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Abstract

The structure of the human brain changes in a variety of ways as we age. While a sizeable 

literature has examined age-related differences in cortical thickness, and to a lesser degree, 

gyrification, here we examined differences in cortical complexity, as indexed by fractal 

dimensionality in a sample of over 400 individuals across the adult lifespan. While prior studies 

have shown differences in fractal dimensionality between patient populations and age-matched, 

healthy controls, it is unclear how well this measure would relate to age-related cortical atrophy. 

Initially computing a single measure for the entire cortical ribbon, i.e., unparcellated gray matter, 

we found fractal dimensionality to be more sensitive to age-related differences than either cortical 

thickness or gyrification index. We additionally observed regional differences in age-related 

atrophy between the three measures, suggesting that they may index distinct differences in cortical 

structure. We also provide a freely available MATLAB toolbox for calculating fractal 

dimensionality.
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 Introduction

As we age, the structure of our brain changes in numerous ways, ranging from 

vascularization to cellular (Kemper, 1994; Raz & Rodrigue, 2006; Wiśniewksi & Terry, 
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1973). Age-related brain atrophy can be readily measured in vivo using magnetic resonance 

imaging (MRI). Many earlier studies have observed age-related differences in gray matter 

volume (e.g., Coffey et al., 1992; Ge et al., 2002; Jernigan et al., 1991; Passe et al., 1997; 

Raz et al., 1997; Resnick et al., 2000, 2003; Steiner et al., 1985). However, more recent 

studies have demonstrated that, in cortical regions, inter-individual differences in gray matter 

volume are more closely related to differences in cortical thickness, rather than surface area 

(Barnes et al., 2010; Hutton et al., 2009; McKay et al., 2014; Storsve et al., 2014; Winkler et 

al., 2010). Converging with this, differences in cortical thickness have been shown to be 

related to aging, while inter-individual differences in surface area have been more strongly 

influenced by sex differences (Barnes et al., 2010; Fjell et al., 2009a, 2009b; Herron et al., 

2015; Hogstrom et al., 2013; Hutton et al., 2009; McKay et al., 2014; Salat et al., 2004; 

Sowell et al., 2007; Storve et al., 2014; Thambisetty et al., 2010). These studies make clear 

that different metrics of gray matter will have different sensitivities in detecting age-related 

differences. With the increased focus on relatively short-term longitudinal studies (e.g., to 

assess the effects of behavioural interventions, such as exercise and meditation, on brain 

morphology; see Hayes et al., 2014; Tang et al., 2015), it is useful to have additional metrics 

of cortical structure that are sensitive to age-related differences.

Here we considered how age affects cortical structure by using both cortical thickness and 

another metric, cortical complexity, measured using calculations originally designed to 

quantify the structure of fractals. Prior studies have demonstrated that cortical complexity is 

related to cognitive performance (Im et al., 2006; Mustafa et al., 2012; Sandu et al., 2014) 

and differs between several neurological patient populations relative to healthy controls 

(e.g., Alzheimer's disease: King et al., 2009, 2010; schizophrenia: Sandu et al., 2008; 

Nenadic et al., 2014; Yotter et al., 2011; multiple sclerosis: Esteban et al., 2009; frontal lobe 

epilepsy: Cook et al., 1995; multiple system atrophy: Wu et al., 2010; William's syndrome: 

Thompson et al., 2005). Here we investigated age-related differences in fractal 

dimensionality of the cortical ribbon and parcellated regions of cortex in a large sample of 

adults across the lifespan, using structural images obtained from an open-access dataset. To 

conduct these analyses, we developed a MATLAB toolbox designed to use intermediate files 

produced in a standard FreeSurfer analysis, which we now freely distribute (see http://

cmadan.github.io/calcFD/).

Complex natural structures can be difficult to quantify. While fractal dimensionality 

analyses were initially developed for use with fractals, they were found to be useful in 

quantifying the complexity of ‘natural’ structures, such as the complexity of continental 

coastlines (Mandelbrot, 1967). Fractal dimensionality analyses have been shown to be useful 

in quantifying the natural complexity of the brain across multiple scales, ranging from 

molecular to whole brain (see Di Ieva et al., 2014, 2015, for comprehensive discussions). In 

these MRI studies, researchers specifically sought to use fractal dimensionality analyses to 

quantify the convolutional properties of the cortex (Cook et al., 1995; Free et al., 1996; 

Kiselev et al., 2003; Luders et al., 2004; Thompson et al., 1996). Recent studies have used 

fractal dimensionality to assess age-related differences in white matter morphology 

(Farahibozorg et al., 2015; Zhang et al., 2007). Im et al. (2006) found that whole-brain mean 

cortical thickness and fractal dimensionality shared approximately 50% of the variance (i.e., 

r2; also see King et al., 2010), suggesting that fractal dimensionality may relate to age-
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related brain atrophy, but also may be sensitive to other differences in gray matter structure 

that are not indexed by cortical thickness.

Prior research has demonstrated that in addition to cortical thickness, fractal dimensionality 

co-varies with gyrification (King et al., 2009, 2010). As such, we additionally examined age-

related differences in gyrification index as a comparison. Briefly, the gyrification index 

measures the amount of cortical folding in a region of the brain. Gyrification index is 

calculated by estimating a smooth surface contour that wraps around the pial surface, where 

the gyrification index is the ratio of a regional surface area for the pial surface to this 

smoothed outer surface (i.e., a convex hull; for an illustration, see Figure 3 of Mietchen & 

Gaser, 2009, or Figure 2 of Toro et al., 2008; also see Kochunov et al., 2012). Though age-

related differences in gyrification have not been studied as extensively as those in relation to 

cortical thickness, Hogstrom et al. (2013) found clear evidence for age-related reductions in 

gyrification (also see Rogers et al., 2010), and that these differences were not correlated with 

decreases in cortical thickness, which they also observed. Thus, one of our aims was also to 

examine the relationship between fractal dimensionality, cortical thickness, and gyrification 

index, within a large sample of healthy adults across the lifespan.

Here we examined age-related differences in whole-brain and lobe-wise estimates of cortical 

complexity, as indexed by fractal dimensionality, in a sample of over 400 individuals across 

the adult lifespan. These results were compared with similar analyses testing for age-related 

differences in cortical thickness and gyrification index, as well as the relationship between 

these more established measures and fractal dimensionality. Finally, we used a multivariate 

regression approach to directly compare these different measures of cortical morphology, 

and used regression models that included predictors from each of the three measures. We 

found fractal dimensionality to be more sensitive to age-related differences than either 

thickness or gyrification; we also observed regional differences in age-related atrophy 

depending on which cortical measure was used, suggesting that each measure may index 

distinct differences in cortical structure. We also provide a freely available MATLAB 

toolbox for calculating fractal dimensionality, using intermediate files generated as part of 

the standard FreeSurfer analysis pipeline, and present benchmark analysis demonstrating its 

functionality.

 Procedure

 Dataset

All MRI data was drawn from the IXI (“Information eXtraction from Images”) dataset, a 

collection of structural MRIs from 581 healthy adults across the lifespan (20-86 years old). 

The IXI dataset was collected in 2005-2006 from three sites in the UK (each with a different 

scanner system) and includes T1, T2, DTI, PD, and MRA images. Here we only used the T1-

weighted structural images. The dataset is freely available from: http://brain-

development.org/ixi-dataset/. The IXI dataset has been used in numerous studies 

investigating structural properties of the brain and related differences due to healthy aging 

(e.g., Ardekani & Bachman, 2009; Franke et al., 2010; Ganzetti et al., 2014; Koutsouleris et 

al., 2014; Robinson et al., 2010; Ziegler et al., 2012). Unfortunately, the criteria used to 
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assess that these individuals were healthy adults without any neurological or psychiatric 

disorders is not provided.

Of these 581 adults for which there was imaging data in the IXI dataset, the analyses 

reported here are based on a sample of 427 individuals. Individuals were excluded based on 

three criteria: age not available (N=18), or if the gyrification index analyses failed to 

determine a suitable convex-hull surface for at least one hemisphere (N=6), or if the surface 

reconstruction failed visual inspection1 (an additional N=130). The full list of IDs for the 

individuals included in the analyses are listed in the appendix. Examples of surfaces that 

failed the visual inspection are shown in Figure A3.

Demographics (for the individuals that were included in the analyses) and scan parameters 

for the data from each of the sites are as follows. From the Guy's Hospital sample (Philips 

1.5T), data was used from 251 individuals (147 female), with ages ranging from 20-86. Scan 

parameters for the T1 volumes were: TR: 9.8 ms; TE: 4.6 ms; phase encoding steps: 192; 

echo train length: 0; reconstruction diameter: 240 mm; flip angle: 8°. From the 

Hammersmith Hospital sample (Philips 3T), data was used from 129 individuals (81 

female), with ages from 20-81. Scan parameters for the T1 volumes were: TR: 9.6 ms; TE: 

4.6 ms; phase encoding steps: 208; echo train length: 208; reconstruction diameter: 240 mm; 

flip angle: 8°. From the Institute of Psychiatry sample (General Electric 1.5T), data was used 

from 47 individuals (32 female), with ages from 21-78. Scan parameters for the volumes 

collected at this site are not available.

 Preprocessing of the Structural Data

Prior to the fractal dimensionality analyses, the structural MRIs for all 581 scan volumes 

was processed using FreeSurfer 5.3.0 on a machine running CentOS 6.6 (Fischl, 2012; 

Fischl & Dale, 2000; Fischl et al., 2002). FreeSurfer's standard pipeline was used (i.e., 

recon-all) and no manual edits were made to the surface models As is typically done, 

gray matter was defined by segmenting the anatomical volume to determine the white matter 

surface (white-gray interface) and the pial surface (gray-cerebrospinal fluid [CSF] interface).

Gyrification index was calculated using FreeSurfer, as described in Schaer et al. (2012). 

Briefly, gyrification index is calculated by estimating a smooth surface contour that wraps 

around the pial surface, where the gyrification index is the ratio of a regional surface area for 

the pial surface to this smoothed outer surface (i.e., a convex hull).

 Calculating Fractal Dimensionality

In fractal geometry, several approaches have been proposed to quantify the ‘dimensionality’ 

or complexity of a fractal. The approach here calculates the Minkowski–Bouligand 

dimension, which in most cases is also equivalent to the Hausdorff dimension (see 

Mandelbrot, 1967). Several algorithms have been proposed for calculating this 

dimensionality measure (see Fernandez & Jelinek, 2001), two of which have been 

1These surface reconstruction errors are likely related to the images having insufficient signal intensity to differentiate gray matter 
from surrounding tissue and CSF, a problem that has been shown to be related to age (Salat et al., 2009). FD estimates would likely 
have been under-estimated for these individuals, and would have potentially led to over-estimation of age-related differences in FD.
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implemented in the toolbox we developed for these analyses: the box-counting algorithm 

and the dilation algorithm.

The box-counting algorithm (Caserta et al., 1995; Mandelbrot, 1982) involves considering 

the 3D structure within a fixed grid, and counting how many grid ‘boxes’ (i.e., voxels) 

contain portions of the surface of the structure (Figure A2). The size of the grid is then 

increased, and the number of filled boxes is counted again. By using multiple box sizes and 

obtaining their respective counts, a relationship can be determined, which is related to the 

complexity of the structure. These two values will follow a power-law relationship, and the 

exponent will relate to the structure's complexity, as illustrated in Figures 1 and 2B. Re-

plotting the box size and related counts in log-log space and taking the additive inverse of 

the slope produces the fractal dimensionality of the structure. Thus, the corresponding 

equation is:

Note, the box-counting method is similar to the line-segment method originally proposed to 

describe the complexity of intricate two-dimensional shapes (coastlines) (see Mandelbrot, 

1967).

In Figure 1 we illustrate the procedure for calculating the fractal dimensionality of a 

complex 2D structure, here the coastline of Germany. Using the box-counting method, we 

determined the number of boxes that would fit the edge (‘surface’) of the structure using 

various sizes of boxes. Plotting the relationship between the number of counted boxes and 

the size of the boxes follows a power-law relationship, but re-plotting the values in log-log 

space yields a straight line. The slope of this line is the fractal dimensionality of the 

structure. Figure 1 shows that this procedure can be used for either the edge/‘surface’ of the 

complex structure, which we refer to as FDs, or can be calculated including the ‘filled’ space 

within the structure, which we refer to as FDf.

Most prior studies of cortical complexity have used the box-counting algorithm (e.g., Im et 

al., 2006; King et al., 2009, 2010; Thompson et al., 1996). Here we also implemented the 

dilation algorithm, where each box/voxel is replaced with a cube of a given box size (i.e., 

‘dilated’). This was implemented using a 3D-convolution operation ( convn in MATLAB). 

Although prior studies have implemented dilation using spheres (e.g., Fernandez & Jelinek, 

2001; Free et al., 1996), we used a cube here as this makes the dilation algorithm a more 

precise version of the box-counting algorithm. Specifically, whereas the box-counting 

algorithm usually uses a fixed grid scan to count if the boxes are filled or not, using the 

dilation algorithm with a cube is functionally identical to computing the box-counting 

algorithm using a sliding grid scan (i.e., if the grid was shifted in alignment with the 

structure, and the average of all shifted counts was taken, see Figure 2A). While a sliding 

grid space has been used previously (e.g., Goñi et al., 2013), the 3D-convolution operation 

but can be calculated much faster as it is less computationally demanding.
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Here we used box sizes (in mm) corresponding to powers of 2 (e.g., de Souza & Pires 

Rostirolla, 2011; Fernandez & Jelinek, 2001; Hou et al., 1990), ranging from 0 to 4 (i.e., 2k 

[k = 0, 1, 2, 3, 4] = 1, 2, 4, 8, 16 mm). For illustrative purposes, Figures 2 and A2 show the 

steps for each of the algorithms for the first participant in the IXI dataset, where the filled 

volume is counted (FDf), rather than just the surface (described further below). Figure 2A 

shows axial slices from the middle of the brain (i.e., the middle slice in native space), 

corresponding to the dilation algorithm at the box sizes we considered here. The 3D volumes 

corresponding to each level box size are also shown in Figure 2A. As described earlier, FD 
is calculated based on the number of boxes (voxels) that are filled at each box size. As 

shown in the left panel of Figure 2B, as box size increases, this value decreases as volume of 

each box can contain more of the structure. After taking the log of both the box size and 

counting the boxes filled, we obtain the fractal dimensionality.

To ensure that our obtained fractal dimensionality values were valid, we computed the 

dimensionality of a set of benchmark volumes, i.e., simulated phantoms. The details of these 

benchmark analyses are reported in the Appendix. In these analyses we also found that the 

dilation algorithm yielded slightly more robust fractal dimensionality values; thus, all of the 

fractal dimensionality results reported here were calculated using the dilation algorithm.

 Relationship with Intracranial Volume

Mathematically, fractal dimensionality (FD) is scale-invariant and should not be related to 

intracranial volume (ICV); it is possible, however, that biological constraints may cause FD 

and ICV to be correlated, e.g., smaller ICV space results in a relative increase in cortical 

complexity. Here we sought to determine if FD is correlated with ICV, such that we can 

appropriately control for this relationship, if it exists. We estimated ICV using FreeSurfer 

(Buckner et al., 2004), which has been shown to correspond well with manual tracing 

(Sargolzaei et al., 2015). ICV was only weakly related to age differences [r(416) = −.190, p 
<.001], though was found to be correlated with sex [r(416) = −.572, p <.001].

Analyses indicated that ICV correlated only weakly with either measure of fractal 

dimensionality of the cortical ribbon [ICV↔FDs: r(425) = 213, p<.001; ICV↔FDf: r(425) = 

178, p<.001]. These relationships were not affected by additionally controlling for effects of 

sex and site [ICV↔FDs: rp(420) =.194, p<.001; ICV↔FDf : rp(420) =.167, p<.001]. As 

such, it does not appear that ICV and FD are meaningfully related.

 Data Analysis

Previous studies have observed sex differences in cortical thickness (e.g., Herron et al., 

2015; Sowell et al., 2007) and fractal dimensionality (Luders et al., 2004), but not 

gyrification (Hogstrom et al., 2013). Additionally, it is likely that scanning the same 

individual at a different scanner site would yield differences in estimates of brain 

morphology (e.g., see Dickerson et al., 2008; Han et al., 2006; Iscan et al., 2015; Jovicich et 

al., 2013). As such, all of the correlations reported were conducted as partial correlations, 

controlling for effects of sex and site.
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 Results

 Cortical Ribbon

We first examined correlations between the individuals' age and the complexity of the 

cortical ribbon, i.e., unparcellated gray matter. In FreeSurfer, the cortical ribbon is output as 

an intermediate file during the analyses ( ribbon.mgz).

 Cortical complexity—As shown in Figure 3 A, cortical complexity, as quantified as the 

fractal dimensionality of the filled volume (FDf) robustly decreased as a function of age 

[age↔FDf: rp(425) = −.732, p <.001]. Convergent with prior findings (King et al., 2010), the 

relationship was weaker when we instead used the fractal dimensionality of the surface 

(FDs) [age↔FDs: rp(425) = −.719, p<.001]. Nonetheless, the two fractal dimensionality 

measures were highly correlated [FDf↔FDs: rp(425) = .982, p<.001]. Figure 4 shows the 

cortical surface for individuals with the high and low FDf values. By comparing these sets of 

cortical surfaces, it is qualitatively observable that these differ in cortical complexity. The 

surfaces for these individuals are viewable in an online interactive viewer at: http://

brain3d.cmadan.com/IXI-FD/.

 Other cortical measures—For comparison, we calculated the relationship between 

whole-brain mean cortical thickness and gyrification index. Cortical thickness estimates 

were calculated as the average of the distance from the white matter surface to the closest 

possible point on the pial surface, as calculated using the standard FreeSurfer pipeline. 

Using the output from FreeSurfer for each hemisphere, we averaged the mean cortical 

thickness for each hemisphere as a weighted average, accounting for hemispheric 

differences in surface area, yielding an estimate of whole-brain mean cortical thickness; a 

similar procedure was used to estimate whole-brain gyrification index.

As expected, both whole-brain mean cortical thickness and gyrification index decreased with 

age [age↔CT: rp(425) = −.603, p<.001; age↔GI: rp(425) = −.494, p<.001] (Figures 5A and 

6A), however, both of these relationships were qualitatively weaker than that found with 

fractal dimensionality of the filled volume. Nonetheless, cortical thickness and gyrification 

index were only weakly with each other, suggesting that the two cortical measures quantified 

unique sources of inter-individual variability [CT↔GI: rp(425) = .228, p<.001].

Next, we quantitatively evaluated how the two extant measures related to fractal 

dimensionality. While mean cortical thickness was strongly correlated with both measures of 

fractal dimensionality, it was more strongly correlated with the fractal dimensionality of the 

filled volume than of the surface [CT↔FDf: rp(425) = .865, p<.001; CT↔FDs: rp(425) = .

783, p<.001]. Conceptually, the main difference between the two measures of fractal 

dimensionality is that FDf more directly incorporates the volume of the gray matter, 

suggesting that FDf captures more of the inter-individual variability in cortical volume and 

thickness than FDs. To test this relationship further, we tested if FDf captured age-related 

variability above that explained by mean cortical thickness, and vice versa. Using partial 

correlations, we found that FDf significantly decreased with age, even after accounting for 

mean cortical thickness [rp(424) = − .525, p<.001]. Mean cortical thickness did not decrease 

with age, above what could be explained by FDf[rp(424) = .087, p=.075]. However, despite 
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both partial correlations being significant, these results suggest that FDf is a more sensitive 

quantitative measure of age-related brain atrophy than whole-brain mean cortical thickness.

Gyrification index was strongly correlated with both measures of fractal dimensionality 

[GI↔FDf: rp(425) = .626, p<.001; GI↔FDs: rp(425) = .702, p<.001]. Using partial 

correlations, we found that FDf was still strongly correlated with age, even after accounting 

for the gyrification index [rp(424) = −.623, p<.001]. In contrast, gyrification index was not 

correlated with age, above what could be explained by FDf [rp(424) = −.066, p=.17]. Thus, 

whole-brain fractal dimensionality appears to better quantify age-related cortical atrophy 

than either whole-brain cortical thickness or gyrification index.

Comparing our results with those in the extant literature, in a sample of 70 individuals (35 

Alzheimer's patients and 35 age-matched healthy controls), King et al. (2010) found the 

correlations between fractal dimensionality of the cortical ribbon (i.e., filled volume) and 

cortical thickness and gyrification index to be r=.832 and r=.555, respectively. In a sample of 

over 400 healthy adults across the lifespan, here we found these same correlations for 

cortical thickness and gyrification index to be rp=.863 and rp=.626, respectively. Thus, our 

calculations relating fractal dimensionality to other cortical measures appear to be in-line 

with prior findings, but also demonstrate that fractal dimensionality is more sensitive to age-

related differences in brain morphology than either cortical thickness or gyrification index. 

The relatively weak correlation between thickness and gyrification also corresponds well to 

King et al.'s results, r=.184, whereas we found this relationship to be rp=.228.

 Regional Complexity

It is well known that age-related cortical atrophy, as measured by cortical thickness, does not 

occur homogenously across the cortical surface. Recent cross-sectional and longitudinal 

studies that investigated age-related differences in cortical thickness have found that the two 

lobes most affected are the frontal and temporal lobes, while the occipital lobe is the least 

affected (e.g., Fjell et al., 2009a, 2009b; Hogstrom et al., 2013; Hutton et al., 2009; Salat et 

al., 2004; Sowell et al., 2003)2. Yet, the regional heterogeneity in age-related differences 

may vary depending on the metric used. For instance, Hogstrom et al. (2013) found that 

while frontal and temporal lobes were most correlated with age when cortical thickness was 

measured, the parietal lobe was most correlated with age when gyrification index was used. 

Here, we compared the effect of age on cortical complexity, cortical thickness, and 

gyrification index for each lobe.

 Cortical complexity—We calculated the fractal dimensionality of parcellations of gray 

matter corresponding to each lobe. This was done by using the Desteriux et al. (2010) 

parcellation protocol, built into the standard FreeSurfer pipeline ( aparc.a2009s

+aseg.mgz), where each of the 148 parcellated regions were dummy-coded by lobe. The 

provided MATLAB toolbox is designed to group together parcellated regions assigned the 

same dummy-coded label into a binarized volume prior to calculating the fractal 

dimensionality. As FDf estimates for each lobe were highly correlated across hemispheres 

2However, some longitudinal studies suggest that the frontal and parietal lobes are the most affected by aging (e.g., Crivello et al., 
2014; Resneck et al., 2003; Thambisetty et al., 2010).
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[frontal: r(425) = .971, p<.001; parietal: r(425) =.913, p<.001; temporal: r(425) = .903, p<.

001; occipital: r(425) =.877, p<.001], here we used bilateral structures for each lobe in 

subsequent analyses. As shown in Figure 3B, we found age-related decreases in fractal 

dimensionality to be highest in the frontal lobe [rp(420) = −.740, p<.001], followed by the 

parietal lobe [rp(420) = −.671, p<.001], while the temporal lobe was the least associated with 

age-related differences [rp(420) = −.555, p<.001].

 Other cortical measures—It was surprising that we found the temporal lobe to be 

least affected by age-related differences, as measured using fractal dimensionality analyses. 

However, this discrepancy could be due to the use of a different measure of age atrophy, 

rather than cortical thickness, or it could be because the individuals in the IXI dataset 

exhibited less temporal atrophy than is usually found. To distinguish between these two 

possibilities, we also calculated the mean cortical thickness for each lobe, and similarly 

correlated each of these sets of values with the individuals' age. As shown in Figure 5B, 

differences in cortical thickness were most pronounced in the frontal lobe [rp(420) = −.634, 

p<.001], followed by the temporal lobe [rp(420) = −.574, p<.001].

As shown in Figure 6B, we additionally calculated the gyrification index for each lobe and 

found age-related differences to be greatest in the parietal lobe [rp(420) = −.535, p<.001], 

and relatively comparable in the frontal and temporal lobes [frontal: rp(420) = −.443, p<.

001; temporal: rp(420) = −.432, p<.001]. Thus, lobe gyrification correlated more weakly 

with age than cortical thickness, and was most pronounced in a different lobe. These results 

are consistent with prior findings. Hogstrom et al. (2013) similarly found weaker 

correlations with gyrification index than cortical thickness and found a similar pattern in 

terms of regional specificity. To provide further insight into these three measures, Figure 7 

shows an example cortical surface along with the cortical morphology measures associated 

with each lobe.

 Regional heterogeneity—Given these different patterns of correlations between lobe-

wise estimates of each cortical morphology measure and age, we sought to examine 

differences in how these lobe-wise estimates may correlate. For instance, if inter-individual 

differences in fractal dimensionality were more homogenous, i.e., more collinear, across the 

cortex relative to regional variability in cortical thickness. To assess this, we computed the 

pairwise correlations between all of the lobes using each of our three measures. Figure 8 

reports these lobe-wise correlation matrices (i.e., corrgram; Friendly, 2002).

As shown in Figure 8, the pairwise correlations between lobes were relatively consistent, 

between the three measures, with all three showing slightly lower correlations for the frontal 

lobe. Averaging across regions (via Fisher's Z-transform; see Corey et al., 1998) yielded 

comparable average correlations for both measures [cortical thickness: rp(420, N=6) = .814, 

p<.001; gyrification index: rp(420, N=6) = .798, p<.001; fractal dimensionality: rp(420, 

N=6) = .824, p<.001]. As a secondary approach, we also tested if a multivariate approach 

would be more sensitive to these potential differences in regional homogeneity by conducted 

principal component analyses (PCA) for each set of values (e.g., lobe-wise estimates of 

cortical thickness). The first principal component in each case explained between 83% and 

86% of the variance (see Figure 8). Thus, it does not appear that any of the measures 
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exhibits more or less regional specificity/collinearity than the others, based on lobe-wise 

parcellated regions.

 Multivariate relationship with age

These differences between regional cortical thickness, gyrification, and complexity suggest 

that fractal dimensionality analyses may quantify a different aspect of age-related 

differences in brain structure, rather than being merely a co-varying metric. To test this, we 

conducted a set of regression models, all with the dependant variable of age (controlling for 

effects of sex and site), using different sets of predictors related to cortical thickness, 

gyrification index, and fractal dimensionality (FDf). Here we report the amount of variability 

in age explained by each set of predictors (i.e., R2). Furthermore, we formally compare the 

fitness of the models using the Bayesian Information Criterion (BIC), which evaluates model 

fitness while penalizing models for having more parameters. As a rule of thumb, if the 

difference between BIC for two model fits is less than two, neither of the models' fit to the 

data is significantly better (Burnham & Anderson, 2002, 2004). As absolute BIC values 

themselves are arbitrary, we subtract the BIC value for the best model considered from all 

BIC values and report ΔBIC for each of the models, as is common practice. As a result, the 

best model considered is ΔBIC=0.00 by definition. All of the models are listed in Table 1.

In the first three models, we input whole-brain cortical thickness, gyrification index, or 

fractal dimensionality as the predictors, respectively. These three models directly correspond 

to the correlations shown in Figures 3A, 5A, and 6A. In the fourth model, we used all three

— whole-brain estimates of cortical thickness, gyrification index, and fractal dimensionality

—as predictors to further test if there is independent variance explained by each metric, even 

after penalizing for the additional degree of freedom in the model. We found that whole-

brain fractal dimensionality explained more variance (i.e., R2) than the other two single 

predictor models [FDf : 51.7%; CT: 33.5%; GI: 20.6%]. Combining the three measures of 

cortical structure led to a slight increase in the amount of variability explained [51.7%]; 

however this increase did not produce a significantly better fit relative to its use of an 

additional parameter (i.e., ΔBIC between the lowest two models was greater than two).

In the next set of models, we first used lobe-wise measures of cortical thickness, gyrification 

index, or fractal dimensionality, respectively (models 5-7). In the eighth model, we 

considered lobe-wise predictors for all three measures, yielding a total of twelve predictors. 

Again we found that the fractal dimensionality explained more of the variance in age than 

the other two measures, though there was still an additional benefit of combining all three 

measures. The lobe-wise regional estimates of fractal dimensionality also provided a small 

but significant improvement in predictive value relative to the whole-brain estimate (i.e., 

comparing models 7 and 3).

Many studies have found that age-related differences in cortical thickness are not linearly 

related to age; often a quadratic term is additionally included in the regression model (e.g., 

Crivello et al., 2014; Hogstrom et al., 2013; McKay et al., 2014; Sowell et al., 2003; 

Thambisetty et al., 2010; Walhovd et al., 2011), however, interpreting the beta coefficients 

must be done with caution (see Fjell et al., 2010). Hogstrom et al. (2013) also found 

significant quadratic relationships between age and gyrification index, suggesting that 
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including these non-linear effects would be beneficial to include in our regression models 

here. To this end, we re-ran the above eight models, incorporating both linear and quadratic 

terms for each of the included predictors.

In nearly all of the eight cases, the models that included the quadratic component only 

slightly outperformed the equivalent models that only contained a linear component; this 

benefit was not sufficient to compensate for the additional parameters used (i.e., BIC). 

Across the 16 models, the linear-only whole-brain fractal-dimensionality model (model 3) 

explained the most variability in age, relative to the number of parameters it used. 

Specifically, it was able to explain 51.7% of the variance with only one parameter. The 

highest amount of variability explained, of all of the models considered, was 59.5%.

Figure 9 summarizes our findings of age-related differences across the three structural 

measures, for the entire cortical ribbon and individual lobe-wise parcellations.

 Considering the influence of age-related artifacts in MRI acquisition

Recent research has demonstrated that head motion during MRI acquisition can lead to 

lower estimates of cortical thickness (Reuter et al., 2015). This is of particular relevance 

when investigating the association between brain structure and aging, as older adults tend to 

move their heads during MRI scanning more than young adults (Andrews-Hanna et al., 

2007; Salat, 2014; Van Dijk et al., 2012). Thus, MRI measurements of cortical thickness 

would be influenced by both objectively thinner cortex and age-related differences in head 

motion during MRI acquisition. Since the cortical complexity calculations presented here 

are based on the cortical ribbon (or subregions of it), it is likely plausible that FDf would 

also be affected by head motion. As a coarse approach to evaluate whether the age-related 

differences in cortical complexity would remain even without age differences in motion, we 

additionally computed fractal dimensionality from post-mortem structural MRIs (thus void 

of motion) from individuals who donated their brain to science, obtained from the Allen 

Human Brain Atlas. Currently there are MRIs available from eight donors (who did not have 

any psychological or neurological disorders), however FreeSurfer was unable to estimate the 

surface for one of the donors (H0351.1009). The seven donors used in these analyses, and 

their demographic details, are: H0351.1012 (31M), H0351.1015 (49F), H0351.1016 (55M), 

H0351.2001 (24M), H0351.2002 (39M), H0351.2003 (48F), H372.0006 (44M). The 

structural MRIs are freely available from: http://human.brain-map.org/mri_viewers/data (see 

Allen Institute for Brain Science, 2013, for the MRI acquisition parameters).

As before, we calculated six measures: fractal dimensionality (FDf), mean cortical thickness, 

and gyrification index across the entire cortical ribbon, and mean cortical thickness and FDf 

for each lobe.

Even in this small sample, we did observe age-related decreases in FDf (Figure 10A-B). 

Here we also found the rank-order of FDf values across lobes to be consistent with our 

findings in the IXI dataset (i.e., Figure 3B): frontal, temporal, parietal, occipital.

As shown in Figures 10C-D, age-related differences in mean cortical thickness did not 

appear to decrease with age. As this is cross-sectional data from a small sample, this is not 
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necessarily concerning. The rank-order of cortical thickness across the lobes did match with 

our findings in the IXI dataset (i.e., Figure 5B): temporal, frontal, parietal, occipital. Figures 

10E-F show that we still did observe age-related declines in gyrification, and that the rank-

order across the lobes was again consistent with our findings in the IXI dataset (i.e., Figure 

6B): temporal, parietal, frontal, occipital.

Thus, this dataset provides preliminary evidence that age-related differences in cortical 

complexity (FDf) are present even when head motion cannot influence the MRI acquisition, 

and potentially also suggests that FDf may be more robust to age-related differences in brain 

morpohology than mean cortical thickness.

 Discussion

Here we demonstrate that fractional dimensionality of gray matter is sensitive to age-related 

differences in cortical structure and, in fact, can be more sensitive to age-related differences 

than other metrics of cortical integrity such as cortical thickness or gyrification. We also 

provide evidence that fractional dimensionality is not redundant with these other metrics; 

multivariate regression models that include multiple metrics provide the best ability to track 

age-related differences. Fractional dimensionality therefore appears to be a useful metric for 

studies of cognitive aging, and with this in mind, we additionally provide a new toolbox to 

facilitate other researchers incorporating fractional dimensionality into their investigations of 

age-related cognitive differences.

Previous research has shown that fractal dimensionality of the filled volume, e.g., cortical 

ribbon, is related to both cortical thickness and gyrification index (King et al., 2009, 2010). 

However, our findings clearly show that fractal dimensionality also indexes other facets of 

cortical morphology that result in a stronger correlation with age: Age-related correlations 

with each of the cortical measures were notably higher for fractal dimensionality [FDf: rp=−.

732; CT: rp=−.603; GI: rp=−.494]. We speculate that one possibility is that measurements of 

cortical complexity are better able to capture differences in the organization of cortical 

regions than other measures such as cortical thickness. It is also likely that fractal 

dimensionality is less susceptible to some artifacts than other measures, making it more 

sensitive to age-related differences. For example, while measures of cortical structure relate 

to age-related atrophy and cognitive abilities, they also are influenced by ‘nuisance’ factors 

such as hydration (Streitbürger et al., 2012) and head movement (e.g., Reuter et al., 2015). It 

is plausible that cortical thickness may be more readily influenced by these types of state 

changes than gyrification and cortical complexity. Thus, considering several metrics (e.g., 

thickness, gyrification, and complexity) will allow researchers to better index relevant 

differences in cortical structure.

Our regional analyses present an additional interesting finding: the degree of age-related 

differences in morphology are not consistent across measures. As others have found, the 

frontal and temporal lobes were more affected by age-related differences than the parietal or 

occipital lobes, when measured using estimates of cortical thickness (but see footnote 1). 

However, age-related differences were most prevalent in the parietal lobe when measured 

using gyrification. There were some commonalities across measures: With both cortical 
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thickness and gyrification, we found that the occipital lobe was least affected by age-related 

differences. We observed a different pattern with fractal dimensionality, where the temporal 

lobe was the least affected by age-related differences. These differences provides evidence 

that fractal dimensionality is not merely pooling information that otherwise would be 

quantified by cortical thickness or gyrificiation index, but is also capturing additional age-

related differences in the cortical structure.

In addition to correlating with age, fractal dimensionality has been shown to correlate with 

inter-individual variability in cognitive measures. In a cohort of over 200 adults aged about 

68 years old, Mustafa et al. (2012) found that individuals with greater whole-brain white-

matter complexity had higher fluid intelligence scores and less evidence of age-related 

cognitive decline (also see Sandu et al., 2014). King et al. (2010) also provide evidence that 

fractal dimensionality of the cortical ribbon correlated with scores on a cognitive battery, 

and that this correlation was qualitatively stronger than comparable correlations using 

cortical thickness and gyrification index. Im et al. (2006) observed correlations between 

whole-brain fractal dimensionality and both IQ and years of education, though lobe-wise 

correlations were not significant. Interestingly, the correlations with education were slightly 

stronger than those with IQ, potentially suggesting an influence of education-related 

development on cortical complexity. These findings support the use of cortical complexity as 

a sensitive metric not only for age-related differences in brain structure but also for capturing 

relations between brain structure and cognitive function.

We believe that fractal dimensionality provides an important additional measure of brain 

structures, providing us with a means to consider differences in the shape of structures, 

rather the size (e.g., volume, thickness). While here we measured changes in relatively 

coarse parcellations of the cortex (i.e., lobes), more fine-grained parcellations of cortical and 

subcortical regions can be calculated, and may be particularly useful when relating FD 

estimates to cognitive measures. As a proof-of-principle, in the Appendix we report age-

related differences in volume and FDf for the hippocampus (see Figure A4). While some 

studies have been done comparing FD between healthy controls and patient populations, 

these were done using whole-brain measures and could also benefit from more fine-grained 

parcellations. It is also unclear how head motion may affect estimates of FD. To this end, we 

additionally provide our code as a MATLAB toolbox such that other researchers can also 

readily calculate fractal dimensionality in their analyses.

 MATLAB Toolbox

Given the utility of fractional dimensionality, we provide a freely available MATLAB 

toolbox to calculate the fractal dimensionality of the cortical ribbon or parcellated regions of 

cortex, using intermediate files generated as part of the standard FreeSurfer analysis pipeline 

( ribbon.mgz, aparc.a2009s+aseg.mgz), or directly from other 3D volumes. The 

toolbox includes options to use different masking files (and related documentation on 

making the masks) and is implemented to use either the box-counting or dilation algorithms 

and to use either the filled volume or just the surface of the structure. The toolbox can easily 

be run on all of the participants in a FreeSurfer subject folder, or just on specified subject 

folders. The toolbox can be downloaded from: http://cmadan.github.io/calcFD/.
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The MATLAB toolbox also includes several functions designed to improve functionality, 

such as the automatic ‘cropping’ of the volume space to the smallest bounding box 

necessary to contain the volume (while leaving sufficient space for the dilation of the 

volume), improving computation time drastically. Example files are also provided to aid in 

using the toolbox for the user's needs. All of the presented fractal dimensionality measures 

were obtained using the provided toolbox without any further modification. On our machine, 

the FD calculations, using the dilation algorithm on filled volumes (what most of the results 

are based on), took an average of 11 seconds per participant for the whole-brain and 96 

seconds per participant to determine the FDf for each of the four bilateral lobes. As a general 

recommendation, we suggest using the dilation algorithm on the filled structures.
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 Appendix

 Benchmark Performance

To evaluate the performance of the fractal dimensionality calculations, ten simulated 

phantom volumes were constructed in MATLAB and saved in FreeSurfer's native .mgz 

format, and are provided with the toolbox.

The first two structures were a sphere with a diameter of 200 voxels and a cube with a width 

of 200 voxels. The next volumes were constructed to be a more complex structure, the 

Menger sponge. Briefly, a Menger sponge is a cube-based 3-dimensional fractal, where the 

cube is divided into a 9×9×9 grid and the middle sub-cubes from every face are removed, as 

well as the center-most sub-cube. Thus, of the 27 sub-cubes (i.e., 93), only 20 remain. One 

iteration of this procedure is shown in Figure A1. This procedure can be infinitely iteratively 

repeated for each of the sub-cubes, theoretically producing a structure with infinite surface 

area, but zero volume. The Menger sponge is related to two 2-dimensional fractals, the 

Cantor set and the Sierpinski carpet. Here we constructed three Menger sponges, each with a 

width of 200 voxels: first-iteration, second-iteration, and fourth-iteration. (A cube can be 

considered a zero-iteration Menger sponge.) These five structures are shown in the upper 

row of Figure A1.

We additionally computed the fractal dimensionality of several more complex structures, as 

shown in the lower row of Figure A1. The first three of these structures were selected 

because they have been used as ‘standard’ benchmark objects in the 3D modelling and 

rendering literature: the Newell Teapot, Stanford Bunny, and Stanford Armadillo (e.g., 

Crow, 1987; Labatut et al., 2009). (Note, the teapot has a wall thickness and is hollow inside, 

i.e., it is not a ‘filled’ teapot.) A mug was included as a simple everyday object. The “Fiber 

Cup” was included as a more complex object that was developed as a ground-truth phantom 

volume for DTI analyses. The structural volume used here was reproduced from Figure 1 of 
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Fillard et al. (2011) as we were unable to obtain the original 3D volume. (The thickness of 

our volume does not match the original as it was reproduced from only a 2D image.)

Figure A1. 3D renderings of the benchmark structures used
See main text and Table 1 for further details.

Table A1 shows the benchmark statistics for each of these structures. Note, because we are 

calculating the surface area in voxels, the calculations are not the same as if the structures 

had surfaces with no thickness. For instance, in the cube, voxels that are part of the upper 

edge of a side should not be counted again as part of the top. As a result, the surface area of 

the cube in voxels would not be 240,000 (i.e., 2002×6), but is instead 237,608 (i.e., 2003–

1983). Similarly, because surface area is calculated as ‘surface’ voxels, the SA/V ratio 

cannot become smaller than 1, i.e., every surface voxel counts towards the volume and there 

are no ‘inner’ voxels.

Though fractal dimensionality is usually calculated only based on the surface of the 

structure, King et al. (2010) found that additionally counting the ‘filled’ volume can lead to 

better measurements of age-related differences in cortical complexity, an approach that has 

also been used in a number of other studies (e.g., Esteban et al., 2009; Im et al., 2006; 

Kiselev et al., 2003). Here we computed two measures of fractal dimensionality, one based 

on only the surface structure (FDs) and one that also includes the filled volume (FDf).
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Table A1
Benchmark statistics for each of the benchmark 
structures (shown in Figure A1)

The geometric properties of each structure include the length of the longest dimension (L), 

volume (V), surface area (SA), and the ratio of volume to surface area (V/SA). Fractal 

dimensionality was calculated using four different methods, using either the box-counting or 

dilation algorithms, and either only counting the surface voxels of the structure (FDs) or also 

including the filled volume of the structure (FDf).

Structure

Geometric Box-Counting Dilation

L V SA V/SA FDs FDf FDs FDf

Sphere 200 4,187,854 186,053 22.51 1.99 2.89 2.00 2.89

Cube 200 8,000,000 237,608 33.67 1.97 2.97 2.00 2.92

Menger-1 200 5,961,392 316,792 18.82 1.98 2.91 2.00 2.88

Menger-2 200 4,447,440 517,016 8.60 2.02 2.81 2.03 2.78

Menger-4 200 2,477,920 1,921,376 1.29 2.46 2.60 2.49 2.56

Newell Teapot 225 1,119,692 90,899 12.32 2.03 2.81 2.02 2.81

Stanford Bunny 221 2,211,262 167,897 13.17 2.03 2.81 2.01 2.82

Stanford Armadillo 225 825,402 121,628 6.77 2.03 2.68 2.02 2.69

Mug 220 1,113,980 340,802 3.27 2.14 2.53 2.13 2.56

Fiber Cup 223 245,102 69,926 3.41 1.96 2.40 2.00 2.46

Theoretically, a cube should have fractal dimensionality values corresponding to 2 and 3 for 

the surface and filled volumes, respectively. A sphere should have a surface fractal 

dimensionality of 2, and a filled fractal dimensionality slightly below 3. Our results match 

with these values well.

For the Menger sponge volumes, an nth iteration structure, which has infinite surface area 

and zero volume, should have a surface fractal dimensionality of 2.73. We can see that the 

higher-iteration Menger sponge structures have increasing surface fractal dimensionality 

values, but we could not generate higher-iteration structures of comparable resolution as 

brain volumes (i.e., constraints of voxel coordinate space). We also see that the filled fractal 

dimensionality decreases with higher iterations, as expected.

Though the theoretical fractal dimensionality values are not known for the remaining 

structures, their inclusion is intended to aid the reader in understanding how fractal 

dimensionality relates to a structure's complexity. Additionally, the simulated phantom 

volumes for all ten structures are included with the toolbox, allowing them to serve as 

benchmarks for future work.

 Formal comparison

To formally compare the two algorithms, box counting and dilation, we generated 3D box 

structures that were based on a random subset of cubes in a 20×20×20 arrangement. For 
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each structure, we computed the filled fractal dimensionality (FDf) using both the box-

counting and dilation algorithms. This was repeated for 10,000 simulated structures.

Generally, the algorithms were highly correlated in their fractal dimensionality estimates and 

deviations were minimal in magnitude [r(9998)=.9997, p<.001; Difference: M (SD) = .0263 

(.0096)]. Nonetheless, we did find that the box-counting FDf was nearly always higher than 

the FDf obtained using the dilation algorithm, as shown in Figure A2. Logically, this is due 

to a cumulative rounding error from the box-counting algorithm using a fixed grid scan, 

while the dilation is effectively using a sliding grid scan. This bias was higher for structures 

with more extreme levels of fractal dimensionality (i.e., near to either 2 or 3). Based on this 

comparison, we used the dilation algorithm in the reported cortical complexity analyses, 

though both algorithms are implemented in the MATLAB toolbox.

Figure A2. Comparison between fractal dimensionality values (FDf) obtained using the box-
counting and dilation algorithms
Panel A shows axial slices and 3D volumes representing the box-counting algorithm 

(compare with Figure 2A). Panel B shows a formal comparison between the two algorithms.

 IXI Dataset

IDs for the 427 individuals included in the analyses reported here: 002, 012, 014, 015, 017, 

019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 033, 034, 035, 036, 037, 

039, 040, 042, 043, 044, 045, 046, 048, 049, 050, 051, 052, 053, 054, 055, 056, 057, 058, 
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060, 061, 062, 063, 064, 065, 067, 068, 069, 070, 071, 073, 074, 075, 076, 077, 078, 079, 

080, 083, 084, 085, 086, 087, 089, 090, 092, 097, 098, 102, 105, 106, 107, 109, 110, 111, 

113, 115, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 134, 135, 137, 138, 

140, 141, 142, 143, 144, 145, 148, 150, 151, 153, 154, 157, 158, 159, 160, 161, 163, 164, 

166, 167, 169, 170, 172, 173, 174, 176, 177, 178, 180, 181, 182, 183, 184, 185, 186, 188, 

189, 191, 192, 193, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 207, 209, 212, 213, 

214, 216, 217, 218, 219, 221, 222, 224, 225, 226, 227, 230, 231, 232, 233, 234, 237, 238, 

239, 240, 241, 242, 244, 246, 247, 248, 249, 251, 253, 254, 255, 258, 259, 262, 264, 265, 

266, 268, 269, 270, 275, 276, 277, 278, 279, 280, 282, 284, 285, 286, 287, 289, 290, 291, 

294, 295, 296, 297, 298, 299, 304, 305, 306, 307, 308, 310, 311, 312, 315, 316, 318, 319, 

320, 321, 322, 324, 325, 326, 328, 329, 332, 334, 335, 336, 338, 342, 344, 348, 350, 351, 

353, 354, 356, 357, 358, 359, 360, 362, 363, 364, 365, 367, 368, 369, 370, 371, 372, 373, 

375, 377, 378, 379, 380, 385, 386, 387, 388, 389, 390, 391, 392, 393, 396, 397, 398, 399, 

401, 402, 403, 405, 408, 410, 411, 412, 414, 415, 418, 419, 420, 422, 427, 428, 431, 433, 

434, 436, 437, 438, 439, 441, 442, 444, 445, 446, 447, 449, 450, 451, 452, 453, 454, 455, 

456, 458, 459, 460, 461, 462, 467, 468, 469, 473, 474, 475, 476, 477, 478, 480, 482, 484, 

485, 486, 487, 490, 493, 494, 495, 496, 498, 500, 502, 504, 505, 507, 508, 510, 516, 517, 

522, 524, 525, 526, 527, 528, 531, 532, 534, 535, 536, 538, 539, 543, 544, 546, 547, 548, 

549, 550, 551, 553, 554, 558, 559, 560, 561, 562, 563, 565, 566, 567, 568, 569, 572, 573, 

574, 575, 576, 577, 578, 579, 582, 586, 587, 588, 591, 592, 593, 594, 595, 598, 601, 603, 

605, 606, 607, 609, 612, 613, 614, 616, 617, 618, 621, 625, 626, 627, 629, 631, 634, 639, 

640, 641, 642, 644, 648, 652, 653, 662
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Figure A3. Examples of issues with cortical surfaces that resulted in exclusion
Panel A shows an example of the surface boundary being too inclusive and including tissue 

surrounding the gray matter; panel B shows an example of the surface reconstruction being 

too restrictive and missing portions of gray matter.

 Subcortical Volumes

As a proof-of-principle, we have calculated the age-related differences in the hippocampus, 

as measured as using volume and FDf. Hippocampal volume was estimated using 

FreeSurfer, and the sum of the left and right hemisphere volumes was used in the analysis. 

Prior to computing the partial correlation (controlling for sex and site), volume was taken as 

the residual after regressing on ICV (e.g., see Walhovd et al., 2011). Fractal dimensionlity 

(of the filled structure) was calculated based on the bilateral structure, using the provided 

toolbox. We observed age-related differences in both hippocampal volume and structural 

complexity [volume: rp(420) = −.342, p<.001; FDf : rp(420) = − .273, p<.001].
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Figure A4. Hippocampal volume and fractal dimensionality (FDf) for the individuals in the IXI 
dataset
Panel A shows the scatter plot of age and volume, along with the correlation and slope; 

panel B shows age and FDf.
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Figure 1. Illustration of how fractal dimensionality is measured from a 2D structure
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Figure 2. Illustration of how fractal dimensionality is measured from a 3D structure
Panel A shows the filled boxes that are counted at each box size (corresponding to FDf), 

shown as axial slices from the middle of the brain and as 3D surface volumes, for the 

dilation algorithm. Panel B plots the number of counted, filled boxes at each box size (left), 

and re-plotted in log-log space. The fractal dimensionality is the slope of the line in log-log 

space. All brain images are shown from IXI002, 35 year-old female, from the IXI dataset. 

3D surfaces are rendered using the pipeline described in Madan (2015).
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Figure 3. Fractal dimensionality (FDf) for the individuals in the IXI dataset
Panel A shows the scatter plot of age and FDf for the cortical ribbon, along with the 

correlation and slope. Scatter plots of age and FDf for each lobe, are shown in panel B, along 

with the respective correlations and slopes.
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Figure 4. Cortical surfaces for individuals with high and low FDf values, along with their 
demographic information
Surfaces for these individuals also viewable in an online interactive viewer at: http://

brain3d.cmadan.com/IXI-FD/.
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Figure 5. Mean cortical thickness for the individuals in the IXI dataset
Panel A shows the scatter plot of age and whole-brain mean cortical thickness, along with 

the correlation and slope. Scatter plots of age and mean cortical thickness for each lobe, are 

shown in panel B, along with the respective correlations and slopes.
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Figure 6. Gyrification index for the individuals in the IXI dataset
Panel A shows the scatter plot of age and whole-brain gyrification index, along with the 

correlation and slope. Scatter plots of age and mean gyrification index for each lobe, are 

shown in panel B, along with the respective correlations and slopes.
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Figure 7. Cortical surface for participant IXI002 from the IXI dataset, colored by lobe 
parcellation, along with cortical surface measures
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Figure 8. Lobe-wise homogeneity in cortical structure, as measured using cortical thickness, 
gyrification index, and fractal dimensionality (FDf)
Triangular grids show pair-wise correlations across lobes. Below each grid is the variance 

explained by the first principal component for each cortical measure.
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Figure 9. Relationship between each cortical structure measure (cortical thickness, gyrification 
index, and fractal dimensionality [FDf]) with age, for the entire cortical ribbon and individual 
lobe-wise parcellations
Each bar represents the R2 for a quadratic regression model with age.
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Figure 10. Mean cortical thickness, gyrification index, and fractal dimensionality (FDf) for the 
individuals in the Allen Human Brain Atlas dataset
Fractal dimensionality for the whole-brain and each lobe are shown in panels A and B. Mean 

cortical thickness and gyrification index for the whole-brain and each lobe are shown in 

panels C-F.
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