The AH samples were obtained from 44 patients using a 26-gauge needle inserted into the
anterior chamber of the eye according to previously reported methods [7]. Immediately after
collection, the aqueous humor was transferred to dust-free Eppendorf tubes containing a prote-
ase inhibitor cocktail. The samples were then centrifuged at 1500 x g for 15 min at 4°C. The
supernatant was collected and centrifuged again at 15000 x g for 15 min at 4°C to extract pro-
teins and then stored at —80°C for further analysis.

Proteomic profiling using iTRAQ labeling and LC-MS/MS

ITRAQ labeling was conducted according to previously reported methods [21]. Briefly, the
protein samples from each group were harvested using cold acetone, digested with trypsin
overnight at 37°C, and then subjected to iTRAQ labeling. The proteins extracted from the
aqueous humor samples were divided into two duplicates and labeled as 113-114 (control),
115-116 (stage 3A), 117-118 (stage 3B) and 119-121 (stage 4) using an iTRAQ Reagent 8-Plex
kit (Shanghai AB Sciex Analytical Instrument Trading Co., Shanghai, China) and then vacuum
dried. A summary of the workflow performed in the current study is illustrated in Fig 1.

Subsequently, the labeled peptides were separated using strong cation exchange (SCX) chro-
matography and collected in ten SCX fractions. Each SCX fraction was analyzed on a Triple
TOF 5600 system (AB Sciex) in duplicate and expressed as run 1 and run 2. The mass spectra
of each iTRAQ labeled sample were obtained in an information-dependent acquisition mode.
The mass range was set as 100-2000 m/z for the product ion spectra, and the reporting iTRAQ
tags (113 and 114 m/z) were enhanced for quantitation. The ratio of the iTRAQ reporter ion
intensities were used to measure the relative amount of the peptides and proteins in each sam-
ple according to previously published methods [22, 23]. Database searches were conducted
using ProteinPilot Software version 4.5.

Proteins that presented a fold change greater than 2.0 and a p-value less than 0.05 between
the patients and CK were considered differentially expressed proteins (DEPs). Hierarchical
clustering of the selected probe sets was performed using a Pearson’s correlation analysis for
the distance matrix and the Ward's linkage.

Bioinformatics analysis of identified proteins

The DEPs were annotated using the GO database (http://www.geneontology.org/), and the
protein classification was performed based on functional annotations using Gene Ontology
(GO) terms for cellular components, biological processes and molecular functions. In addition,
46 identified differentially co-expressed proteins (DCPs) were assigned a gene symbol

(Table 2) using the Panther database (http://www.pantherdb.org/). We analyzed the DCPs
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Fig 1. Schematic representation of the workflow of the iTRAQ experiment.

doi:10.1371/journal.pone.0158611.9001

between the patients and CK and calculated a significance value for the GO categories using a
cut-off criterion (p < 0.05).

Western blotting

Western blot analyses were performed on AH samples to validate the results obtained by
iTRAQ for some of the proteins that showed significant differences. In brief, equal amounts of
sample (20 pg) were loaded on a 10% sodium dodecyl sulfate polyacrylamide gel. The proteins
were then transferred into a polyvinylidene fluoride (PVDF) membrane (Bio-Rad, California,
USA). After blocking with 2% bovine serum albumin, the membranes were probed with mono-
clonal antibodies of haptoglobin (sn: ab13429) and apolipoprotein C-I (sn: ab198288) (Abcam,
Cambridge, MA, USA) followed by secondary antibody. The signal was then detected by
enhanced chemiluminescence using LAS4000 system (GE, Fairfield, Connecticut, USA).
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Table 2. DEPs between the patients with stage 3A, 3B and 4 Coats’ disease and the controls (p < 0.05).

3Avs.CK 3B vs. CK 4vs.CK DCPs
93 125 146 46

doi:10.1371/journal.pone.0158611.t002

Results

Image acquisition and description of retinal morphology in Coat' disease

After full dilation of the pupils, retinal photographs were obtained from patients with different
stages of Coats' disease and the control participants using a Zeiss FF450+ fundus camera
(Zeiss, Germany; and Imedos Systems, Germany). As shown in Fig 2, the control group did not
present abnormal vascular changes. However, the fundus examination revealed that stage 3A
patients presented with subtotal exudative serous retinal detachment and stage 3B patients pre-
sented with total yellow exudative retinal detachment. Compared with stage 3A, additional
subretinal fluid and hyperpigmentation were observed in stage 3B. Retinal detachment accom-
panied by a large number of abnormal expansions of retinal blood vessels and retinal surface
bleeding were observed in stage 4 patients (Fig 2).

Proteomic analysis to detect differentially expressed proteins in the
aqueous humor

To investigate the mechanisms leading to the development of Coats' disease, a high-throughput
quantitative proteomics analysis using iTRAQ labeling was performed to profile the aqueous

humor from the patients presenting with three stages of Coats' disease and the control patients.
The results of the iTRAQ analysis revealed that the protein profiles of the three stages of Coats'

control

Fig 2. Representative fundus views of the different stages of Coats' disease, including stage 3A,
stage 3B, and stage 4, and the controls.

doi:10.1371/journal.pone.0158611.9002
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doi:10.1371/journal.pone.0158611.9003

disease were significantly different. Of the total 819 identified proteins, 222 were significantly
differentially expressed between the Coats' disease patients and the controls (S1 and S2 Tables).
The hierarchical clustering heat map of the 222 DEPs is shown in Fig 3.

Proteomic alterations in the aqueous humor of Coats' disease patients

We then identified the proteomic differences between the patients with stage 3A, 3B and 4 of
Coats' disease and the CK group. As shown in Table 2, 93 proteins were differently expressed
between the stage 3A patients and the CK group. Similarly, we found 125 and 146 DEPs
between the stage 3B patients and stage 4 patients and the CK group, respectively. Moreover, a
Venn diagram was used to analyze the DCPs between the three stages of Coats' disease and the
CK group (Fig 4). The results showed that 46 proteins were common between each stage of
Coats' disease and the controls. Among those, 17 proteins were up-regulated and 29 proteins
were down-regulated in the patients with Coats' disease (Fig 4 and Table 3).

Functional analysis of the identified Coats' disease-related proteins

To investigate the functional significance of the DEPs identified in the patients with Coats' dis-
ease, 222 DEPs were functionally divided into three groups (cellular components, molecular
functions and biological processes) according to the GO annotation analysis (Fig 5). Further
analysis (Table 4) revealed that a total of 46 DCPs with a p-value of less than 0.05 were
enriched for 6 GO terms. Crystalline lens related proteins, including fB1-crystallin (CRYBB1),
BB1-crystallin (CRYBB2), yS-Crystallin (CRYGS) and yD-Crystallin (CRYGD), were found to
play a role in structural molecule activity (p = 1.56E-06); myocilin (MYOC) was found to play
an important role in protein binding (p = 0.00089) and receptor binding (p = 0.00081);
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3A 3B

4

Fig 4. Venn diagram indicating the differentially co-expressed proteins (DCPs) from the patients with the three stages of Coats' disease. The
numbers in parentheses indicate the total number of DCPs in stage 3A, stage 3B and stage 4, which are represented by purple, yellow and green,
respectively.

doi:10.1371/journal.pone.0158611.g004
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Table 3. Forty-six DCPs, including 29 down-regulated proteins (log FC < -1) and 17 up-regulated proteins (log FC > 1).

Gene symbol Protein Name Log FC*
FGB Fibrinogen beta chain 4.08
CFH Complement factor H 3.14
FN1 Isoform 10 of Fibronectin 3.23
ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 3.31
FGG Isoform Gamma-A of Fibrinogen gamma chain 4.27
HP Haptoglobin 4.28
IGHA1 Ig alpha-1 chain C region 3.17
AFM Afamin 3.15
IGHM Isoform 2 of Ig mu chain C region 3.65
LUM Lumican 2.26
SERPINA7 Thyroxine-binding globulin 1.67
VTN Vitronectin 2.77
ITIH1 Inter-alpha-trypsin inhibitor heavy chain H1 1.65
APOCT1 Apolipoprotein C-I 3.96
SAA4 Serum amyloid A-4 protein 1.41
F12 Coagulation factor XII 1.54
S100A6 Protein S100-A6 1.51
RBP3 Retinol-binding protein 3 -4.06
TTR Transthyretin -1.58
CTSD Cathepsin D -3.14
CST3 Cystatin-C -2.12
MYOC Myocilin -3.47
GPX3 Glutathione peroxidase 3 -2.64
CRYBB1 Beta-crystallin B1 -4.14
SEMA7A Semaphorin-7A -3.06
CPE Carboxypeptidase E -2.77
C1S Complement C1s subcomponent -1.64
ENPP2 Isoform 3 of Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 -1.89
CRYBB2 Beta-crystallin B2 -3.91
CLSTN1 Isoform 2 of Calsyntenin-1 -2.06
CRYGS Beta-crystallin S -5.42
SOD3 Extracellular superoxide dismutase [Cu-Zn] -2.94
B3GNT1 N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase -1.77
FAM3C Protein FAM3C -3.18
CDH2 Cadherin-2 -2.47
CRYGD Gamma-crystallin D -3.64
WIF1 Wnt inhibitory factor 1 -2.37
COL9A1 Collagen alpha-1(IX) chain -2.42
IGFBP6 Insulin-like growth factor-binding protein 6 -1.37
CRYBA1 Beta-crystallin A3 -4.23
MFAP4 Isoform 2 of Microfibril-associated glycoprotein 4 -2.00
SEMA4B Semaphorin-4B -2.14
ASAH1 Isoform 2 of Acid ceramidase -2.61
CTSA Lysosomal protective protein -1.77
ALDH1A1 Retinal dehydrogenase 1 -1.89
IMPG1 Interphotoreceptor matrix proteoglycan 1 -3.32

* log FC, log, of the average protein level fold change (FC) in the samples from stage 3A, stage 3B and stage 4 Coats’ disease patients.

doi:10.1371/journal.pone.0158611.t003
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Fig 5. GO annotation and functional classification of the differentially expressed aqueous humor proteins using
GO terms for cellular components, molecular functions and biological processes.

doi:10.1371/journal.pone.0158611.g005

apolipoprotein C-1 (APOC1) was found to be essential for enzyme regulator activity
(p =0.0009); and B-fibrinogen (FGB) was found to be closely associated with most GO terms.

Western blot

Because of difficulty in acquiring antibodies as well as the limited volume of AH samples,
Western blotting was performed for only two of the DCPs, haptoglobin (HPT) and apolipopro-
tein C-I (APOCI1). The results were shonw in Fig 6 and confirmed the up-regulation of these
two proteins in Coats’ disease, indicating the potential value of DCPs we identified for further

validation and investigation.

Discussion

Coats' disease most commonly affects young boys who are often too young to report their
symptoms [24]. In our study, 36 patients diagnosed with Coats' disease were classified based
on three stages of the disease: stage 3A, stage 3B and stage 4. Most of the patients were between
10 and 15 years of age, which suggests that Coats' disease predominantly affects young males.
To identify novel proteins associated with the pathogenesis of Coats' disease, we compared the

Table 4. GO term classification of the DCPs between the patients and CK with p-values < 0.01.

Term Biological Process description Protein p-value Genes
number
G0:0005196 | structural molecule activity 10 1.56E-06 | COL9A1/CRYBA1/CRYBB1/CRYBB2/CRYGD/CRYGS/FGB/
FGG/IMPG1/LUM
G0:0050839 | Cell adhesion molecule binding 6 2.67E-06 | CPE/FGB/FGG/FN1/VTN/SEMA7A
G0:0005102 | Receptor binding 10 0.0008104 | FAM3C/FGB/FGG/FN1/IGHA1/IGHM/MYOC/TTR/VTN/SEMA7A
GO0:0030234 | Enzyme regulator activity 8 0.0009351 | CST3/ALDH1A1/FN1/APOC1/ITIH1/ITIH4/CTSA/SERPINA7
GO:0070011 | Peptidase activity, acting on L-amino acid | 6 0.0024658 | CPE/CTSD/F12/CTSA/RBP3/C1S
peptides
G0:0008233 | Peptidase activity 6 0.0028979 | CPE/CTSD/F12/CTSA/RBP3/C1S

doi:10.1371/journal.pone.0158611.t004

9/13
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Fig 6. Western blotting analyses of 2 DCPs confirmed that the proteins accumulated in three groups
of patients.

doi:10.1371/journal.pone.0158611.9006

AH proteins between patients with different stages of Coats' disease and control participants. A
heat map analysis showed that the protein profiles from the patients with the three stages of
Coats' disease were different from those of the controls, which indicated that the protein con-
tent in the AH changes during the development of Coats' disease. Furthermore, we screened 46
DCPs identified between the groups of patients with the three stages of Coats' disease and the
controls and found 17 up-regulated proteins and 29 down-regulated proteins in the disease
groups compared with the controls. The GO functional enrichment analysis indicated that
most of the DCPs were closely correlated with structural molecule activity and molecular
functions.

Of the identified DCPs, several crystalline-related proteins, including CRYBB1, CRYBB2,
CRYGS and CRYGD, were down-regulated in the AH from patients with Coats' disease. Previ-
ous studies have shown that crystalline genes are closely related to lens opacity and microcor-
nea [25]. CRYBBI accounts for 9% of the total soluble crystalline in the human lens [26, 27]
and is a critical protein in the formation of acidic B-crystallin heteromers in the lens. The for-
mation of heteromers is considered important for the maintenance of lens transparency [28].
CRYGS is also important for maintaining lens transparency, and a dysregulation of CRYGS is
associated with lamellar cataracts [29, 30]. Therefore, our results suggest that the down-regula-
tion of crystalline-related proteins may play a crucial role in the occurrence of Coats' disease.
To the best of our knowledge, vitamin A has diverse biological functions that include sensing
light for vision, and the aldehyde form of vitamin A functions as the chromophore for visual
pigments in the eye [31, 32]. Plasma RBP is a component of the outer segments of photorecep-
tors and can mediate cellular vitamin A uptake [33, 34] and prevent the potentially cytotoxic
effects of retinoids. In addition, the presence of sufficient quantities of functional RBP3 is criti-
cal for photoreceptor survival [35]. The trabecular meshwork (TM) represents the anatomic
location with the highest resistance to AH outflow [36]. MYOGC, a secreted protein found in
human TM, is considered a key regulatory node that governs extracellular matrix turnover
homeostasis in the TM [37]. The down-regulation of MYOC promotes AH outflow, which ele-
vates intraocular pressure [38] and may induce the occurrence of Coat's disease. We found that
crystalline-related proteins, vitamin A-related proteins and TM skeleton proteins were down-
regulated in the AH samples from patients with Coats' disease.

Interestingly, several genes, including APOC1 and FGB, were up-regulated in the AH sam-
ples of the patients with Coats' disease (Fig 6). Further analyses indicated that APOCI is a com-
ponent of multiple lipoproteins and regulates lipid metabolism and transport [39]. The
overexpression of human APOCI has been demonstrated to produce hyperlipidemia and
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increase serum lipid levels [40, 41]. Furthermore, APOCI1 is closely associated with vascular
inflammation and retinitis pigmentosa [42], and reports have indicated that FGB is closely
related to elevated plasma fibrinogen levels and ischemic stroke [43, 44].

In summary, our findings revealed that the proteomic composition of AH significantly dif-
tered between individuals with Coats' disease and the controls and the proteins identified in
this study could serve as potential biomarkers for Coats' disease. In addition, we suggest that
the DCPs identified in the patients with Coats' disease contribute to the pathologic changes
and complications of Coats' disease. However, further investigations are necessary to explore
the exact mechanism by which these DCPs underlie the occurrence of Coats' disease.

Supporting Information

S1 Table. Detailed information of the 819 identified proteins (ProteinPilot score > 1.3).
(XLSX)

$2 Table. Quantitative and descriptive data for the 222 significantly differentially expressed
proteins between the Coats' disease samples and control samples.
(XLSX)
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