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Abstract

Studies using vitamin D-binding protein (DBP) concentrations to estimate free and bioavailable 

vitamin D have increased dramatically in recent years. Combinations of two single-nucleotide 

polymorphisms produce three major DBP isoforms (Gc1f, Gc1s and Gc2). A recent study showed 

that DBP concentrations quantified by liquid chromatography-tandem mass spectrometry (LC-

MS/MS) did not differ by race, while a widely used monoclonal ELISA quantified DBP 

differentially by isoform, yielding significantly lower DBP concentrations in black versus white 

individuals. We compared measurements of serum DBP using a monoclonal ELISA, a polyclonal 

ELISA, and LC-MS/MS in 125 participants in the Chronic Renal Insufficiency Cohort. Serum free 

and bioavailable 25OHD were calculated based on DBP concentrations from these three assays in 

homozygous participants, and race differences were compared. We confirmed that the monoclonal 

ELISA quantifies DBP differentially by isoform and demonstrated that the polyclonal ELISA is 

not subject to this bias. While ≤9% of the variability in DBP concentrations quantified using either 

LC-MS/MS or the polyclonal ELISA was explained by genotype, 85% of the variability in the 

monoclonal ELISA-based measures was explained by genotypes. DBP concentrations measured 

by the monoclonal ELISA were disproportionately lower than LC-MS/MS-based results for Gc1f 

homozygotes [median difference −67%; interquartile range (IQR) −71%, −64%], 95% of whom 

were black. In contrast, the polyclonal ELISA yielded consistently and similarly higher 

measurements of DBP than LC-MS/MS, irrespective of genotype, with a median percent 

difference of +50% [IQR +33%, +65%]. Contrary to findings using the monoclonal ELISA, DBP 

concentrations did not differ by race, and free and bioavailable 25OHD were significantly lower in 

black versus white participants based on both the polyclonal ELISA and LC-MS/MS, consistent 

with their lower total 25OHD. Future studies of DBP and free or bioavailable vitamin D 

metabolites should employ DBP assays that are not biased by DBP genotype.
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 2 INTRODUCTION

Vitamin D-binding protein (DBP), originally named “group-specific component” (Gc-

globulin),1 is a multifunctional 58 kDa circulating glycoprotein that transports vitamin D 

metabolites and also contributes to actin scavenging, fatty acid transport, and chemotaxis.2–5 

The vast majority of vitamin D metabolites circulate bound to DBP (85–90%) or albumin 

(10–15%), with <1% circulating in the free form. The binding affinity of DBP for vitamin D 

metabolites is more than 1000-fold stronger than that of albumin, and therefore, the 

albumin-bound and free fractions together are considered bioavailable.6–10

Preclinical studies established a role for DBP in regulating the availability of 25OHD and 

1,25(OH)2D3 to certain target tissues.11,12 Similarly, numerous investigators hypothesized 
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that free and bioavailable 25OHD concentrations provide superior indices of vitamin D 

status, compared with the total circulating 25OHD concentration. Assays to measure the free 

and bioavailable vitamin D are not widely available; however, the concentrations can be 

estimated using equations that incorporate the 25OHD, DBP and albumin concentrations and 

the corresponding binding affinity coefficients.

DBP is highly polymorphic, and combinations of two single-nucleotide polymorphisms 

(SNPs), rs4588 and rs7041, produce three major polymorphic forms (Gc1f, Gc1s and Gc2). 

The rs7041 polymorphism results in replacement of aspartate with glutamate at amino acid 

position 416 in Gc1s, while the rs4588 polymorphism results in a lysine substitution for 

threonine at amino acid position 420 in Gc2. Their glycosylation patterns are also distinct 

(galactose and sialic acid in Gc1s and Gc1f and galactose only in Gc2).13 The resultant six 

allelic combinations (1f/1f, 1f/2, 1s/1f, 1s/1s, 1s/2, and 2/2) differ in their affinities for 

vitamin D metabolites, circulating concentrations, and geographical and racial 

distribution.14–17

Over the last two years, there has been a dramatic increase in clinical studies using DBP 

levels to estimate free and bioavailable vitamin D. The majority of studies used a 

monoclonal antibody enzyme linked immunosorbent assay (ELISA, R&D Systems, 

Minneapolis, MN) to measure DBP.18–33 However, the observations that DBP 

concentrations measured using the R&D Systems assay were markedly lower in black 

compared to white participants, and that DBP genotype explained 79% of the variation in 

DBP concentration,34 raised concerns that the assay quantified DBP concentration 

differentially by DBP isoform.35–37 We recently reported that DBP levels did not vary with 

race when measured by a polyclonal assay;38 however, that study was limited by lack of a 

gold standard measure of DBP and lack of genotype data. Henderson, et al recently 

developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

DBP assay39 (the manuscript is in press in Clinical Chemistry, and provided in the 

Appendix). DBP concentrations obtained by LC-MSMS did not differ by race, while 

concentrations measured using the R&D monoclonal assay demonstrated isoform-specific 

differences and were significantly lower in black compared with white participants. The 

study did not include estimates of free or bioavailable vitamin D.

This study comprises a direct comparison of serum DBP measurement by three assays: two 

widely used commercially available immunoassays, a monoclonal and polyclonal ELISA, 

and by LC-MS/MS. The objective is to extend the work of Henderson, et al in two important 

ways. First, this study will assess the accuracy of a polyclonal assay compared with LC-

MS/MS, within each genotype. Second, this study will compare race-specific estimates of 

free and bioavailable 25OHD concentrations based on DBP measures from these three 

assays.

 3 METHODS

We studied a convenience sample of 125 participants in the Chronic Renal Insufficiency 

Cohort (CRIC) study, examined at their third annual study visit. Each participant had data on 

their DBP genotype, and sufficient specimen volume to perform all three assays on a single 
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aliquot. CRIC is an NIDDK-sponsored prospective, multicenter observational study of risk 

factors for cardiovascular disease, chronic kidney disease (CKD) progression, and mortality 

in adults with CKD.40 A total of 3,939 adults 21–74 years of age with mild-moderate CKD 

[estimated glomerular filtration rate (eGFR) of 20–70 ml/min/1.73m2] were enrolled from 

May 2003 through June 2008. The CRIC protocol was approved by the Institutional Review 

Boards of all participating sites; written informed consent was obtained from all participants.

Serum DBP was measured in duplicate by three assays: 1) Trypsin digestion and LC-

MS/MS (Waters Acquity-Xevo TQ-MS) targeting peptides VLEPTLK and ELPEHTVK. 

The lower limit of quantification (<20% CV) was 71 ug/ml, and this assay was linear from 

62 to 434 ug/ml. The total imprecision of the assay, including contributions due to within-

day and between-day variability, was determined previously by 5 × 5 analysis to be 7.3%–

9.0% CV at 234–266 ug/ml. Recovery was 103–104%.39 2) A monoclonal antibody ELISA 

(R&D Systems, Minneapolis, MN). As per the manufacturer’s data, the limit of 

quantification was 0.65 ug/ml. The recovery, intra-assay CV and inter-assay CV were 

independently verified as 85.2–99.4%, 1.88% and 6.74%, respectively. 3) A polyclonal 

ELISA (ALPCO Diagnostics, Salem, NH). As per the manufacturer’s data, the limit of 

quantification was 1.23 ug/ml, and recovery was 99–100%. The intra-assay variation of this 

ELISA was independently verified as 1.90%. There were no values below the limit of 

quantification for any assay.

As detailed previously,41 genotyping in CRIC was performed using the HumanCVD 

BeadChip V2 IBC ITMAT/Broad/CARE (IBC) Array (Illumina, Inc.), a gene-centric SNP 

array that includes ~50,000 SNPs in ~2,100 candidate genes, at the Children’s Hospital of 

Philadelphia Center for Applied Genomics. Samples from the CRIC Study were excluded if: 

sample call rate was <0.97; there was reduced or excess heterozygosity (Inbreeding | F | 

<0.2); or there was evidence of cryptic relatedness (PI_HAT identity-by-descent <0.2). SNPs 

were excluded within each race separately if the call rate was <90%, the minor allele 

frequency was <1%, or if the SNP deviated from Hardy-Weinberg equilibrium (p <0.0001).

Serum total 25OHD (25OHD2 + 25OHD3) was measured by liquid-liquid extraction and 

LC-MS/MS on a Quattro Micro mass spectrometer (Waters, Milford, USA) (inter-assay CV 

of 7.9% at 51.9 ng/ml and 10.1% at 10.7 ng/ml). Serum free and bioavailable 25OHD were 

calculated using total 25OHD, DBP, and albumin concentrations.42 These equations were 

adapted from corresponding equations for free and bioavailable testosterone43 by replacing 

testosterone, sex hormone-binding globulin, and albumin and their respective binding 

constants with those of 25OHD, DBP, and albumin. The equations used to calculate free and 

bioavailable 25OHD are described in detail in the Supplementary Material of that report42 

and summarized below:

Free 25OHD = [−b + √(b2 − 4ac)] / 2a, where

a = Kdbp*Kalb*albumin + Kdbp

b = (Kdbp*DBP) − (Kdbp*25OHD) + (Kalb*albumin) +1

c = −[25OHD]

Kdbp = affinity constant between 25OHD and DBP
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Kalb = affinity constant between 25OHD and albumin

Bioavailable 25OHD = (Kalb*albumin + 1)*[free 25OHD]

The calculation of free and bioavailable 25OHD was limited to homozygous participants, so 

that isoform-specific affinity constants could be applied. The isoform-specific affinity 

constants of DBP for 25OHD (Kdbp) used were 1.12 × 109 M−1, 0.6 × 109 M−1, and 0.36 × 

109 M−1 for Gc1f, Gc1s, and Gc2, respectively.14 Concentrations of albumin, DBP and 

25OHD in these equations are in mol/L, and free and bioavailable 25OHD were then 

converted to pg/ml and ng/ml respectively for ease of interpretation of results. Free 25OHD 

concentrations were also measured in homozygous participants by immunoassay (Future 

Diagnostics/DIAsource ImmunoAssays, Belgium). The mean inter-assay CV (14 samples) 

was 9.6% (range 2.2–25.7%), and the mean intra-assay CV (80 samples) was 2.1% (range 

0–5.9%).

 Statistical Analysis

All analyses were performed using STATA 13.0 (Stata Corporation, College Station, TX). A 

two-sided p-value of <0.05 was considered statistically significant. Distributions of all 

variables were assessed for normality. Descriptive statistics for continuous variables were 

reported as the median and inter-quartile range (IQR). Correlations were assessed by 

Spearman’s rank and concordance correlation44 coefficients. The concordance correlation 

coefficient incorporates measures of both precision and accuracy to determine how far the 

observed data deviate from the line of perfect concordance (the line at 45 degrees on a 

square scatterplot). Group differences in continuous measures were determined using the 

Student’s t-test or Wilcoxon rank-sum test as indicated. Linear regression analysis was used 

to assess the amount of variability in DBP concentrations explained by genotype.

 4 RESULTS

Table 1 shows descriptive characteristics of the study population. Median age was 64 years 

(inter-quartile range [IQR] 57–68), and 77 (62%) were male. The distribution of race was: 

74 (59%) white, 45 (36%) black, and 6 (5%) other. Median eGFR for the 117 participants 

who had not progressed to end-stage kidney disease was 44.2 ml/min/1.73m2 (IQR 31.1, 

55.3). 38% of participants had a total 25OHD concentration <20 ng/ml. Consistent with the 

established racial distribution of DBP genotype15–17 and with the Powe et al study,34 95% of 

individuals homozygous for Gc1f were black, while 91% and 77% of those homozygous for 

Gc1s and Gc2 were white, respectively. We confirmed that the isoform identification of the 

novel LC-MS/MS assay was 97% (121/125 samples) concordant with genotype, as reported 

in a different cohort.39

Table 2 and Figure 1 show the distributions of measured DBP concentrations according to 

the assay method and participant genotype. Overall, DBP concentrations measured by the 

monoclonal ELISA (median 185.0 ug/ml) were lower than LC-MS/MS measurements 

(median 253.1 ug/ml, p <0.0001), consistent with the findings of Henderson et al39 (mean 

183.9 versus 264.5 ug/ml). DBP concentrations measured by the polyclonal ELISA (median 

373.8 ug/ml) were higher compared with LC-MS/MS (p <0.0001). The race-specific 

distributions of DBP concentration according to the three assays were very consistent with 
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results reported in studies using these assays in non-CKD populations.34,38,39 The LC-

MS/MS measurements of DBP concentration differed to some degree across genotypes 

(Kruskal-Wallis p = 0.02) with the highest concentrations among 1s/1f heterozygotes 

(median 284.4 ug/ml) and the lowest concentrations among 1f/2 heterozygotes (median 

232.5 ug/ml). Measurements of DBP concentration by the monoclonal ELISA differed more 

than three-fold according to genotype (Kruskal-Wallis p = 0.0001) with the highest median 

concentration among 1s/1s homozygotes (307.3 ug/ml) and the lowest median concentration 

among 1f/1f homozygotes (90.9 ug/ml). In contrast, measurements of DBP concentration by 

the polyclonal ELISA did not differ by genotype (ANOVA p = 0.10). While only 9% or less 

of the variability in DBP concentrations obtained using either LC-MS/MS or the polyclonal 

ELISA was explained by genotype, 85% of the variability in the monoclonal ELISA-based 

results was explained by genotype.

Table 2 and Figure 1 clearly demonstrate that the polyclonal ELISA yielded consistently and 

similarly higher measurements of DBP than LC-MS/MS, irrespective of genotype, with a 

median percent difference from the LC-MS/MS-based measurement of +50% overall and 

+34 to +56% across genotypes. The discrepancies between the measurements obtained using 

the monoclonal ELISA and LC-MS/MS, however, varied dramatically by genotype, with the 

1f/2 heterozygotes and 1f/1f homozygotes having disproportionately lower DBP 

concentrations by the monoclonal ELISA. Of particular concern, DBP concentrations 

measured by the monoclonal ELISA were two-thirds lower than LC-MS/MS-based results 

for the 1f/1f genotype (median −67%; inter-quartile range −71%, −64%). As highlighted in 

the Bland-Altman plots in Figure 2, the apparent bias of the monoclonal antibody was 

characterized by binding Gc isoforms 1s > 2 > 1f. Indeed, the nonparametric test for trend 

across ordered groups (based on this hierarchical binding: 1f/1f, 1f/2, 2/2, 1s/1f, 1s/2, 1s/1s) 

was significant for the monoclonal ELISA (p <0.001), but not for the polyclonal ELISA or 

LC-MS/MS.

Overall, although the Spearman’s rank correlation (rs) with the LC-MS/MS measurements of 

DBP was greater for the results obtained using the polyclonal ELISA (rs = 0.58, p <0.0001) 

compared to the monoclonal ELISA (rs = 0.30, p = 0.0006), both correlations were poor as 

highlighted by the concordance correlation coefficients (rc) of ≤ 0.15 (Figure 3a). Results 

from the two ELISA methods were also poorly correlated with each other (rs = 0.32, p = 

0.0003), consistent with our prior study.38 Figure 3b compares the Spearman’s rank and 

concordance correlations of the monoclonal and polyclonal ELISA-based measurements 

with the LC-MS/MS assay results, stratified on genotype. Neither ELISA had a Spearman’s 

rank correlation coefficient of ≥ 0.8 within any genotype, and with one exception the 

concordance correlation coefficients were ≤ 0.31.

Serum 25OHD levels were significantly lower in black versus white participants (median 

17.2 ng/ml, IQR 10.7–31.7 versus 26.7 ng/ml, IQR 18.5–32.3; p = 0.02). Table 3 

demonstrates measured DBP concentrations and calculated free and bioavailable 25OHD 

stratified by race. DBP concentrations measured by the monoclonal ELISA were > 50% 

lower in black versus white participants (median 105.9 versus 215.4 ug/ml, p <0.0001) 

participants, while DBP concentrations quantified by the polyclonal ELISA and by LC-

MS/MS did not differ by race. Free and bioavailable 25OHD concentrations did not differ by 
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race when based on the monoclonal ELISA measures of DBP. Free 25OHD concentrations 

measured by immunoassay also did not differ by race (median 6.6 pg/ml, IQR 3.3–8.8 in 

black participants versus 6.2 pg/ml, IQR 5.0–7.8 in white participants). Using both the 

polyclonal ELISA and LC-MS/MS measures of DBP, free and bioavailable 25OHD 

concentrations were significantly lower in black as compared to white participants (all p ≤ 

0.0007).

 5 DISCUSSION

This is the first study to directly compare serum DBP measurements and estimates of free 

and bioavailable 25OHD concentrations based on widely used commercially available 

monoclonal and polyclonal ELISAs versus a novel LC-MS/MS method, corroborating and 

expanding upon the recent findings of Henderson, et al in healthy individuals.39 The 

reproducibility of the comparison between the monoclonal ELISA and LC-MS/MS in a 

cohort with CKD underscores the robustness of our findings. We confirmed that the 

monoclonal ELISA quantifies DBP differentially by genotype and demonstrated that the 

polyclonal ELISA is not subject to this bias. In contrast to the monoclonal ELISA results, 

DBP concentrations quantified by both the polyclonal ELISA and LC-MS/MS did not differ 

by race, yielding significantly lower estimated free and bioavailable 25OHD concentrations 

in black participants. The results of our study in terms of race-specific distributions of 

25OHD and DBP (according to assay method) were strikingly similar to those of non-CKD 

cohorts, including the Atherosclerosis Risk in Communities study of 184 adults by 

Henderson, et al,39 a cohort of 304 healthy adults enrolled as controls in a study of 

osteoporosis at the University of Pennsylvania,38 and the Healthy Aging in Neighborhoods 

of Diversity across the Life Span cohort reported by Powe, et al.34 These comparisons 

confirm that the renal insufficiency in the CRIC participants had no impact on the 

conclusions of this study.

The monoclonal antibody of the R&D ELISA binds to a single peptide fragment of DBP and 

may bind differently to Gc isoforms, yielding underestimated concentrations particularly in 

individuals homozygous for the Gc1f variant.35,37 DBP concentrations measured using the 

monoclonal ELISA versus LC-MS/MS methods in our analysis were most discrepant among 

Gc1f homozygotes, and the median DBP concentration among Gc1f homozygotes of 90.9 

ug/ml was less than one-third that of Gc1s homozygotes based on the monoclonal assay. Of 

note, the mean DBP concentration of Gc1f homozygotes measured by monoclonal ELISA in 

the Powe et al study34 was very similar (93 ± 2 ug/ml). Commentaries in response to the 

Powe et al study cited prior studies that did not demonstrate race differences in circulating 

DBP using polyclonal assays,35,45–47 as well as a study that found the lowest DBP 

concentrations among Gc2 rather than Gc1f homozygotes using an immunonephelometric 

method.48 Consistent with these studies, we did not find race or genotypic differences in 

serum DBP using the polyclonal ELISA. Although the polyclonal assay yielded consistently 

higher concentrations compared to LC-MS/MS, this was non-differential by genotype. The 

positive bias of the polyclonal assay may have resulted from the polyclonal antibody cross-

reacting with other proteins leading to over-recovery,49,50 from heterophilic antibody 

interference, or from differences in calibration. Future studies should investigate the source 

of this positive bias.
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The markedly discrepant DBP measures produced discrepant estimates of free and 

bioavailable 25OHD and consequently, had a substantial impact on interpretation of race 

differences in free and bioavailable 25OHD. Use of DBP measures from the monoclonal 

ELISA yielded comparable estimates of free and bioavailable 25OHD in black and white 

individuals, as concluded in the Powe et al34 study. However, using both the polyclonal 

ELISA and LC-MS/MS derived measures of DBP, free and bioavailable 25OHD were 

significantly lower in black versus white individuals, in keeping with their lower total 

25OHD concentrations. The results of the free 25OHD immunoassay did not differ by race. 

Further work is needed to evaluate the effects of race and DBP genotype on free 25OHD, as 

well as the comparative associations of free versus total 25OHD with clinically relevant 

outcomes. In both healthy and CKD cohorts, prior studies using the monoclonal ELISA to 

measure DBP have yielded conflicting results regarding whether free and bioavailable 

25OHD provide better indices of vitamin D-related bone health as assessed by parathyroid 

hormone concentrations and bone mineral density.6,34,38,42,51,52

In summary, our results confirm the differential and biased performance of the monoclonal 

ELISA according to genotype and therefore race. Inferences from studies that have used this 

assay should be made cautiously, especially when interpreting reported race differences in 

vitamin D status. Future studies of DBP and free or bioavailable vitamin D metabolites 

should employ DBP assays that are not biased by DBP genotype.
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Figure 1. 
a Vitamin D-binding protein (DBP) concentrations according to genotype and assay method

b Deviation of ELISA-based measures of DBP from LC-MS/MS measures
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Figure 2. 
Bland-Altman plots of vitamin D-binding protein (DBP) quantified by ELISA versus LC-

MS/MS methods
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Figure 3. 
a Correlation of monoclonal versus polyclonal ELISA with LC-MS/MS measures of vitamin 

D-binding protein (DBP)

b Correlations of monoclonal versus polyclonal ELISA with LC-MS/MS measures of DBP 

according to genotype
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Table 1

Population characteristics

Race

Black White Other

N (%) 45 (36%) 74 (59%) 6 (5%)

Age years, median (IQR) 64 (53, 67) 64 (56, 69) 62.5 (60, 68)

Male, n (%) 24 (53%) 49 (66%) 4 (67%)

Estimated glomerular filtration rate
ml/min/1.73m2, median (IQR)

40.5 (28.2, 55.2) 45.2 (31.2, 57.7) *

Genotype

  1f/1f 21 (47%) 1 (1%) 0 (0%)

  1f/2 10 (22%) 9 (12%) 1 (17%)

  1s/1f 9 (20%) 11 (15%) 0 (0%)

  1s/1s 2 (4%) 20 (27%) 0 (0%)

  1s/2 1 (2%) 16 (22%) 2 (33%)

  2/2 2 (4%) 17 (23%) 3 (50%)

25-hydroxyvitamin D ng/ml, median (IQR) 17.2 (10.7, 31.7) 26.7 (18.5, 32.3) 19.8 (12.4, 30.1)

*
Only 4 values
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