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Abstract

Here, our interest is in predicting solubility in general, and we focus particularly on predicting 

how the solubility of particular solutes is modulated by the solvent environment. Solubility in 

general is extremely important, both for theoretical reasons – it provides an important probe of the 

balance between solute-solute and solute-solvent interactions – and for more practical reasons, 

such as how to control the solubility of a given solute via modulation of its environment, as in 

process chemistry and separations. Here, we study how the change of solvent affects the solubility 

of a given compound. That is, we calculate relative solubilities. We use MD simulations to 

calculate relative solubility and compare our calculated values with experiment as well as with 

results from several other methods, SMD and UNIFAC, the latter of which is commonly used in 

chemical engineering design. We find that straightforward solubility calculations based on 

molecular simulations using a general small-molecule force field outperform SMD and UNIFAC 

both in terms of accuracy and coverage of the relevant chemical space.

 1 Introduction

Solubility is a fundamental property in industry, and is of particular interest in purification 

and separations. Thus, a good deal of research effort has been invested towards predicting 

solubility. However, in a recent blind test of current methods1 on aqueous solubilities, 

predictions did not perform nearly as well as retrospective tests, suggesting substantial 

challenges remain. In part, there may be large issues with the transferability of these models, 

which are often fairly highly parameterized based on existing data. Challenges may be even 
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worse when moving away from aqueous solubilities – for which substantial data is available 

for parameterization – to other solvents.

Several classes of methods have been employed in this area. One main category of methods 

is empirical methods based on molecular descriptions, like the Group Contribution (GC) 

method. In this category, one commonly employed method is UNIFAC2–6 which uses a 

compound library to analyze the contribution of each functional group to the solute activity 

coefficient. When used with limited experimental data for the pure solid solute, the 

equilibrium solubility may be computed in a wide range of solvents. This approach is fast, 

and can produce acceptable results in many cases. However, a major potential drawback of 

this class of methods is that GC methods require a good deal of experimental data to 

calculate the contributions of each functional group. If a functional group does not exist in 

the experimental library, then solubility predictions for compounds with this functional 

group cannot be expected to be accurate.

A second category includes statistical methods like multiple linear regression (MLR) or 

Neural Network (NN) methods.7 These methods use statistical or machine-learning tools to 

analyze existing data, build a model, polish the parameters of the model, test the model and 

then use the created model to predict solubility. Some of these methods have good 

results,8–10 with RMS errors (RMSE) around 1.0 log unit and correlation coefficients (R2) 

around 0.8. However, these models require a large amount of high quality input data for 

training, which can pose challenges. For example, high quality experimental data can be 

very difficult to obtain. Additionally, the physical interpretation of each model can be 

problematic. Specifically, the parameters in these models may not have simple physical 

interpretations, meaning that it can be difficult to understand why a particular prediction is 

made, or what ought to be done to change solubility in the desired direction. Overall, both 

major classes of method frequently suffer from problems of transferability, as illustrated by 

recent blind tests.11 This is likely because these methods are highly dependent on the size 

and quality of the training set, and because of the degree of human input required in building 

the models.

There have been relatively few simulation-based efforts to calculate solubilities or relative 

solubilities from physical principles rather than the empirical training used in the studies 

above.12–14 Here, we will call calculations based on physical principles “direct” solubility 

calculations, and in our view direct calculations are those which do not require training on 

solubility data 1, and do not require human interpretation of or adjustment of the model. 

Rather, direct calculations typically involve calculation of the underlying thermodynamic 

contributions to solubility (the chemical potentials of the solute in solid versus in solution) 

or approximations thereof. So here, we focus on using simulations to calculate solubilities, 

and in particular, relative solubilities.

1Direct calculations do not require training on solubility data, and are often based on a physical force field. However, force fields can 
be fitted to a wide variety of data. While we are not aware of a current force field which has been fitted to reproduce solubility data, 
some current-generation force fields have been fitted to reproduce solvation free energies,15–18 though that is not the case for the 
General AMBER force field (GAFF) used here (though a reparameterization of GAFF that would include fitting to these has been 
proposed19).
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We focus on relative solubility calculations because absolute calculations are still quite 

challenging. It is still difficult to compute the residual chemical potential of the solid20–22 or 

related properties as needed for equilibrium solubility calculations.23 Focusing on 

calculating the relative solubility of a solute in different solvents allows us to focus on 

solution-phase thermodynamics of the solute and how these are affected by the solvent. In 

other words, we can still directly calculate relative solubilities of the same solute in different 

solvents even without information about the chemical potential or free energy of the solid. 

Details of our approach can be found below in Methods. Here, we compute solubilities for 

eight solutes in 34 different solvents, for a total of 53 different solute-solvent pairs. Data for 

our test comes from the Open Notebook Challenge.24 For each of these solute-solvent pairs, 

we compute the solvation free energy and other properties, allowing us to calculate the 

relative solubility for comparison with experiment.

We also compare our methods with two other commonly used methods, UNIFAC2–6 and 

SMD,25–27 and find that our calculations are more accurate than those from the stated 

methods on the present set, and also cover more of the compounds in our set.

While this study is the first we are aware of which applies a physical approach based on 

alchemical free energy calculations to calculate relative solubilities, there have been related 

studies on the solvation of small molecules in non-aqueous solvents;15,17,28–31 it is 

calculations of solvation free energies that provide the foundation for our approach here. 

Following in the footsteps of earlier work,29 one notable recent study31 reported calculations 

of the solvation free energy for different solutes in a variety of organic solvents. 

Experimental solvation free energy data was obtained from the databases of Katritzky et 
al.,32,33 which appears to draw both on direct measurements of solvation and on vapor 

pressure measurements2

 2 Methods

 2.1 Theory

To calculate the solubility of a single solute in a particular solvent directly, we need to know 

two pieces of information: the solvation free energy, and the fugacity of pure solid solute. 

Given these, the solubility can be calculated as was done in ref.:38

(1)

2The work of Katritzky et al. refers to “solubility”, as in Ostwald solubility (the relative concentration of a compound in gas versus 
solution) when discussing the solvation of molecules, which can create some confusion. But solvation free energies are particularly 
difficult to measure (some of the complexities are addressed by the work of Guthrie and collaborators on preparing the Statistical 
Assessment of Modeling of Proteins and Ligands (SAMPL) series of challenges34–37), and require a great deal of care in curating the 
experimental data, as Guthrie’s work indicates. Thus, solvation free energies are only available for a relatively small number (a few 
thousand36) of compounds, and new measurements require great care. Solvation free energies are perhaps one of the few physical 
properties where too much dynamic range poses a problem – if the solvation free energy is too favorable or too unfavorable, the 
concentration in the vapor phase or in solution will be extremely difficult to measure. As a result of these factors and others, few 
solvation free energies are available for drug-like or polyfunctional compounds35 which are often of interest to simulators, making it 
difficult to test our force fields on these compounds. In contrast, solubility is a property of considerable interest in drug discovery and 
other areas, and is routinely measured for large numbers of compounds. Thus experimental solubility data is comparatively abundant, 
making the calculation of solubilities – even relative solubilities – particularly important.
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where  is the equilibrium solubility of the solute in units of mole fraction,  is the 

dimensionless residual chemical potential of the solute (denoted by the subscript 1) in 

solvent α, ν is the molar volume of the mixture (solute 1 in solvent α), and  is the fugacity 

of pure solid solute.

In concentration units (molar), this can be rewritten as:

(2)

where  is the molar concentration (at the equilibrium solubility) of solute 1 in solvent α.

From equation 2, since  is a solute dependent constant and RT is constant, we can 

compute the relative solubility of the solute 1 in solvent α relative to solvent ζ as

(3)

where here να and νζ correspond to the molar volume of the binary mixture of the solute in 

solvent α and ζ, respectively.

If we assume that the solute is at infinite dilution, then solute-solute interactions can be 

ignored, so that the molar volume is independent of the solute concentration or mole 

fraction. In this case:

(4)

where the residual chemical potential is at infinite dilution (superscript ∞).

In this case, the residual chemical potential is equal to the Gibbs free energy of solvation of 

a single solute molecule:

(5)

So equation 4 allows us to estimate relative solubilities (on the left hand side) from solvation 

free energies readily obtained from molecular simulations (right hand side) at infinite 

dilution. Equation 4 is a relative formula, comparing the solubility of the same solute in 

different solvents. Thus, we can compute solvation free energies for a single solute in 

different solvents and calculate relative solubilities in different solvents for direct 

comparison with experiment. This approach can be used even in the absence of knowledge 

of the crystal structure of the solid, which can be difficult to calculate,20–22 and its fugacity 
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(ln  (T, p) in equation 1), which can be even more difficult to calculate. The main 

assumption inherent in this approach is that the solubility is low enough that the solute can 

be treated as infinitely dilute. If this were not the case, then solute-solute interactions would 

need to be considered by calculating the residual chemical potentials in equation 3 would 

need to be calculated as a function of concentration, which is potentially feasible, but more 

computationally demanding.

 2.2 Dataset selection

To compare calculated solubilities, we drew on the Open Notebook Science Solubility 

Challenge24 which provides 9700 experimental solubility datasets, where in their 

terminology, a “dataset” consists of a set of experimental data resulting in a solubility 

measurement. We wanted a test set consisting of around 50 solubility measurements, so we 

filtered these 9700 measurements to select a sub-set based on four rules. First, we focused 

on relatively small solutes by picking cases where the number of solute heavy atoms was 

less than 15. Second, we focused on molecules only containing carbon, hydrogen, nitrogen, 

and oxygen. Third, we focused on molecules with a formal charge of zero. And fourth, we 

limited the number of rotatable bonds to three or less. While none of these rules represent 

fundamental limits of the methods we employ here, they do allow us to focus on a subset of 

available data, and specifically on cases where we expect conformational sampling to be 

relatively straightforward39 and force field issues to be fairly well understood. Additionally, 

challenges relating to the calculation of solvation free energies of charged species40,41 are 

avoided. We also required an experimental solubility under 0.1 mole fraction to meet our 

infinite dilution assumption as given in equation 4. This still left us with more solute-solvent 

pairs than needed, so we manually selected the final set, ensuring that each solute appears at 

least twice (to be able to calculate the relative solubility); that a wide range of topologies are 

considered (including chains, simple rings (both aromatic and non-aromatic), and polycyclic 

rings). We also deliberately avoided most carboxylic acids, as these could undergo a change 

of protonation state on transfer between different solvents, though we included two such 

molecules as a test. Our final set consists of 53 solute-solvent pairs, as detailed in Table 1. 

2D structures are shown in Figure 1.

 2.3 Simulation

Our approach here is to use alchemical free energy calculations based on molecular 

dynamics simulations42,43 to compute solvation free energies for solutes in solution.

After construction of our test set, we generate input files for free energy calculations for all 

solute-solvent pairs in the set. For each solute or solvent, we take the SMILES string and 

generate 3D structures using OpenEye OEChem Python toolkit and Omega,44 then assign 

AM1-BCC45,46 partial charges. Antechamber47 from AmberTools 13 was used to assign 

GAFF48 atom types and then AmberTools’ tleap was used to generate assign GAFF 

parameters48 and write AMBER .prmtop and .crd files. The resulting files were converted to 

GROMACS format using acpype.49 The individual solute and solvent GROMACS input 

files were stored, and packmol50 was used to create solvated boxes consisting of one solute 

surrounded by many different solvent molecules. The simulation boxes were cubic, with at 

least 1.2 nm from the solute to the nearest box edge.
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AMBER combination rules (arithmetic average for σ and geometric for ε) were used. 

Simulations were run using Langevin dynamics, as previously,51–54 and the timestep was 1 

fs. Lennard-Jones interactions were switched off between 0.9 and 1.0 nm, and an analytical 

correction was applied to the energy and pressure. PME was used for electrostatics, as 

previously. The real-space cutoff was 1.2 nm. LINCS constrained bonds to hydrogen.

We use λ as a parameter to control the transformation between end states, as is typical in 

alchemical calculations. λ ranges between 0 and 1, where 0 represents the unmodified 

system and 1 represents the end-state of the transformation. In this version of GROMACS, 

we use two separate λ values, one (λchg) which controls the solute-environment electrostatic 

interactions, and another (λLJ) which controls the Lennard-Jones interactions between the 

solute and its environment. We used λchg = [0.0, 0.25, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] and λLJ = [0.0, 0.00, 0.0, 0.00, 0.0, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]. In this case, Coulombic 

interactions were turned off first, followed by the LJ interactions.

While in general we used the standard GAFF force field, we also ran a separate set of 

calculations to test the new GAFF-DC hydroxyl parameters,55 a modification of the original 

GAFF parameter set, specifically, modification of the Lennard-Jones parameters and a 

rescaling of some of the AM1-BCC partial charges. This involved repeating our calculations 

for all hydroxyl-containing solute/solvent combinations.

For each λ value we first ran constant-pressure equilibration and the box sizes were adjusted 

at the end of equilibration (via an affine transformation) to set the box size to the correct 

average volume from equilibration. Then we ran additional 5 ns constant-pressure 

production simulation and discarded the first 100 ps as additional “equilibration”, as 

previously.51 The Parrinello-Rahman barostat was used to modulate the pressure.

It is worth briefly remarking on the choice of AM1-BCC partial charges. In previous work, 

we found that for hydration free energies, these charges performed nearly as well as or better 

than RESP charges fit to a variety of much higher-level quantum mechanical calculations, 

with our without an SCRF treatment of solvent. MP2/cc-pVTZ SCRF calculations did yield 

small gains in accuracy, however.56 But this was for hydration free energies, which involve 

transfer from gas to water. The dependence in calculated solubilities on charge set is 

expected to be somewhat smaller here, because the difference in the dielectric constant 

between environments is much less pronounced than in gas-to-water transfer. Therefore, in 

view of the computational expense and the lack of substantial accuracy gains expected, we 

retained AM1-BCC charges as we have in virtually all of our solvation free energy work 

since we studied this issue.56,57

 2.4 Other methods

In addition to the free energy calculations discussed above, we also used the SMD and 

UNIFAC methods to serve as reference sets of predictions.

 2.4.1 SMD—SMD is an electronic structure calculation method to compute  (see 

equation 5).58 SMD employs an implicit solvent model that interacts with the charge density 
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of the solute molecule, which has been optimized to reproduce 2821 experimental solvation 

free energies.25–27 So long as five parameters are available for a particular solvent (the 

dielectric constant, refractive index, bulk surface tension, and the acidity and basicity 

parameters), the solvation free energy of a solute (charged or neutral) may be estimated. The 

interested reader is directed to refs.25–27 for further information.

For all of these calculations, the geometry of the solute was first optimized in vacuum at the 

M06-2X/cc-pVTZ level of theory/basis set followed by single point energy calculations at 

the M06-2X/6-31G(d) level of theory/basis.59,60 Next, two approaches were used to compute 

the solvation free energy. First, single point energy calculations were performed on the 

vacuum optimized structure at the M06-2X/6-31G(d) level of theory/basis set in a self-

consistent reaction field (SCRF) using the SMD universal solvation model for each solvent 

of interest. These calculations were performed following the work of refs.26,27, and are 

labeled as “SMD vac” in this work.

Second, the solute geometry was re-optimized at the M06-2X/cc-pVTZ level of theory/basis 

in a SCRF using the SMD universal solvation model for each solvent of interest, followed by 

single point energy calculations at the M06-2X/6-31G(d) level of theory/basis. This work 

was motivated by the recent study of Klimovich and Mobley51 that showed that the solute 

conformation in solution may be different than in vacuum, which in turn has an appreciable 

effect on the computed solvation free energy. These calculations will be labeled as “SMD” 

in this work.

In both cases, the single point energy calculation in each solvent combined with the single 

point energy calculation in vacuum may be used to estimate the solvation free energy in each 

solvent.

Additionally, to assess the sensitivity of the calculations to the chosen basis set, we repeated 

all of the single point energy calculations at the M06-2X/cc-pVTZ level of theory/basis set. 

These calculations will be labeled as “SMD vac cc-pVTZ” and “SMD cc-pvtz” for the use 

of vacuum and solvent optimized geometries, respectively.

The calculations were all performed with Gaussian 09, Revision B.0161.

 2.4.2 UNIFAC—UNIFAC2–4 and mod-UNIFAC (Dortmund)5,6 are predictive group 

contribution methods used extensively in chemical engineering design to model phase-

equilibria. Within both models, one may estimate the composition dependent activity 

coefficient of the solute in solution, or in this study, we restrict ourselves to the composition 

independent infinite dilution activity coefficient. UNIFAC is parameterized around vapor-

liquid equilibrium data. The mod-UNIFAC model makes minute empirical modifications to 

the functional form of UNIFAC to improve agreement with experiment. Additionally, mod-

UNIFAC is fit to vapor-liquid equilibrium data, in addition to infinite dilution activity 

coefficient, excess enthalpy, excess heat capacity, liquid-liquid equilibrium, solid-liquid 

equilibrium, and azeotropic data. The interested reader is directed to refs.2–6 for further 

information.
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The infinite dilution activity coefficient is directly related to the infinite dilution residual 

chemical potential, allowing equation 4 to be re-written as38,62

(6)

where  and  are the infinite dilution activity coefficient of the solute in solvent α 

and ζ, respectively, which are computed using UNIFAC or mod-UNIFAC, and να and νζ are 

the molar volume of pure solvent α and ζ, respectively. In this study the molar volume term 

makes only a minor contribution comparing to the infinite dilution activity coefficient. For 

example, for benzoic acid in solvents toluene and pentane, the value of ln  is 1.24, 

but the relative volume term (ln ) contributes only −0.01. Similar contributions 

are found in most cases, as presented in the Supporting Information. For our UNIFAC/mod-

UNIFAC relative solubility calculations, we use calculated infinite dilution activity 

coefficients in combination with experimental molar volumes for the pure solvents in order 

to obtain predicted relative solubilities.

 2.4.3 Summary—In total, we used eight methods to calculate relative solubilities, which 

we label as follows:

1. GAFF: Alchemical free energy calculations with standard GAFF

2. GAFF-DC: Alchemical free energy calculations with GAFF-DC55

3. SMD: SMD using the solvent optimized geometry with M06-2X/6-31G(d) 

single point energy calculations

4. SMD vac: SMD using the original vacuum optimized geometry with 

M06-2X/6-31G(d) single point energy calculations25–27

5. SMD cc-pVTZ: SMD using the solvent optimized geometry with 

M06-2X/cc-pVTZ single point energy calculations

6. SMD vac cc-pVTZ: SMD using the original vacuum optimized geometry 

with M06-2X/cc-pVTZ single point energy calculations

7. UNIFAC: The UNIFAC approach3,4

8. mod-UNIFAC (Dortmund): A slightly modified the functional formal of 

UNIFAC5,6

Results from these approaches will be discussed below.

 3 Results

Much of our previous work on solvation has focused on hydration free energies – the 

solvation of small molecules in water – but here, we instead study how small molecules 
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dissolve in a variety of different solvents by calculating how the choice of solvent modulates 

a solute’s solubility. Our free energy calculations allow us to calculate the term on the right 

side of equation 3 – that is, the difference in dimensionless residual chemical potentials 

, or the difference in solvation free energies between solvents α and ζ 

(equation 5). We call this value the calculated value. We can then directly compare with the 

experimental relative solubility – the term involving ln c1 on the left side of equation 3. This 

is labeled the experimental value. The error for a particular solute-solvent pair is then taken 

as the difference between the calculated value and the experimental value.

Analysis is made slightly more complicated by the fact that we can actually calculate many 

different errors which are interrelated. So for one solute, if there are n different solvents 

(and, correspondingly, n solvation free energies), there are n (n − 1) / 2 solvent pairs leading 

to n (n − 1) / 2 potential errors which can be calculated (though only n of these are 

independent). Because all of these potential errors involve the same solute, they all provide 

data about how well that solute’s solubility is predicted in different environments and thus 

are useful to consider as a unit. We therefore call this set of all possible pairwise errors for a 

given solute a ‘dataset’ and we number each dataset by the solute’s PubChem Compound 

Identifier (CID). For each solute’s dataset, we calculate and report the mean error and the 

mean absolute error for all pairs.

Figure 2 shows the average of these errors across all pairs for each solute, for each of the 

methods examined here. Tables 2—3 and the tables in the Supporting Information show 

error statistics for these methods. Results shown in the column “All Pairwise Errors” suggest 

that the simulation with new GAFF hydroxyl parameters in general performed best among 

all methods.

We are also interested in understanding not just the error in our calculated values, but how 

well they capture experimental trends. Thus, we plot experimental relative solubilities versus 

calculated ones - specifically, experimental vs calculated ln  – in Figure 3. We find 

that our approach based on full free energy calculations with GAFF or GAFF-DC performs 

best in terms of correlation (R2) with experiment. In contrast, SMD yields very low 

correlation with experiment. While UNIFAC has fairly small errors, its R2 IS smaller than 

the alchemical GAFF-based approaches (though higher than SMD). Additionally, for both 

SMD and UNIFAC (especially UNIFAC) compound coverage is not as good, so the size of 

the analyzed dataset is smaller. For UNIFAC, functional groups necessary to model a limited 

number of solutes and solvents were not available, a noted problem encountered when 

modeling solid-liquid equilibrium using UNIFAC.63,64 With SMD, we were unable to model 

the solvents tert-butylcyclohexane and ethylamine, as they were not part of the solvent list in 

Gaussian 09.65 These techniques simply do not cover all solute-solvent combinations 

examined here (Figure 2 and Tables 2—3 and SI Tables 1-6) because of their need for 

training data.

It’s also important to understand how the performance of the different methods compares, so 

we plotted errors on each solute (across all solvents) for different methods. Specifically, 

Figure 4 shows the error for each solute from our standard alchemical GAFF approach on 
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the horizontal axis, versus the error on the same compounds with an alternate approach on 

the vertical axis. If both methods performed equally well or equally poorly, all data points 

would fall on the blue x = y line. On the other hand, whenever the method showing on the 

vertical axis performs better than that on the horizontal axis, the data point will fall below x 
= y (between x = y and the x axis), and vise versa. In general there are far more points above 

the line than below, indicating that the GAFF approach typically outperforms the other 

approaches studied, except GAFF-DC.

Another way to examine our results is to use the experimental solubility for a solute in one 

or more specific solvents to determine an estimate of the fugacity term in equation 2, then 

compare that to the estimates of the fugacity term which we would have obtained if we had 

done the same with other solvents. The downside of this, however, is that we have to pick 

one or more particular experimental solubility to use to estimate the fugacity term. But this 

approach also allows us to examine whether the average error for a particular compound 

across all solvents might appear unusually large simply because of a large error for just one 

individual solvent. To investigate this, for each compound we selected one solvent to use as 

a test case, and used the remaining solvents as a “training set” to determine a best estimate 

of the fugacity term in equation 2. A schematic of this is shown in Figure 5. Here, we 

consider a specific solute A, solvated in solvents B, C and D, in turn. So first we pick solvent 

B as the test case, and use solvents C and D as the training solvents to determine the fugacity 

term. We then estimate the fugacity term as ln fave = 1/2 (ln fC + ln fD), where fC and fD are 

the fugacities as estimated from finding fC such that

(7)

where  is the experimental solubility for A in C, and  is the calculated solubility 

for A in C. We do the same to obtain fD. We then calculate the error in the fugacity for our 

test solvent as δ ln fα = ln fave − ln fα (where α denotes the selected solvent), so for example 

for solvent B, δ ln fB = ln fave − ln fB. This is a fair test, since B was not included when 

obtaining ln fave. We can also calculate δ ln fC and δ ln fD, though these will obviously 

underestimate of the true error in the calculated fugacity since solvents C and D were 

included in obtaining ln fave. Still, we can determine the average or RMS error (RMSE) for 

compounds in the “training set”. In this case, the RMSE on the training set is the RMS error 

across δ ln fC and δ ln fD. We define the “training set error” as this RMSE. This whole 

process of examining a particular solute, picking a particular solvent as a test case, and 

evaluating training set and test set errors, can be iterated across all choices of solvent. In our 

example of three solvents, each of B, C, and D serve as the test case in turn. This allows us 

to obtain three different estimates of the test set error, and three estimates of the RMSE on 

the training set.
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In what follows, the RMS error across all test cases is reported as the final error estimate for 

each particular solute dataset, and the average of the training set RMS errors is labeled the 

training set error. These are shown in Tables 2—3 (and SI Tables 1-6) and suggest that the 

GAFF-based alchemical results are the most accurate overall.

This procedure allows us a way to test how well our calculated solvation free energies do at 

yielding consistent estimates of the fugacity of each solid when coupled with the 

experimental solubility. If the solvation free energies were perfectly predicted (and the 

assumption of an infinitely dilute solute met) then all fugacity estimates for a particular 

solute ought to be identical, at least within experimental error. In this case, both the test and 

training set errors would be zero (within uncertainty).

Because the SMD calculations were done using one particular choice of basis set/level of 

theory, there is the possibility that SMD could appear to perform poorly solely because of 

that choice. Therefore, we repeated all of our calculations with an alternate approach. 

Particularly, SMD calculations were performed following the work of ref.26,27, specifically 

using vacuum optimized geometries with single point energy calculations performed at the 

M06-2X/6-31G(d) level of theory/basis set. In addition, calculations were performed 

wherein the geometry was re-optimized in each solvent to assess the sensitivity to the solute 

geometry. Also, all of the single point energy calculations were repeated at the M06-2X/cc-

pVTZ level of theory/basis set. Overall, we found that the later two changes had only a 

minute effect on the predictions. The results for these new SMD sets can be found in the 

Supporting Information.

 4 Discussion

Our results indicate that alchemical free energy calculations based on molecular simulations 

can be a powerful approach for estimating relative solubilities of solutes in different solvent 

environments, with accuracies exceeding those of more highly-parameterized methods 

considered here such as UNIFAC and the SMD solvation model. This is especially 

interesting given that the force field employed, GAFF, has had no empirical tuning to 

reproduce solvation free energies in non-aqueous solvents, and no prior testing on relative 

solubilities that we are aware of. Thus, the techniques employed here may be of interest for 

prediction of relative solubilities.

Our work made one major assumption to simplify our calculations - that the solubility of a 

target solute in a particular solvent is low enough that the solution can be assumed to be 

ideal (i.e. that solute-solute interactions are negligible). When this is not the case, our 

general framework may still be useful, but additional simulations at different solute 

concentrations will be required in order to deal with non-ideality.

While our results agree fairly well with experimental relative solubility estimates, there is 

certainly room for improvement, and our data suggest that relative solubility measurements 

may provide a valuable (though indirect) source of experimental information on non-

aqueous solvation free energies. Relative solubility data, then, may be an excellent tool to 

help improve force fields. One example of this is the performance of the GAFF-DC 
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parameters in this experiment – the accuracy of GAFF-DC appears superior to standard 

GAFF, despite the fact that it was developed for entirely orthogonal reasons.55

Previous work on solvation free energies has highlighted how errors can often be traced to 

particular functional groups.31,66 Indeed, systematic errors for hydroxyl-containing 

compounds led to the development of GAFF-DC.55 In principle, relative solubility studies 

should be able to highlight similar features – if particular solute functional groups are always 

poorly predicted, regardless of solvent environment, it likely means there is a systematic 

force field problem for that particular functional group. Thus, this will likely make a 

promising avenue for follow-up work. However, the present dataset of eight solutes in 53 

solute-solvent combinations is not enough for us to be able to draw any meaningful 

conclusions about likely systematic errors. This especially true here, where systematic errors 

can result from either the solute or the solvent, whereas in hydration free energy calculations 

the solvent has already been carefully parameterized in its own right.

The recent reported work of Zhang et al.31 also examined solvation free energies in non-

aqueous solvents, comparing alchemical techniques with an empirical technique based on 

quantitative structure property relations, and quantum mechanical calculations with 

COSMO-RS. It found that the alchemical approach was not a clear winner, with the other 

two models in fact performing slightly better. Thus the authors concluded that further force 

field improvements are needed. While both studies rely on solvation free energies in non-

aqueous solvents, the Zhang et al. work compared calculated solvation free energies with 

experimental values directly, whereas we calculate relative solubilities. While solubility 

measurements can be converted to estimates of the solvation free energy if vapor pressure 

data is available, this data is often not available34–37 and is difficult to measure. Solvation 

free energies themselves can also be very difficult to measure, as discussed above. In 

contrast, solubilities are measured routinely and solubility measurements are abundant, even 

for drug-like compounds. Thus, the ability of this study to directly connect with solubility 

data is important.

While our results are far from indicating that further forcefield improvements are 

unwarranted, our method does outperform the other methods tested here. It seems likely that 

this may be precisely because of the relative abundance of solubility data compared to 

solvation free energy data. Specifically, the QSPR and COSMO-RS methods employed by 

Zhang et al.31 have both been specifically fit at least in part to reproduce solvation free 

energies, and given the relatively small amount of solvation free energy data available, their 

training may have involved some of the same compounds on which they were tested. In 

contrast, the vast amount of solubility data available – and the lack of training of the 

methods tested on solubility data – means that the present test gives less of an advantage to 

empirical or semi-empirical methods.

The difficulty of measuring solvation free energies in general34–37 has led the Statistical 

Assessment of Modeling of Proteins and Ligands (SAMPL) challenge to shift its solvation 

component to the calculation of partition/distribution coefficients67 for SAMPL5, rather than 

solvation free energies which had previously formed the core of this part of the challenge in 

SAMPL1-4.34–37 Like solubility data, partition/distribution data appears substantially more 
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straightforward to obtain experimentally than solvation free energies, and thus it may prove 

an even better opportunity for force field testing and development.

 5 Conclusions

We used alchemical free energy calculations based on molecular simulations to calculate the 

relative solubilities of particular solutes solvated in a variety of different solvents, achieving 

average absolute errors of around 1 log unit in relative solubility.

We also compared our results with those obtained from SMD and UNIFAC solvation models 

applied to the essentially the same set, and found that our alchemical approach is more 

accurate in calculating relative solubilities on this set, especially when using the new GAFF-

DC parameters for hydroxyl-containing compounds. Additionally, GAFF with alchemical 

techniques at present covers a wider range of chemical space than SMD and UNIFAC, in 

part because of the empirical tuning these techniques have required. We also found that 

overall, the GAFF-DC parameters out-perform standard GAFF parameters for relative 

solubilities in this set. It is interesting to note that relative solubility calculations - which 

essentially amount to calculating a difference in solvation free energies - may be a valuable 

source of experimental solvation data which can perhaps be used to further test and improve 

force fields for molecular simulations.
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Figure 1. 
2D structures for all solute and solvent molecules. The corresponding CIDs are showing on 

the left upper corner of each panel.
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Figure 2. 

The average error in  by solute, across all possible solvent pairs for each solute 

for the different methods considered (a-f). The vertical axis shows the error in the log ratio 

(unitless), and the horizontal axis shows the solvent considered. The plot is a box and 

whisker plot, with the box showing the lower and upper quartiles of the data, and the red line 

marking the median. The whiskers show the range of the data.
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Figure 3. 
Comparison of calculated relative solubilities with the experimental relative solubilities for 

all solute-solvent pairs and all methods.
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Figure 4. 
Comparison of errors for different methods for each solute in all pairs of solvents. The x = y 
line divides the figure into two regions, the left-top region and right-bottom region. If a 

particular datapoint is in the left-top region, then the method shown on the x-axis performs 

better for that particular case, and if the point is in the right-bottom region, the method 

shown on the y-axis performs better.
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Figure 5. 
An example of how we calculate the test and training set errors. Here, we examine a 

particular solute (A) in three solvents (B-D). As discussed in the text, we pick one particular 

solvent (B) in which to “predict” the solubility of the compound, and use the other solvents 

to calculate the best estimate of the fugacity (fave) of the solute by comparison to the 

experimental solubilities. From this estimate, we can then calculate solubility of the solute in 

solvent B, or (nearly equivalently) the fugacity term for B. This allows us to calculate the 

error in the fugacity for our test case, B (the test set error), and the error in the fugacity for 

the other cases (the training set error).
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Table 1

Solute-solvent pairs studied here. Here, we use PubChem compound identifiers to track our compounds as 

these eliminate confusion due to different naming conventions, and also are more convenient for some of our 

tools to handle. Traditional compound names are listed as well.

Solute ID in Solvent ID Solute Name Solvent Name

10241 in 1031 9-fluorenone 1-propanol

10241 in 10907 9-fluorenone 2,2,4-trimethylpentane

10241 in 3283 9-fluorenone diethyl ether

10241 in 6276 9-fluorenone 1-pentanol

10241 in 6342 9-fluorenone acetonitrile

10241 in 7298 9-fluorenone cyclopentanol

10241 in 8058 9-fluorenone n-hexane

243 in 1140 benzoic acid toluene

243 in 174 benzoic acid ethylene glycol

243 in 241 benzoic acid benzene

243 in 6342 benzoic acid acetonitrile

243 in 8003 benzoic acid pentane

243 in 8058 benzoic acid n-hexane

243 in 8078 benzoic acid cyclohexane

243 in 887 benzoic acid methanol

2519 in 180 caffeine acetone

2519 in 887 caffeine methanol

2519 in 962 caffeine water

638088 in 1031 trans-stilbene 1-propanol

638088 in 10907 trans-stilbene 2,2,4-trimethylpentane

638088 in 1140 trans-stilbene toluene

638088 in 18508 trans-stilbene tert-butylcyclohexane

638088 in 241 trans-stilbene benzene

638088 in 263 trans-stilbene 1-butanol

638088 in 31275 trans-stilbene 1,4-dioxane

638088 in 3776 trans-stilbene 2-propanol

638088 in 6276 trans-stilbene n-pentanol

638088 in 6560 trans-stilbene isobutyl alcohol

638088 in 702 trans-stilbene ethanol

638088 in 7929 trans-stilbene 3-xylene

638088 in 8028 trans-stilbene tetrahydrofuran

638088 in 8058 trans-stilbene n-hexane

638088 in 887 trans-stilbene methanol

7107 in 3283 xanthene diethyl ether

7107 in 702 xanthene ethanol

7107 in 7914 xanthene isopropyl ether

7107 in 8078 xanthene cyclohexane
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Solute ID in Solvent ID Solute Name Solvent Name

7107 in 887 xanthene methanol

7478 in 31275 4-methoxybenzoic acid 1,4-dioxane

7478 in 6276 4-methoxybenzoic acid n-pentanol

7478 in 6560 4-methoxybenzoic acid isobutyl alcohol

7478 in 8028 4-methoxybenzoic acid tetrahydrofuran

77577 in 180 2,3-dimethyl-2,3-dinitrobutane acetone

77577 in 31275 2,3-dimethyl-2,3-dinitrobutane 1,4-dioxane

77577 in 6342 2,3-dimethyl-2,3-dinitrobutane acetonitrile

77577 in 6569 2,3-dimethyl-2,3-dinitrobutane methylethyl ketone

77577 in 7967 2,3-dimethyl-2,3-dinitrobutane cyclohexane

77577 in 8028 2,3-dimethyl-2,3-dinitrobutane tetrohydrofuran

77577 in 8857 2,3-dimethyl-2,3-dinitrobutane ethyl acetate

8418 in 6228 anthracene dimethylformamide

8418 in 7237 anthracene 2-xylene

8418 in 7505 anthracene benzonitrile

8418 in 7929 anthracene8 3-xylene
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Table 2

GAFF errors: in log S, by solute, across all pairs of solvents for each solute; and in ln fC, across training and 

test sets for each solute

Solute
ID

data size average error, all
pairs

average absolute
error, all pairs

training set error test set error

77577 7 −0.057(1) 0.561(1) 0.5(1) 0.6(4)

7478 4 −0.3859(9) 0.7289(9) 0.47(3) 0.7(1)

8418 4 −0.3284(6) 0.9130(6) 0.59(3) 0.8(1)

2519 3 −2.5980(5) 3.6839(5) 1.84(9) 3.5(3)

243 8 −0.1839(2) 1.6187(2) 1.26(6) 1.5(2)

7107 5 −0.8687(1) 1.3623(1) 0.95(5) 1.2(2)

10241 7 0.65786(8) 1.29910(8) 0.98(5) 1.2(2)

638088 15 0.20307(2) 0.83181(2) 0.68(4) 0.7(2)

Average 0.04012(4) 1.03129(4) 0.852(2) 1.089(8)
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Table 3

GAFF-DC errors: in log S, by solute, across all pairs of solvents for each solute; and in ln fC, across training 

and test sets for each solute

Solute
ID

data size average error, all
pairs

average absolute
error, all pairs

training set error test set error

77577 7 −0.057(1) 0.561(1) 0.5(1) 0.6(4)

7478 4 −0.3859(9) 0.7289(9) 0.47(3) 0.7(1)

8418 4 −0.3284(6) 0.9130(6) 0.59(3) 0.8(1)

2519 3 −2.5980(5) 2.6114(5) 1.31(7) 2.8(3)

243 8 −0.1839(2) 1.6187(2) 1.26(6) 1.5(2)

7107 5 −0.8146(1) 1.2005(1) 0.83(4) 1.1(1)

10241 7 0.76278(8) 1.40036(8) 1.05(9) 1.2(3)

638088 15 0.18366(2) 0.53873(2) 0.44(3) 0.5(1)

Average 0.04366(4) 0.86389(4) 0.751(2) 0.972(9)
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